
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 24, 1999, 231–252

NORMAL FAMILIES, MULTIPLICITY AND
THE BRANCH SET OF QUASIREGULAR MAPS

O. Martio, U. Srebro, and J. Väisälä
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Abstract. A criterion for normality and compactness of families of K -quasiregular mappings
of bounded multiplicity is established and then applied to the study of the branch set and its image.

1. Introduction

Let D be a domain in Rn , n ≥ 2, and let f :D → Rn be a discrete and
open map. By a theorem of Chernavskii [C1]–[C2], see also [V1], both the branch
set Bf of f , i.e. the set where f fails to define a local homeomorphism, and fBf

have topological dimension ≤ n − 2. For n = 2, Bf consists of isolated points,
the local behavior of f at a point x ∈ D is quite simple, and it is classified by
its local topological index i(x, f). Contrary to the planar case, little is known of
the structure of Bf for n ≥ 3, and maps with the same index i(x, f) at x may
have different topological behavior in any neighborhood of x . Even for n = 3
and for small values of i(x, f), the local behavior of a discrete open map can be
complicated unless the image of the branch set is relatively simple near the point
f(x); see [MRV3, 3.20] and [MSr, 3.8].

Suppose that f :D → Rn , n ≥ 2, is quasiregular. This means that f is
continuous, locally in the Sobolev space W 1,n , and for some K ≥ 1

(1.1) |f ′(x)|n ≤ KJ(x, f)

a.e. in D . Here f ′(x) is the formal derivative of f at x , |f ′(x)| = sup|h|=1 |f ′(x)h|
and J(x, f) = det f ′(x) is the Jacobian determinant of f at x . By a theorem of
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Reshetnyak [Re, pp. 183–184], f is either constant or a discrete, open and sense-
preserving map. We shall only consider the latter case. Since quasiregular maps
form a natural generalization of plane analytic functions to higher dimensional
euclidean spaces, rather many studies have been devoted to the metric structure
of their branch sets.

In [MRV1] it was shown that m(Bf ) = 0 = m(fBf ), where m refers to
the Lebesgue measure in Rn ; see also [Re, p. 224]. Moreover, on each (n − 1)-
hyperplane T , mn−1(T ∩ Bf ) = 0 = mn−1(T ∩ fBf ); see [Re, p. 221] and [MR,
3.1] for these results. Sarvas [S2, 4.10] showed that for any compact set C ⊂ D ,
dimH (Bf ∩ C) < n where dimH refers to the Hausdorff dimension. In [MRV3,
4.4] it was proved that if n ≥ 3 and if Bf omits an open cone Cx(α) with vertex
at x and opening angle α > 0, then i(x, f) ≤ N(α,K, n). We replace the cone
Cx(α) by a curvilinear cone and show in Section 5 that this result is quantitatively
the best possible.

In this paper we study metric properties of the domain D\Bf , assuming that
f :D → Rn is a K -quasiregular map of finite multiplicity

N(f) = sup {#f−1(y) : y ∈ Rn} < ∞.

For example, we show in Section 3 that if D = Rn , then Rn \Bf and Rn \ fBf

are uniform domains, and hence contain arbitrarily large balls. In fact, there are
arbitrarily large balls in which f is injective. The proofs are based on normal
family properties of quasiregular maps of finite multiplicity. These are studied in
Section 2, and they differ considerably from the quasiconformal case. In Section 4
we show that the class of nullsets for uniform domains and the class of porous sets
are invariant under quasiregular maps f : Rn → Rn of finite multiplicity. The
results hold in all dimensions n ≥ 2.

Iwaniec [Iw] has studied normal families and injectivity of quasiregular map-
pings. His studies were mainly devoted to the stability problem, i.e. to quasiregular
mappings in Rn , n ≥ 3, whose dilatation coefficient K is close to 1. He also uses
a different type of normalization.

Our notation is standard. In particular, Bn(x, r) or B(x, r) denotes the open
ball centered at x ∈ Rn with radius r > 0, Bn(r) = Bn(0, r) and Bn = Bn(1).
Also Sn−1(x, r) = ∂Bn(x, r), Sn−1(r) = Sn−1(0, r) and Sn−1 = Sn−1(1). For
A ⊂ Rn and r > 0, we let B(A, r) = {x : dist (x,A) < r} denote the r -
neighborhood of A with B(A,∞) = Rn . The one-point extension of Rn is
Ṙn = Rn ∪ {∞} . For real numbers r , s we write r ∧ s = min (r, s).

2. Normalization and normality

Let D be a domain in Rn , n ≥ 2, let 1 ≤ N < ∞ , and let F denote the
family of all K -quasiregular maps f :D → Rn with N(f) ≤ N . Clearly, F is
invariant under the action of sense preserving similarities of Rn , i.e. A ◦ f ∈ F
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if f ∈ F and A is a sense preserving similarity. Next, let ϕ: F → R be a
functional, and suppose that ϕ is invariant under sense preserving similarities, i.e.
ϕ(A ◦ f) = ϕ(f), where A and f are as above.

In studying the infimum of ϕ on F one often considers a sequence (fk) of
elements of F such that

lim
k→∞

ϕ(fk) = inf
f∈F

ϕ(f).

In view of the similarity invariance of F and ϕ , one may replace each fk by
another element gk ∈ F which satisfies certain normalization conditions, such as

(2.1) gk(a) = a and gk(b) = b

for two fixed points a and b in D .
In the case where n = 2, K = 1 and N = 1, the maps are complex analytic

univalent functions, and one can normalize the maps gk also by the condition

(2.2) gk(a) = a and g′k(a) = 1.

In this case, each of the conditions (2.1) and (2.2) implies normality, and this fact
is widely used in the theory of analytic univalent functions, cf. [Po2] and [Sc].
This, however, is not the case as soon as N > 1, as noted already in [Po2] and
can be seen from the following two examples. The functions

gk(z) = (k + 1)z − kz2, z ∈ C,

k = 1, 2, . . . , are analytic and 2-valent in B2(r) for any r > 1. They satisfy (2.1)
with a = 0 and b = 1, but (gk) is not normal in any neighborhood of 0 since
gk(1/k) = 1, k = 1, 2, . . . . The functions

gk(z) = z − kz2, z ∈ C,

k = 1, 2, . . . , are analytic and 2-valent in B2(r) for any r > 1
2 . They satisfy

(2.2) with a = 0, but (gk) is not normal in any neighborhood of 0 because
gk(k−1/3) → ∞ as k → ∞ . These two examples can be generalized to quasiregular
maps in all dimensions n ≥ 2 showing that another normalization is needed for
noninjective maps.

Let F and ϕ be as above. Choose a point a ∈ D and a number R > 0
such that B(a,R) ⊂ D . Then, by the similarity invariance of F and ϕ , for each
f ∈ F there exists g ∈ F with ϕ(g) = ϕ(f) such that

g(a) = 0 and max
|x−a|=R

|g(x)| = 1.

We show in 2.5 that this normalization yields a normal, and even compact, family
of elements g of F in B(a,R). This will follow from a more general result 2.4,
which will be needed in Section 3. We recall that a family F of maps f :D → Rn

is normal if from each sequence of functions fk ∈ F it is possible to extract a
subsequence (fki) which converges locally uniformly in D to a function f :D →
Ṙn .



234 O. Martio, U. Srebro, and J. Väisälä

We first prove a distortion lemma.

2.3. Lemma. Let 0 < r < s < R ≤ ∞ , 1 ≤ K < ∞ , N ≥ 1 and
n ≥ 2 . Then there is c = c(r, s,R,K,N, n) with the following property: If
f :Bn(R) → Rn is a K -quasiregular map with f(0) = 0 and N(f) ≤ N , and if
A ⊂Bn(r) is a continuum joining 0 and Sn−1(r) , then

max{|f(x)| : |x| ≤ s} ≤ c max{|f(x)| ∈ A}.

Proof. Let m0 and m1 be the maximum of |f(x)| over x ∈ A and |x| ≤ s ,
respectively. Choose x ∈ Sn−1(s) with |f(x)| = m1 , and define a path α: [1,∞) →
Rn by α(t) = tf(x). Let α∗: [1, t0) → Bn(R) be a maximal lift of α starting at x ;
see [MRV3, 3.11]. Then |α∗(t)| ≥ s for all t , and |α∗(t)| → R as t → t0 .

Let Γ be the family of all paths joining A and the locus of α∗ in Bn(R).
For the modulus M(Γ), a standard estimate gives a lower bound

M(Γ) ≥ q(r, s,R, n) > 0;

see [GM, 2.6 and 2.12]. We may assume that m0 < m1 . Since each member of
fΓ meets the spheres Sn−1(m0) and Sn−1(m1), we have

M(fΓ) ≤ ωn−1

(
log

m1

m0

)1−n

.

Since f is K -quasiregular with N(f) ≤ N , the KO(f)-modulus inequality [MRV1,
3.2] yields M(Γ) ≤ KNM(fΓ). Combining these inequalities we obtain the lemma.

2.4. Theorem. Suppose that 0 < r < R ≤ ∞ , 0 < r′ < ∞ , 1 ≤ K < ∞ ,
N ≥ 1 , and that F is a family of K -quasiregular maps f :Bn(R) → Rn such
that N(f) ≤ N , f(0) = 0 , and such that for each f ∈ F there is a continuum
A(f) with the properties

0 ∈ A(f), max{|x| : x ∈ A(f)} = r, max{|f(x)| : x ∈ A(f)} = r′.

Then F is a normal family. If fk ∈ F and if fk → f locally uniformly in Bn(R) ,
then f is a K -quasiregular map with N(f) ≤ N .

Proof. For r < s < R , Lemma 2.3 implies that |f(x)| ≤ c(r, s,R,K,N, n)r′

for all |x| ≤ s and f ∈ F . Thus F is uniformly bounded in Bn(s), and the
normality of F follows from [MRV2, 3.17] or from [Re, p. 220].

Next let (fk) be a sequence in F converging to a map f locally uniformly
in Bn(R). By a theorem of Reshetnyak [Re, p. 218], f is K -quasiregular. For each
k there is a point xk ∈ A(fk) ∩ Sn−1(R) with |fk(xk)| = r′ . Hence |f(x)| = r′

for some x ∈Bn(r). Since f(0) = 0, f is nonconstant. The inequality N(f) ≤ N
follows by an easy degree argument.
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2.5. Corollary. Let 1 < R ≤ ∞ , 1 ≤ K < ∞ and 1 ≤ N < ∞ , and let F
be a family of K -quasiregular maps f :Bn(R) → Rn with N(f) ≤ N satisfying

f(0) = 0 and max
|x|=1

|f(x)| = 1.

Then F is a normal family. Moreover, if fk ∈ F and fk → f locally uniformly
in Bn(R) , then f is K -quasiregular and N(f) ≤ N .

2.6. Remark. The assumption in 2.5 that N(f) ≤ N for all f ∈ F is
indispensable as can be seen by considering zk , k = 1, 2, . . . , for n = 2, and a
sequence of polynomial-like K -quasiregular maps f :Rn → Rn in the sense of [Ri,
I.3.2] or [Mr, Th. 2] for n > 2.

3. The branch set and multiplicity

3.1. Terminology. Let c ≥ 1. A set A ⊂ Rn is c -plump if for each x ∈ Ā and
for each r > 0 with A \B(x, r) �= ∅ there is z ∈B(x, r) such that B(z, r/c) ⊂ A .
A set F ⊂ Rn is c -porous if intF = ∅ and if Rn \ F is c -plump.

Let D be a proper subdomain of Rn . For each x ∈ D we write

δ(x) = δD(x) = dist (x, ∂D).

A domain D is c -uniform if D = Rn or if each pair of points a , b in D can
be joined by a rectifiable path γ: [0, l(α)] → D , parametrized by arc length, such
that l(γ) ≤ c|a− b| and such that

(3.2) t ∧
(
l(α) − t

)
≤ cδ

(
γ(t)

)
for all t ∈

(
0, l(α)

)
; see [MS] and [V4]. Recall that t ∧ s denotes min(t, s).

We recall from [MRV1] some basic properties of a discrete open map f :D →
Rn . A domain U is a normal domain of f if U is compact in D and if f∂U =
∂fU . For x ∈ D , the x-component U(x, f, r) of f−1B

(
f(x), r

)
is a normal do-

main of f whenever its closure is compact in D . Then fU(x, f, r) = B
(
f(x), r

)
.

If, in addition, U(x, f, r) meets f−1
(
f(x)

)
only at x , it is called a normal neigh-

borhood of x . If U is a normal domain of f , then f defines a proper map U → fU ,
that is, the preimage of every compact set is compact.

For each x ∈ D there is r0 > 0 such that U(x, f, r0) is a normal neighborhood
of x for each r ≤ r0 , and diamU(x, f, r) → 0 as r → 0. Moreover, the topological
degree µ

(
f(x), f, U(x, f, r)

)
is independent of r ∈ (0, r0 ] , and it is the local index

i(x, f) of f at x . We also have |i(x, f)| = N(f |V ) for every neighborhood
V ⊂ U(x, f, r0) of x . A point x ∈ D is in Bf if and only if |i(x, f)| ≥ 2.
Nonconstant quasiregular maps are sense-preserving, that is, i(x, f) > 0 for all
x ∈ D .

If f : Rn → Rn is quasiregular with N(f) = N < ∞ , then f extends to a
continuous map f : Ṙn → Ṙn by f(∞) = ∞ . This follows, for example, from [Ri,
III.2.11]. Consequently, f is a proper map and also a closed map onto Rn .
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As main results of this section we shall show that if f :D → Rn is K -
quasiregular with N(f) ≤ N < ∞ and if D is c -plump or c -uniform, then
D \Bf has the same properties with a constant c′ = c′(c,N,K, n).

For plumpness this follows from the following stronger result.

3.3. Theorem. For each n ≥ 2 , K ≥ 1 and N ≥ 1 there exists q =
q(N,K, n) > 0 such that f is injective in some ball B(x, q) ⊂ Bn whenever
f :Bn → Rn is K -quasiregular with N(f) ≤ N .

Proof. Assume that the theorem is false for some triple (N,K, n). Then there
is a sequence of K -quasiregular maps fk:Bn → Rn with N(fk) ≤ N such that
fk is not injective in any ball B(x, 1/k) ⊂ Bn . By auxiliary similarities we can
normalize the maps fk so that

fk(0) = 0, max
{
|fk(x)| : |x| ≤ 1

2

}
= 1.

Applying 2.5 and passing to a subsequence we may assume that the sequence (fk)
converges locally uniformly to a nonconstant K -quasiregular map f :Bn → Rn .
Choose a ball B(a, r) ⊂ Bn in which f is injective. Then the topological degree
µ
(
f(x), f, B(a, r)

)
is 1 for all x ∈ B(a, r). Since fk → f uniformly in B(a, r),

there is k0 such that µ
(
fk(x), fk , B(a, r)

)
= 1 for all k ≥ k0 and x ∈ B(a, r/2).

Hence fk | B(a, r/2) is injective for all k ≥ k0 , which gives a contradiction.

3.4. Theorem. Suppose that D ⊂ Rn is a c -plump domain and that
f :D → Rn is a K -quasiregular map with N(f) ≤ N < ∞ . Then D \ Bf is
c′ -plump with c′ = c′(c,N,K, n).

Proof. Assume that x ∈ D , r > 0, and D \ B(x, r) �= ∅ . Since D is c -
plump, there is z ∈B(x, r) with B(z, r/c) ⊂ D . By 3.3, f is injective in some
ball B(y, qr/c) ⊂ B(z, r/c) where q = q(N,K, n). Hence D \Bf is (c/q)-plump.

3.5. Corollary. If f :Rn → Rn is K -quasiregular with N(f) ≤ N <
∞ , then Bf is c -porous with c = c(N,K, n) . In particular, Rn \ Bf contains
arbitrarily large balls.

3.6. Remark. Every K -quasiconformal map f :Rn → Rn is η -quasisym-
metric with η = ηK,n ; see [V3, 2.5]. Hence f maps each c -porous set in Rn onto a
c′ -porous set, c′ = c′(c,K, n). In particular, the image of each (n−2)-dimensional
plane T ⊂ Rn is c′ -porous with c′ = c′(K,n). We remark that this result can
also be obtained from 3.5. Indeed, there is a 2-valent quasiregular winding map
w:Rn → Rn with Bw = T , and then fT is the branch set of the quasiregular
map w ◦ f−1 .

To obtain the uniform version of 3.4 we need some auxiliary results.
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3.7. Terminology. The relative distance between points a , b in a domain
D �= Rn is the number

rD(a, b) =
|a− b|

δ(a) ∧ δ(b)
,

where δ(x) = dist (x, ∂D) as before. For c ≥ 1, we say that a pair (a, b) of points
in D is a c -pair in D if 1 ≤ rD(a, b) ≤ c . This is a simplified version of the
notion considered in [V4, 2.13].

3.8. Lemma. Suppose that D �= Rn is a domain and that
(1) D is c -plump.
(2) For each 8c -pair (a, b) in D there is an arc γ joining a and b such that

δ(a) ∧ δ(b) ≤ c0 dist (γ, ∂D), diamγ ≤ c0|a− b|.

Then D is a c′ -uniform domain with c′ = c′(c, c0, n) .

Proof. Suppose that B(a, r) and B(b, s) are balls in D such that r/s ∈
[1/2, 2] and |a− b| ≤ 4cmax(r, s). By [V4, 2.15 and 2.10], it suffices to show that
a and b can be joined by an arc γ such that diamγ ≤ c1|a− b| and such that

|x− a| ∧ |x− b| ≤ c1δ(x)

for all x ∈ γ with c1 = c1(c, c0).
If rD(a, b) ≤ 1, we can choose γ to be the line segment [a, b] . If rD(a, b) ≥ 1,

then (a, b) is obviously an 8c -pair in D . Hence there is γ satisfying (2). For each
x ∈ γ we have

|x− a| ∧ |x− b| ≤ diam γ ≤ c0|a− b| ≤ 8cc0
(
δ(a) ∧ δ(b)

)
≤ 8cc20dist (γ, ∂D) ≤ 8cc20δ(x),

and the lemma is proved.

3.9. Lemma. Suppose that a and b are points in a c -uniform domain D ⊂
Rn such that 0 < |a− b| ≤ c′

(
δ(a)∧ δ(b)

)
. Then there is L = L(c, c′) ≥ 1 and an

L -bilipschitz map F :Bn(|a−b|) → D such that F (0) = a and F (|a−b|e1/2) = b .

Proof. Set r = δ(a) ∧ δ(b) and t = |a − b| . Then 0 < t ≤ c′r . The
assertion is clear if r < t , since then B

(
(a + b)/2, t

√
3 /2

)
⊂ D . By a result of

G. Martin [Ma, 5.1], there is L = L(c) and an L -bilipschitz map f :Bn(t) → D
such that {a, b} ⊂ fBn(t). Set U = fBn(t). Since f is L -bilipschitz, U is
easily seen to be 2L2 -plump. Hence there is a ball B(z, s) ⊂ U ∩ B(a, r/4)
with s = r/16L2 . It follows that there is L1 = L1(c) and an L1 -bilipschitz
homeomorphism g:B(a, r/2) →B(a, r/2) such that g | ∂B(a, r/2) = id and such
that gB(z, s) = B(a, s). Since r ≤ t , the balls B(a, r/2) and B(b, r/2) are
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disjoint. Hence we can use the same construction in B(b, r/2) to extend g to an
L1 -bilipschitz homeomorphism g:Rn → Rn such that

(1) B(a, s) ∪B(b, s) ⊂ gU ,
(2) g = id outside B(a, r/2) ∪B(b, r/2).
Setting h(x) = g

(
f(x)

)
we obtain an LL1 -bilipschitz homeomorphism

h:Bn(t) → gU . Moreover,
(
t− |h−1(a)|

)
∧

(
t− |h−1(b)|

)
≥ s/LL1 ≥ t/c1

with c1 = c1(c, c′) = 16c′L3L1 . Hence there is L2 = L2(c, c′) and an L2 -
bilipschitz homeomorphism u:Bn(t) → Bn(t) with u

(
h−1(a)

)
= 0, u

(
h−1(b)

)
=

te1/2. The desired map is then F = h ◦ u−1:Bn(t) → gU ⊂ D .

3.10. Lemma. Suppose that fk:D → Rn is a sequence of discrete open
maps converging locally uniformly to a discrete open map f :D → Rn . Then a
point a ∈ D is in Bf if and only if there are points xk ∈ Bfk such that xk → a .

Proof. The ‘if’ part is given in [MR, 3.2]. To prove the converse, it suffices to
show that if each fk is a local homeomorphism, then |i(a, f)| = 1.

Choose r > 0 such that U(a, f, 3r) is a normal neighborhood of a ; see 3.1.
Next choose k ∈ N such that |fk(x) − f(x)| < r/2 for all x ∈ U(a, f, r). Then
fk(a) ∈ B

(
f(a), r/2

)
. Let Vk be the a-component of f−1

k B
(
f(a), 2r

)
. Then Vk

does not meet ∂U(a, f, 3r), and hence Vk ⊂ U(a, f, 3r). Moreover, Vk is a normal
domain of fk , and hence fk defines a covering map of Vk onto B

(
f(a), 2r

)
.

Since B
(
f(a), 2r

)
is simply connected, this map is a homeomorphism. Since

U(a, f, r) ⊂ Vk , we have

i(a, f) = µ
(
f(a), f, U(a, f, r)

)
= µ

(
fk(a), fk , U(a, f, r)

)
= ±1;

see [RR, Th. 6, p. 131].

3.11. Theorem. Suppose that D ⊂ Rn is a c -uniform domain and that
f :D → Rn is a K -quasiregular map with N(f) ≤ N < ∞ . Then the domain
D \Bf is c′ -uniform with c′ = c′(c,N,K, n).

Proof. We show that the domain G = D \Bf satisfies the conditions of 3.8.
From the definitions it easily follows that a c -uniform domain is 2c -plump. Hence
G is c′ -plump with c′ = c′(c,N,K, n) by 3.4.

It suffices to show that there is c0 = c0(c,N,K, n) such that each 8c′ -pair
(a, b) in G can be joined by an arc γ such that

δG(a) ∧ δG(b) ≤ c0 dist (γ, ∂G), diamγ ≤ c0|a− b|.

Assume that this is false for some (c,N,K, n). Then there is a sequence of K -
quasiregular maps fk:Dk → Rn such that N(fk) ≤ N , the domains Dk ⊂ Rn
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are c -uniform, and there are 8c′ -pairs (ak , bk) in Gk = Dk \ Bfk such that for
any arc γ joining ak and bk in Gk we have

(3.12) δk(ak) ∧ δk(bk) > k dist (γ, ∂Gk) or diamγ > k|ak − bk|;

here δk(x) = dist (x, ∂Gk).
Setting rk = δk(ak) ∧ δk(bk) and tk = |ak − bk| we have

rk ≤ tk ≤ 8c′rk ≤ 8c′
(
dist (ak , ∂Dk) ∧ dist (bk, ∂Dk)

)
.

By 3.9 there is L = L(c, c′) and an L -bilipschitz map Fk:Bn(tk) → Dk such that
Fk(0) = ak , Fk(tke1/2) = bk . Define gk:Bn → Rn by gk(x) = fk

(
Fk(tkx)

)
.

Then gk is K1 -quasiregular with K1 = K1(K, c, c′, n), and N(gk) ≤ N . By
auxiliary similarities we can normalize the situation so that

gk(0) = 0, max{|gk(x)| : |x| ≤ 1/2} = 1.

Applying 2.5 and passing to a subsequence we may assume that the sequence
(gk) converges locally uniformly in Bn to a nonconstant K1 -quasiregular map
g:Bn → Rn .

Since fk is locally injective in B(ak, rk), and since tk ≤ 8c′rk , the map gk is
locally injective in Bn(1/8c′L) for each k . Hence also g | Bn(1/8c′L) is locally
injective, which implies that 0 /∈ Bg by 3.10. Similarly we obtain e1/2 /∈ Bg . Since
Bn \ Bg is connected, we can join 0 and e1/2 by an arc β in Bn \ Bg . Setting
λ = dist (β, Sn−1 ∪Bg) we have dist (β,Bgk ) ≥ λ/2 for large k by [MR, 3.2]. The
arc γk = Fk[tkβ] joins ak and bk in Dk . Since

dist (γk, ∂Gk) ≥ tkλ

2L
≥ rkλ

2L
,

for large k , the first inequality of (3.12) fails for large k . Since diam γk ≤
Ltkdiam β ≤ 2Ltk , the second inequality of (3.12) is not true for large k , and
we have reached a contradiction.

3.13. Remark. Theorem 3.11 was proved in [MV, 4.25–4.26] for maps of
bounded length distortion. These maps form a proper subclass of the maps consid-
ered in 3.11. The case of quasiregular maps is more complicated, since a sequence
of maps of L -bounded distortion never converges to a constant.

3.14. The set fBf . Suppose that f :D → Rn is a K -quasiregular map with
N(f) ≤ N < ∞ . Without further restrictions, very little can be said about the
set fD \ fBf . It need not be open, and if it is open, in need not be plump, even
if D and fD are plump.

However, if D = Rn , then f is a closed map onto Rn , and we prove in 3.16
that Rn \ fBf is a uniform domain. For maps of bounded distortion, this was
proved in [MV, 4.25]. A local version is given in 3.17. Both results are corollaries
of the more general Theorem 3.15.
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3.15. Theorem. Suppose that f :D → Rn is a K -quasiregular map and
that U ⊂ D is a domain such that

(1) B(U, 2diamU) ⊂ D ,

(2) fU is a ball or fU = Rn ,
(3) f defines a proper map U → fU with N(f | U) ≤ N < ∞ .

Then fU \ f [Bf ∩ U ] is a c -uniform domain with c = c(N,K, n) .

Recall that B(A, r) denotes the r -neighborhood {x ∈ Rn : dist (x,A) < r}
of A . Before giving the proof we remark that the conditions of 3.15 hold if U =
D = Rn and N(f) ≤ N . If D �= Rn , then (1) implies that U is bounded with
U ⊂ D . Then (3) means that U is a normal domain of f . In view of the discussion
in 3.1, we obtain the following two corollaries of 3.15.

3.16. Theorem. If f : Rn → Rn is a K -quasiregular map with N(f) ≤ N <
∞ , then Rn \ fBf is a c -uniform domain with c = c(N,K, n) .

3.17. Theorem. Suppose that f :D → Rn is K -quasiregular and non-
constant. Then for each x ∈ D with i(x, f) = N ≥ 2 there is r0 > 0 such
that for 0 < r ≤ r0 , U = U(x, f, r) is a normal neighborhood of x , and
fU \ fBf |U = B

(
f(x), r

)
\ f [U ∩Bf ] is a c -uniform domain with c = c(N,K, n) .

3.18. Proof of Theorem 3.15. Part 1. We show that the domain G =
fU \ f [Bf ∩ U ] is c -plump with c = c(N,K, n). Assume that this is false
for some (N,K, n). Then, for each k ∈ N we can find a K -quasiregular map
fk:Dk → Rn and a domain Uk ⊂ Dk such that:

(i) Conditions (1)–(3) hold with D = Dk , f = fk , U = Uk .
(ii) The domain Gk = fUk \ fk[Bfk ∩ Uk] is not k -plump.
By (ii), for each k ∈ N there are y′k ∈ Gk and sk > 0 such that Gk \

B(y′k , sk) �= ∅ and such that

(3.19) B(z, sk/k) �⊂ Gk

for every z ∈ B(y′k, sk). By (2), there is a ball V ′
k = B(yk, sk/3) with V ′

k ⊂
B(y′k , sk) ∩ fUk . The set Uk ∩ f−1

k (yk) is nonempty and contains at most N
points, which we number as a1k, . . . , aNk , using repetition if necessary. Let Vjk

be the ajk -component of f−1
k V ′

k . Then Vjk is a normal domain of fk , and

(3.20) fkVjk = V ′
k, Uk ∩ f−1

k V ′
k = V1k ∪ · · · ∪ VNk;

see 3.1.
Set tjk = max{|x−ajk| : x ∈ V jk} , and define similarities Sjk and Tk of Rn

by
Sjk(x) = (x− ajk)/tjk, Tk(x) = 3(x− yk)/sk.
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From (3) it follows that B(ajk , 2tjk) ⊂ Dk . Hence we can define K -quasiregular
maps gjk:Bn(2) → Rn by gjk = Tk ◦ fk ◦S−1

jk | Bn(2). Setting Wjk = SjkVjk we
have gjkWjk = Bn .

Applying 2.4 with r = 1, R = 2, r′ = 1, A(gjk) = W jk , and passing
successively N times to subsequences, we may assume that for each j = 1, . . . , N ,
the sequence (gjk)k∈N converges locally uniformly in Bn(2) to a nonconstant
K -quasiregular map gj:Bn(2) → Rn with gj(0) = 0. Set

(3.21) Fj = gj [Bgj ∩Bn], F = F1 ∪ · · · ∪ FN .

Since F is a compact set with empty interior, we can find a ball B(w, λ) ⊂ Bn\F .
From 3.10 it follows that there is k0 ∈ N such that B(w, λ/2) does not meet
gjk[Bgjk ∩Bn] whenever k ≥ k0 and 1 ≤ j ≤ N . For z = T−1

k (w) we then have
B(z, λsk/6) ⊂ Gk for k ≥ k0 . By (3.19), this gives a contradiction for large k .

Part 2. Let c = c(N,K, n) be the number given by Part 1. By 3.8, it suffices
to find a number c0 = c0(N,K, n) such that each 8c -pair (y, z) in G can be joined
by an arc γ with the properties

δG(y) ∧ δG(z) ≤ c0 dist (γ, ∂G), diamγ ≤ c0|y − z|.

We shall modify the proof of Part 1. Assume that c0 does not exist for
some (N,K, n). Then, for each k ∈ N we can find a K -quasiregular map
fk:Dk → Rn , a domain Uk ⊂ Dk , and an 8c -pair (yk, zk) in Gk = fUk \
fk[Bfk ∩ Uk] such that:

(i) Conditions (1)–(3) hold with D = Dk , f = fk , U = Uk .
(ii) If γ is an arc joining yk and zk in Gk , then

δGk (yk) ∧ δGk(zk) ≥ k dist (γ, ∂Gk) or diamγ ≥ k|yk − zk|.

Set
q = 1/9c, V ′

k = B([yk , zk], q|yk − zk|).
Since (yk , zk) is an 8c -pair in Gk , we have V ′

k ⊂ fUk , and the set Uk ∩ f−1
k (yk)

contains precisely N points a1k, . . . , aNk . For each j = 1, . . . , N , we let Vjk

denote the ajk -component of f−1
k V ′

k . Then Vjk is a normal domain of fk , and
(3.20) holds. It is possible that Vik = Vjk for some i �= j .

Set tjk = max{|x − ajk| : x ∈ V jk} , and choose similarities Sjk and Tk of
Rn such that

Sjk(x) = (x− ajk)/tjk, Tk(yk) = 0, Tk(zk) = e1.

By (1) we again have B(ajk , 2tjk) ⊂ Dk , and we can define K -quasiregular maps
gjk:Bn(2) → Rn by gjk = Tk ◦ fk ◦ S−1

jk | Bn(2). Setting Wjk = SjkVjk and
W ′ = B([0, e1], q) we have

max{|x| : x ∈ W jk} = 1, gjkWjk = W ′, gjk(0) = 0.
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Applying 2.4 with r = 1, R = 2, r′ = 1 + q , A(gjk) = W jk , and passing
successively to subsequences, we may assume that for each j = 1, . . . , N , the
sequence (gjk)k∈N converges locally uniformly in Bn(2) to a nonconstant K -
quasiregular map gj :Bn(2) → Rn with gj(0) = 0.

Define Fj and F as in (3.21). We show that dist ({0, e1}, F ) ≥ q . Assume,
for example, that there is u ∈ Bgj ∩ Bn with |gj(u) − e1| < q . By 3.10 we
can find a sequence of points uk ∈ Bgjk converging to u . For large k we have
|gjk(u) − e1| < q . Since T−1

(
gjk(uk)

)
= fk

(
S−1

jk (uk)
)
∈ fk[Bfk ∩ Uk] , this gives

the contradiction δGk(zk) < |yk − zk|/8c .
Since F is a compact set with dimF ≤ n − 2, we can join 0 and e1 by an

arc α ⊂ W ′ \F . Set λ = dist (α,F ∪ ∂W ′) > 0. By 3.10 we can find k0 ≥ 2 such
that dist (α, gjk[Bgjk ∩Bn]) ≥ λ/2 whenever k ≥ k0 and 1 ≤ j ≤ N . Let k ≥ k0 .
The arc γ = T−1

k α joins yk and zk in V ′
k , and

dist (γ, fk[Bfk ∩ Vjk] ∪ ∂V ′
k) ≥ λ|yk − zk|/2

for all 1 ≤ j ≤ N . Since

V ′
k ∩ fk[Bfk ∩ Uk] =

N⋃
j=1

fk[Bfk ∩ Vjk],

we obtain dist (γ, ∂Gk) ≥ λ|yk − zk|/2. Since

diam γ ≤ diamV ′
k = (1 + 2q)|yk − zk| < 2|yk − zk|,

it follows from (ii) that

k dist (γ, ∂Gk) ≤ δGk(yk) ∧ δGk (zk) ≤ |yk − zk|,

where the second inequality follows from the property rGk (yk, zk) ≥ 1 of a c -pair;
see 3.7. Hence

kλ|yk − zk|/2 ≤ |yk − zk|,

which gives a contradiction for large k .

4. Invariance of NUD and porous sets

4.1. Terminology. A closed set F ⊂ Rn is a c -nullset for uniform domains
or briefly c -NUD if intF = ∅ and if Rn \ F is a c -uniform domain.

Let D ⊂ Rn be a domain, let a, b ∈ D and let c ≥ 1. We say that a
continuum α ⊂D containing a and b satisfies the c -uniformity conditions in D
if

diamα ≤ c|a− b|, |x− a| ∧ |x− b| ≤ c dist (x, ∂D)
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for all x ∈ α . This implies that α ∩ ∂D ⊂ {a, b} .
If D is c -uniform, it follows from the definition in 3.1 that each pair of distinct

points a, b ∈ D can be joined by an arc satisfying the c -uniformity conditions in D .
A simple limiting process involving Ascoli’s theorem shows that this is true for all
a, b ∈D.

Conversely, if each pair of points in a domain D can be joined by a continuum
with the c -uniformity properties in D , then D is c′ -uniform with c′ = c′(c, n);
see [V4, 2.11].

Suppose that f : Rn → Rn is K -quasiregular with N(f) ≤ N < ∞ . Then
Bf and fBf are c0 -NUD with c0 = c0(N,K, n) by 3.11 and 3.16. In this section
we show that if F ⊂ Rn is c -NUD, then fF and f−1F are c′ -NUD with c′ =
c′(c,N,K, n). Similar results hold for porosity.

4.2. Lemma. Suppose that f : Bn → Rn is a K -quasiregular local ho-
meomorphism with N(f) ≤ N < ∞ . Then f is injective in a ball Bn(ψ) with
ψ = ψ(N,K, n) > 0 .

Proof. For n ≥ 3, [MRV3, 2.3] gives the stronger result where ψ = ψ(K,n).
For n = 2, one can make use of factorization and basic properties of quasiconformal
maps to reduce the question to the case where f is complex analytic. This case
follows from the results of C. Pommerenke [Po1, Satz 1.3 and Lemma 1.3].

We give an alternative proof, based on Theorem 2.4, which is valid for all
dimensions n ≥ 2. We may assume that f(0) = 0. With the notation of 3.1, we
let r0(f) be the supremum of all r > 0 such that U(0, f, r) ⊂ Bn(1/2). Clearly
0 < r0(f) < ∞ . Replacing f by f/r0(f) we may assume that r0(f) = 1. For
0 < r < 1, f maps U(0, f, r) homeomorphically onto Bn(r) by [MRV3, 2.2]. It
follows that f maps V (f) =

⋃
{U(0, f, r) : r < 1} onto Bn and that V (f) =

U(0, f, 1). Hence it suffices to find ψ = ψ(N,K, n) > 0 such that Bn(ψ) ⊂ V (f).
Let F = F (N,K, n) be the family of all K -quasiregular local homeomor-

phisms g:Bn → Rn such that N(g) ≤ N , g(0) = 0, and r0(g) = 1. Then F
satisfies the conditions of Theorem 2.4 with r = 1/2, R = 1, r′ = 1, A(g) = V (g).
Indeed, g is injective in A(g) by [MRV3, 2.2], and hence in a neighborhood of A(g)
by [Zo, p. 422]. By the definition of r0(g), the continuum A(g) meets Sn−1(1/2).

By Theorem 2.4, F is a normal family and hence equicontinuous. Conse-
quently, there is ψ > 0 such that gBn(ψ) ⊂ Bn(1/2) for all g ∈ F . This implies
that Bn(ψ) ⊂ V (g), and the lemma is proved.

4.4. Theorem. Suppose that f : Rn → Rn is K -quasiregular with N(f) ≤
N < ∞ , and that F ⊂ Rn is c -NUD. Then f−1F is c′ -NUD with c′ =
c′(c,N,K, n) .

Proof. Let a, b ∈ Rn , a �= b . Write λ(x) = |x−a| ∧ |x− b| . By 4.1, it suffices
to find a continuum β containing a and b such that

(4.5) diamβ ≤ c′|a− b|, λ(x) ≤ c′ dist (x, f−1F )
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for all x ∈ β .
The set Bf is c0 -NUD with c0 = c0(N,K, n) by 3.11. By 4.1, we can join a

and b by an arc α such that

(4.6) diamα ≤ c0|a− b|, λ(x) ≤ c0 dist (x,Bf )

for all x ∈ α .
Let ψ = ψ(N,K, n) be the number given by 4.2, and set q = q(N,K, n) =

ψ/6c0 . Then q ≤ 1/6. Orient α from a to b . Pick x0 ∈ α with |x0−a| = |x0−b| .
Define a sequence of successive points x0, x1, . . . of α such that xj+1 is the last
point of α with |xj+1 − xj | = qλ(xj). Similarly, define x−1, x−2, . . . such that
x−j−1 is the first point of α with |x−j−1 − x−j | = qλ(x−j), j ≥ 0. The sequence
x1, x2, . . . converges to a point b′ ∈ α . Since qλ(xj) = |xj − xj+1| → 0, we have
b′ = b . Similarly xj → a as j → −∞ . Since q ≤ 1/6, we easily see that

(4.7) 5
6λ(xj−1) ≤ λ(xj) ≤ 6

5λ(xj−1), {xj−1 , xj+1} ⊂B
(
xj ,

6
5qλ(xj)

)

for all j ∈ Z .
From (4.6) it follows that dist (xj , Bf ) ≥ λ(xj)/c0 for all j ∈ Z . By 4.2,

f | B(xj , r) is injective, where r = ψλ(xj)/c0 = 6qλ(xj). By [V3, 2.4], f is
η -quasisymmetric in B

(
xj , 3qλ(xj)

)
with η = ηK,n . We let c1, c2, . . . denote

constants cj ≥ 1 depending only on (c,K, n).
Fact 1. If 0 < t ≤ 3qλ(xj), then B(xj , t) \ f−1F is a c1 -uniform domain.
Since uniformity is quantitatively preserved by quasisymmetric maps, the

domain fB(xj , t) is c2 -uniform. Since F is c -NUD, the domain fB(xj , t) \ F is
c3 -uniform by [V4, 5.4], and Fact 1 follows by quasisymmetry.

By (4.7) and Fact 1, we can join xj−1 and xj by an arc αj satisfying the
c1 -uniformity conditions in B

(
xj−1 ,

6
5qλ(xj−1)

)
\f−1F . Then αj ⊂ B(xj , r) with

r = |xj−1 − xj | + 6
5qλ(xj−1) ≤ 6

5qλ(xj) + (6
5 )2qλ(xj) < 3qλ(xj).

Pick yj ∈ αj with |yj − xj−1 | = |yj − xj | . Then {yj , yj+1} ⊂ B
(
xj , 3qλ(xj)

)
. By

Fact 1, we can thus join yj and yj+1 by an arc βj satisfying the c1 -uniformity
conditions in the domain Gj = B

(
xj , 3qλ(xj)

)
\ f−1F . Let β be the union of

{a, b} and all continua βj , j ∈ Z . We show that β is the desired continuum.
Since diamβj ≤ 6qλ(xj) → 0 as j → ±∞ , β is indeed a continuum. If

x ∈ βj , then
dist (x, α) ≤ |x− xj | < 3qλ(xj) ≤ 1

2diamα.

This and (4.6) yield the first inequality of (4.5) with c′ = 2c0 .
To prove the second inequality, assume that x ∈ βj . Then

(4.8) λ(x) ≤ λ(xj) + |x− xj | ≤ λ(xj) + 3qλ(xj) ≤ 3
2λ(xj).
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If j ≥ 1, then Gj contains the ball B(yj , t) with

t = |yj − xj |/c1 ≥ |xj−1 − xj |/2c1 = qλ(xj−1)/2c1 > qλ(xj)/3c1

by (4.7). Moreover, Gj contains B(yj+1 , t
′) with

t′ = |yj+1 − xj |/c1 ≥ |xj − xj+1|/2c1 = qλ(xj)/2c1 > qλ(xj)/3c1.

Similar arguments show that these estimates hold also for j ≤ 0. By the choice
of βj we thus obtain dist (x, f−1F ) ≥ qλ(xj)/6c21 . By (4.8), this gives the second
inequality of (4.5) with c′ = 9c21/q .

4.9. Lemma. Suppose that f : Rn → Rn is K -quasiregular with N(f) =
N < ∞ , and that V ⊂ Rn \ fBf is a simply connected c -uniform domain. Then
f−1V has precisely N components V1, . . . , VN , and f defines η -quasisymmetric
homeomorphisms fj : Vj → V , 1 ≤ j ≤ N , with η depending only on c , N ,
K , n . Moreover, the domains Vj are c′ -uniform with c′ = c′(c,N,K, n) .

Proof. The map f is closed and proper by 3.1. Arguing as in [MRV3, 2.2] we
see that for each component Vj of f−1V , f defines a covering map fj : Vj → V .
Since V is simply connected, fj is a homeomorphism. To prove the quasisymmetry
of fj , we consider a triple (x, y, z) of distinct points in Vj with |x− y| ≤ |x− z| .
By [V5, 2.9], it suffices to show that

(4.10) |f(x) − f(y)| ≤ H|f(x) − f(z)|

with H = H(c,N,K, n).
Since V is c -uniform, there is an arc α ⊂ V joining f(x) and f(z) such that

diamα ≤ c|f(x) − f(z)| . We may assume that |f(x) − f(y)| > c|f(x) − f(z)| .
Define β: [1,∞) → Rn by β(t) = f(x) + t

(
f(y) − f(x)

)
. Let β∗ be a maximal

lift of β , starting at y . Then β∗ is unbounded. Let Γ be the family of all paths
joining α∗ = f−1

j α and |β∗| . Since |x− y| ≤ |x − z| , a standard estimate gives
the lower bound M(Γ) ≥ bn > 0. Since α ⊂B

(
f(x), c|f(x) − f(z)|

)
, we have

M(fΓ) ≤ ωn−1

(
log

|f(x) − f(y)|
c|f(x) − f(z)|

)1−n

.

Since M(Γ) ≤ KNM(fΓ), these estimates yield (4.10). Hence f |Vj is η -qua-
sisymmetric, and the rest of the lemma follows from the quasisymmetric invariance
of uniform domains.

4.11. Lemma. Suppose that D ⊂ G ⊂ Rn are domains, that F is closed in
G with intF = ∅ , and that D and G \ F are c -uniform domains. Then D \ F
is a c1 -uniform domain with c1 = c1(c, n) .
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Proof. The case G = Rn was proved in [V4, 5.4], but the same proof is valid
in the general case.

4.12. Corollary. Suppose that D ⊂ Rn is a domain, that F1, . . . , FN are
closed in D with intFj = ∅ , and that each D \ Fj is a c -uniform domain. Then
D \

⋃
j Fj is a c1 -uniform domain with c1 = c1(c,N, n) .

4.13. Theorem. Suppose that f : Rn → Rn is K -quasiregular with N(f) =
N < ∞ , and that F ⊂ Rn is c -NUD. Then fF is c′ -NUD with c′ = c′(c,N,K, n) .

Proof. The basic idea is the same as in 4.4 and in [V4, 5.4]. Let a, b ∈ Rn ,
a �= b . Since fBf is c0 -NUD with c0 = c0(N,K, n) by 3.16, there is an arc α
joining a and b such that

diamα ≤ c0|a− b|, λ(x) ≤ c0 dist (x, fBf )

for all x ∈ α , where λ(x) = |x − a| ∧ |x − b| as in 4.4. Let c1, c2, . . . denote
constants cj ≥ 1 depending only on (c,N,K, n), and set q = 1/6c0 . Choose
x0 ∈ α with |x0 − a| = |x0 − b| , and define the points xj ∈ α , j ∈ Z , as in the
proof of 4.4. Then (4.7) is again valid for all j ∈ Z .

Fact 1. If 0 < t ≤ 6qλ(xj), then B(xj , t) \ fF is a c1 -uniform domain.
By 4.9, the set f−1B(xj , t) has N components Vj1, . . . , VjN , and each Vjk is

a c2 -uniform domain. Moreover, f | Vjk is an η -quasisymmetric homeomorphism
onto B(xj , t) with η = ηN,K,n . Since F is c -NUD, each Vjk \ F is c3 -uniform.
Hence f [Vjk \ F ] = B(xj , t) \ f [F ∩ Vjk] is c4 -uniform by quasisymmetry. Fact 1
follows now from 4.12.

The proof can now be completed as in 4.4. The points xj−1 and xj are joined
by an arc αj satisfying the c1 -uniformity conditions in B

(
xj−1 ,

6
5λ(xj−1)

)
\ fF .

Then choose yj ∈ αj with |yj − xj−1| = |yj − xj | and join yj to yj+1 by an
arc βj satisfying the c1 -uniformity conditions in B

(
xj , 3λ(xj)

)
\fF . The desired

continuum β from a to b is then obtained as the union of all βj and of {a, b} .

4.14. Corollary. If f : Rn → Rn is K -quasiregular with N(f) ≤ N < ∞ ,
then f−1fBf is c -NUD with c = c(N,K, n) .

Proof. This follows from 3.16 and 4.13.

4.15. Theorem. Suppose that f : Rn → Rn is a K -quasiregular map with
N(f) ≤ N < ∞ , and that F ⊂ Rn is c -porous. Then fF and f−1F are
c1 -porous with c1 = c1(c,N,K, n) .

Proof. The idea of the proof is somewhat similar to that in 4.4 and in 4.13,
but the present case is much easier. The proofs make use of the porosity of Bf and
fBf , the quasisymmetric invariance of plumpness, and the fact that the union of
two porous sets is porous. The details are omitted.
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5. The branch set and the local index

Let f : D → Rn be a K -quasiregular map, n ≥ 3, and let a ∈ Bf . In [MRV3,
4.4] it was proved that if D\Bf contains an open cone with vertex at a and opening
angle α , then the local index i(a, f) has an upper bound i(a, f) ≤ N(α,K, n).
See also [S1, 3.4 and 4.3].

The direct converse of this result is false. In 5.4 below we give an example of
a quasiregular map f : R3 → R3 with N(f) = 2 such that Bf meets every half
open line segment (0, y] , y �= 0.

However, we show that replacing the cone by a curvilinear cone we obtain a
condition that is both necessary and sufficient for the existence of such a bound
for the local index. This means that we can estimate i(a, f) from above and from
below purely in terms of K , n and Bf ; see 5.2.

5.1. Theorem. Suppose that f : D → Rn is K -quasiregular and nonconstant
with n ≥ 3 . Let a ∈ D , N ≥ 2 , and c ≥ 1 . Then the following conditions are
(K,n)-quantitatively equivalent:

(1) i(a, f) ≤ N ,
(2) there is an arc γ ⊂ D with a as an endpoint such that |x − a| ≤

c dist (x,Bf ) for all x ∈ γ .
More precisely, (1) implies (2) with c = c(N,K, n) , and (2) implies (1) with

N = N(c,K, n) .

Proof. (1) ⇒ (2): Choose a ball B = B(a, r) ⊂ D with N(f |B) ≤ N . The
domain G = B \ Bf is c0 -uniform with c0 = c0(N,K, n) by 3.11. Fix a point
b ∈ G . By 4.1, we can join a and b by an arc α satisfying the c -uniformity
conditions in B \Bf . Let γ be a subarc of α with endpoint a and contained in
B(a, |a − b|/2). Then γ satisfies (2).

(2) ⇒ (1): By [MRV3, 5.2], there is a number M = M(K,n) > 1 such
that for all x ∈ D we have lim supr→0 H

∗(x, f, r) < M , where H∗(x, f, r) =
L∗(x, f, r)/l∗(x, f, r) and L∗ and l∗ are defined as in the proof of 4.2. Assume
that (2) does not imply (1) for some (c,N,K, n). Then there is a sequence of
K -quasiregular maps fk: Bn(2M) → Rn with the following properties:

(i) f−1
k {0} = {0} ,

(ii) i(0, fk) ≥ k ,
(iii) Uk = U(0, fk , 1) is a normal neighborhood of 0,
(iv) H∗(0, fk , 1) < M ,
(v) e1 ∈ ∂Uk , and there is an arc γk ⊂ Uk joining 0 and e1 such that

dist (x,Bfk ) ≥ |x|/c for all x ∈ γk ,
(vi) fk(e1) = e1 .
From (iv) and (vi) it follows that Bn(1/M) ⊂ Uk ⊂ Bn(M). Passing to

a subsequence we may assume that the sequence (γk) converges to a continuum
F in the Hausdorff metric of all nonempty compact subsets of Bn(M). Then
{0, e1} ⊂ F ⊂Bn(M). Let ψ = ψ(K,n) be the local injectivity number given by
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[MRV3, 2.3], and let D be the union of Bn(1/M) and the balls B(x, ψ|x|/2c) over
x ∈ F \Bn(1/M). Since F is connected, D is a domain. Moreover, D ⊂ Bn(2M),
and we can define the maps gk = fk | D .

We show that the sequence (gk) is equicontinuous. Since Bn(1/M) ⊂ Uk , we
have |fk(x)| < 1 for all |x| < 1/M and for all k . Hence (gk) is equicontinuous
in Bn(1/M) by [MRV2, 3.17] or by [Re, p. 220]. Suppose that x ∈ F \Bn(1/M).
For each y ∈ γk \ {0} , fk is injective in B(y, ψ|y|/c) by (v) and by the choice
of ψ . Since γk → F , the maps fk | B(x, ψ|x|/2c) are injective for large k . Since
they omit 0 and ∞ by (i), it follows from [V2, 19.3] that (gk) is equicontinuous
in B(x, ψ|x|/2c), and hence in D .

Passing to a subsequence we may assume that (gk) converges locally uniformly
to a K -quasiregular map g: D → Rn . Since g(0) = 0 and g(e1) = e1 , g is
nonconstant. By [MRV3, 4.5], i(0, g) ≥ lim supk→∞ i(0, gk). This contradicts (ii)
and completes the proof.

We give a slightly different formulation of Theorem 5.1.

5.2. Theorem. Suppose that f : D → Rn is K -quasiregular and nonconstant
with n ≥ 3 . For a ∈ D , let u = u(a,Bf ) denote the infimum of all c ≥ 1 satisfying
condition (2) of Theorem 5.1. Then

N1(u,K, n) ≤ i(a, f) ≤ N2(u,K, n) < ∞,

where N1(u,K, n) → ∞ as u → ∞ .

Proof. Let c(N,K, n) and N(c,K, n) be the functions given by 5.1. The
second inequality of 5.2 holds, for example, with N2(u,K, n) = N(u + 1,K, n).

If (K,n) is a pair such that i(a, f) is bounded by a number M(K,n) for all
f and a , then u ≤ c

(
M(K,n),K, n

)
, and the first inequality of 5.2 is an empty

condition. Assume that (K,n) is a pair such that i(a, f) may have arbitrarily large
values. Such pairs exist for all n ≥ 3 by [MRV3, 4.9]. By 5.1, c(N,K, n) → ∞
as N → ∞ . For t ≥ 1, let N1(t,K, n) be the maximum of all integers m such
that c(m,K,n) < t , with N1(t,K, n) = 1 if there are no such integers. From 5.1
it follows that the theorem holds with this function N1 .

5.3. Open problem. Is it possible to replace the arc in 5.1 by a sequence of
points converging to a? More precisely, suppose that (xj) is a sequence of points
in D \Bf converging to a such that |xj − a| ≤ c dist (xj , Bf ) for all j . Is i(a, f)
bounded by a constant N(c,K, n)?

5.4. Theorem. There is a quasiregular map f : R3 → R3 with N(f) = 2
such that Bf meets (0, y] for each y ∈ R3 \ {0} .

Proof. The theorem follows from Lemmas 5.5 and 5.11 below.
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5.5. Lemma. Let Z ⊂ R3 be the line span (e3) , and let g: R3 → R3 be a
K -quasiconformal map. Then there is a 4K -quasiregular map f : R3 → R3 with
N(f) = 2 such that Bf = gZ .

Proof. Let w: R3 → R3 be the 4-quasiregular winding map, defined by
w(r, ϕ, z) = (r, 2ϕ, z) in the cylindrical coordinates. Then f = w ◦ g−1 is the
desired map.

5.6. Remark. There is also a map f : R3 → R3 such that Bf = fBf = gZ
and such that f is of L -bounded length distortion with L = L(K). See [MV, 4.27].

If Q ⊂ R3 is a closed ball of radius r and if t > 0, we let Q(t) denote the
concentric ball with radius tr .

5.7. Lemma. There is t ∈ (1/2, 1) and a finite family B of disjoint closed
balls in B3 \B3(t) such that if R ⊂ R3 is a ray from a point in B3(t) , then R
meets Q(t) for some Q ∈ B .

Proof. A construction for the corresponding result in R2 is given in Figure 1
with t = 9/10. The construction in R3 is rather similar but somewhat more
complicated. We omit the details.

Sn-1(t)

Sn-1

Figure 1

5.8. The Cantor set C . By a parallel similarity we mean a map f : R3 → R3

of the form f(x) = λx + b , λ > 0, b ∈ R3 . Let t > 0 and B = {Q1, . . . , Qm}
be the number and the family of balls given by 5.7. For 1 ≤ j ≤ m , let βj be
the parallel similarity with βjB

3 = Qj . These maps define in the familiar way a
self similar Cantor set C . More precisely, C is the intersection of the descending
sequence of compact sets Ck , where C1 = Q1 ∪ · · · ∪Qm , C2 is the union of the
balls βiQj , etc.

5.9. Lemma. Let R ⊂ R3 be a ray from a point inB3(t) . Then R meets C .
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Proof. Let k ∈ N . It suffices to show that R meets Ck . For k = 1 this follows
from 5.7. In fact, R meets Qj(t) for some j . Hence β−1

j R meets B3(t). By 5.7,
there is i such that β−1

j R meets Qi(t). It follows that R meets βjQi(t) ⊂ C2 .
Proceeding inductively in this manner we obtain the lemma.

5.10. Lemma. There is a quasiconformal map h: R3 → R3 such that h(x) =
x for |x| ≤ t and for |x| ≥ 1 , and such that h[te3, e3] contains C .

Proof. Choose disjoint closed balls A1, . . . , Am in B3 \B3(t) with centers on
the line segment [te3, e3] . For each j = 1, . . . ,m , let αj be the parallel similarity
with αjB

3 = Aj . Choose a homeomorphism h1: R3 → R3 such that
h1(x) = x for |x| ≤ t and for |x| ≥ 1,
h1(x) = βjα

−1
j (x) for x ∈ Aj , 1 ≤ j ≤ m ,

and such that h1 is K -quasiconformal with some K . Next define h2: R3 → R3

by h2 = h1 outside the balls Aj , and by h2 = βjh1α
−1
j in Aj . Iterating the con-

struction in the natural way we obtain a sequence (hk) of K -quasiconformal maps
converging to a K -quasiconformal map h: R3 → R3 with the desired properties.

5.11. Lemma. There is a quasiconformal map g: R3 → R3 such that gZ
meets every line segment (0, y] , y �= 0 .

Proof. We set g(x) = x if x = 0 or if |x| ≥ 1. Let 0 < |x| < 1. Then
tk+1 ≤ |x| < tk for a unique integer k ≥ 0, and we set g(x) = tkh(x/tk), where h
is given by 5.10. Then g is clearly a K -quasiconformal homeomorphism. From 5.9
and 5.10 it follows that g[te3, e3] meets [te, e] for every e ∈ S2 . By construction,
g[0, e3] meets every (0, y] .

5.12. Remarks. 1. If g: R3 → R3 is bilipschitz, then the Hausdorff dimension
of gZ is 1, and hence the set of all e ∈ S2 with (0, e] ∩ gZ �= ∅ is of area
zero. However, there is a bilipschitz map g such that for every r > 0, gZ meets
B3(r) ∩ V for each open cone V with vertex at 0; see [LV, 4.11].

2. On the other hand, the map f of 5.4 can be chosen to be of bounded
length distortion in view of Remark 5.6.

3. Similar examples exist in Rn for all n ≥ 3.

We finally give a result in a direction converse to the cone theorem [MRV3,
4.4]. For y ∈ Sn−1 and 0 ≤ α ≤ π/2, let C(y, α) denote the open cone {x ∈ Rn :
x · y > |x| cosα} .

5.13. Theorem. Suppose that n ≥ 3 , that f : Bn → Rn is a nonconstant
K -quasiregular map with f(0) = 0 , and that 0 < α < 1/2 . If for some r0 > 0 ,

Bf ∩ C(y, α) ∩Bn(r) \Bn
(
(1 − α)r

)
�= ∅

for all y ∈ Sn−1 and for all r ∈ (0, r0] , then i(0, f) ≥ N1(α,K, n) , where
N1(α,K, n) → ∞ as α → 0 .

Proof. This follows easily either from 3.4 or from 5.2.
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[V2] Väisälä, J.: Lectures on n -dimensional quasiconformal mappings. - Lecture Notes in
Math. 229, Springer-Verlag, 1971.
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