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Abstract. The convex hull construction in Minkowski space is used here to parametrize
Dirichlet fundamental polygons by L -lengths of the edges of the corresponding convex hull. The
basic conditions have simple geometric interpretations by projection to the Poincaré model, and the
presentation is done also in terms of concepts in the Poincaré model. The parametrization leads to a
cell-decomposition of conformal structures of closed surfaces of genus g with a distinguished point.
A connection between the entries of the matrix of a Möbius transformation and the corresponding
L -length, with distinguished point at the origin, is obtained. A necessary and sufficient condition
for discreteness is obtained in terms of the matrices of the generators of the group.

1. Introduction

The convex hull construction in Minkowski space for closed surfaces was pre-
sented by Näätänen and Penner [3]. Here we use this construction to parametrize
Dirichlet fundamental polygons by L -lengths of the edges of the corresponding
convex hull. Since the basic conditions have simple geometric interpretations by
projection to the Poincaré model, the presentation is done also in terms of con-
cepts in the Poincaré model. The parametrization leads to a cell-decomposition
of conformal structures of closed surfaces of genus g with a distinguished point;
each top-dimensional (i.e. (6g−4)-dimensional) cell corresponding to a fixed com-
binatorial type of side-pairings of the Dirichlet polygon. The boundaries of the
top-dimensional cells correspond to the “degenerate” Dirichlet polygons, and are
characterized by Ptolemy equations in Minkowski space [3]. Examples are done
for g = 2. A connection between the entries of the matrix of a Möbius transfor-
mation and the corresponding L -length, with distinguished point at the origin, is
derived in Chapter 6, and in Chapter 7, a necessary and sufficient condition for
discreteness, written explicitly in the case of genus 2, is obtained in terms of the
matrices of the generators of the group. We wish to thank R. Penner, T. Kuusalo,
T. Nakanishi for helpful discussions, T. Sorvali and P. Tukia for comments. The
pictures have been drawn by J. Haataja and M. Nikunen.

As mentioned above, the parametrization introduced in this work was initially
derived by using the hyperboloid model for hyperbolic plane and constructing there
the Euclidean convex hull for the orbit of the distinguished point, following ideas
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in [3] and [4]. Then two conditions, called the face condition and the closing
condition, were instrumental. (The first condition is derived in Chapter 3.) By
projecting into the Poincaré model it turns out that the above conditions have sim-
ple geometric interpretations. (For the face condition, it is given in Note 3.4, and
the closing condition amounts to the angles of certain triangles at the distinguished
point adding up to 2π .)

Since the Poincaré model is more commonly used, we have chosen to write
this paper so that it can also be read without need to get into the calculations of
Chapter 3, starting from Note 3.4. The subsequent chapters are written in terms of
the Poincaré model, but in the formulas L -lengths—which initially refer to edges
of the convex hull—are used since they make the formulas simpler than the use
of hyperbolic lengths would. To translate the formulas into hyperbolic metric, it
is only needed to replace each L by

√
2 sinh(l/2), where l is the corresponding

hyperbolic length.
In Chapters 4–7 the results are derived in Poincaré model; short comments

are made to indicate the geometric setting in the hyperbolic model.

2. Minkowski space and hyperbolic geometry

Let M denote Minkowski three-space, so that M is a real vector space of
dimension three with a bilinear pairing 〈·, ·〉 of signature (1, 2). M admits a basis
(e0, e1, e2) with 〈ei, ej〉 = 0 if i 6= j and −〈e0, e0〉 = 〈e1, e1〉 = 〈e2, e2〉 = 1. The
upper sheet

H =
{

v ∈ M : 〈v, v〉 = −1 and 〈v, e0〉 < 0
}

of the hyperboloid inherits a Riemannian metric from the pairing and gives a
model for the hyperbolic plane. The positive light-cone is

L+ =
{

v ∈ M : 〈v, v〉 = 0 and 〈v, e0〉 < 0
}

.

The group of linear isomorphisms of M preserving the form, the orientation
on M , and the sheet H is denoted by SO+(1, 2), this group corresponds to the
Möbius group of orientation-preserving isometries of the hyperbolic plane. An
explicit isometry of H with the Poincaré disk model of the hyperbolic plane is
given by radial projection from (−1, 0, 0) to the unit disk D about the origin in
the plane at height zero; if u1, u2 ∈ H , and ̺ denotes the hyperbolic distance
between the projections ū1, ū2 ∈ D , then

cosh ̺(ū1, ū2) = −〈u1, u2〉.

The Klein model K of the hyperbolic plane is identical with the horizontal
unit disk in M at height one, and the natural map H → K is given by radial
projection from the origin.
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Suppose that S is an affine plane in M . We say that S is elliptic (parabolic,
hyperbolic) if the conic section S ∩ L+ has the corresponding attribute. The
restriction of the form 〈·, ·〉 to S may be definite, degenerate or of type (1, 1). If

S =
{

u ∈ M : 〈u, s〉 = r
}

for some 0 6= s ∈ M and r ∈ R , then these cases correspond to 〈s, s〉 < 0
(elliptic), 〈s, s〉 = 0 (parabolic); and 〈s, s〉 > 0 (hyperbolic), respectively. In the
definite case S has an induced Euclidean structure. For ui, uj ∈ H we denote
Lij

2 = −〈ui, uj〉−1. We call Lij the L -length of the segment (or edge) connecting
ui and uj . An isometry I 6= g ∈ SO+(1, 2) preserves an elliptic (parabolic,
hyperbolic) affine plane in M if and only if g is elliptic (parabolic, hyperbolic;
respectively). If u1, u2, u3 are non-collinear points in M , then we denote by
π(u1, u2, u3) the affine plane through u1, u2, u3 .

3. Auxiliary lemmas for the convex hull

In this chapter, the results in terms of L -lengths turn out to be quite similar
to the ones obtained in [4] for λ-lengths. The first lemma gives conditions for the
ellipticity of a plane through three distinct points of H .

Lemma 3.1. Let u1, u2, u3 ∈ H , and λ12, λ23, λ13 ∈ R+ be such that −λ2
ij =

〈ui, uj〉 , for {i, j, k} = {1, 2, 3} , and let S = π(u1, u2, u3) . We denote Lij =
√

λ2
ij − 1 . Then S is elliptic if and only if the three strict triangle inequalities

hold for L12, L23, L13 , S is parabolic if and only if

Lij = Ljk + Lik

for some i, j, k , where {i, j, k} = {1, 2, 3} , and S is hyperbolic if and only if some

non-strict triangle inequality fails amongst L12, L23, L13 .

Proof. The tangent space to S is spanned by v1 = u1 −u3 and v2 = u2 −u3 .
In order to exhibit the determinant of the bilinear form 〈·, ·〉 on S we calculate
〈vi, vi〉 = 〈ui, ui〉−2〈ui, u3〉+〈u3, u3〉 = −2+2λ2

i3 for i = 1, 2, 〈v1, v2〉 = 〈u1, u2〉−
〈u1, u3〉 − 〈u2, u3〉 + 〈u3, u3〉 = −1 − λ2

12 + λ2
13 + λ2

23 .
The determinant of the form factors as

(

√

λ2
12 − 1 +

√

λ2
23 − 1 −

√

λ2
13 − 1

)(

√

λ2
12 − 1 +

√

λ2
13 − 1 −

√

λ2
23 − 1

)

(

√

λ2
23 − 1 +

√

λ2
13 − 1 −

√

λ2
12 − 1

)(

√

λ2
12 − 1 +

√

λ2
23 − 1 +

√

λ2
13 − 1

)

.

After substituting Lij =
√

λ2
ij − 1, this reads

(L12 + L23 − L13)(L12 + L13 − L23)(L23 + L13 − L12)(L12 + L23 + L13).

At most one of these factors is not strictly positive, hence the claim follows.
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The second lemma provides a way to construct a triangle with all vertices in
H , starting from a fixed edge and prescribing L -lengths for the two remaining
edges.

Lemma 3.2. Let u1, u2 ∈ H , and λ12, λ23, λ13 ∈ R+ be such that 〈u1, u2〉 =
−λ2

12 . If all triangle inequalities hold for L12, L23, L13 , then there exists a unique

u3 ∈ H on each side of the plane π(0, u1, u2) so that

〈u2, u3〉 = −λ2
23, 〈u1, u3〉 = −λ2

13.

Proof. The linear subspace W spanned by u1, u2 has type (1, 1) (consider
the basis u1 + u2, u1 − u2 ), and so W⊥ has type (0, 1). Let e be a vector in W⊥

with 〈e, e〉 = 1 and solve the coefficients α1, α2, β of u3 = α1u1 + α2u2 + βe : By
using the equations

−λ2
23 = 〈u2, u3〉 = −α1λ

2
12 − α2,

−λ2
13 = 〈u1, u3〉 = −α1 − α2λ

2
12,

−1 = 〈u3, u3〉 = −α2
1 − α2

2 − 2α1α2λ
2
12 + β2 = −λ2

23α2 − λ2
13α1 + β2

we get, after substituting L2
ij = λ2

ij − 1,

α1 =
L2

23L
2
12 + L2

23 + L2
12 − L2

13

L4
12 + 2L2

12

,

α2 =
L2

13L
2
12 + L2

13 + L2
12 − L2

23

L4
12 + 2L2

12

,

β2 =
(

(L23 + L13 − L12)(L23 + L12 − L13)(L13 + L12 − L23)(L12 + L13 + L23)

+ 2L2
12L

2
13L

2
23

)

/
(

L2
12(L

2
12 + 2)

)

.

To see that u3 ∈ H (instead of −H ), note that (u1 + u2)
⊥ is of type (0, 2)

separating H from −H . The condition for x ∈ H is 〈x, u1 + u2〉 < 0 and
〈x, x〉 = −1. We have 〈u3, u1 + u2〉 = −λ2

23 − λ2
13 < 0. The sign of β determines

which side of π(0, u1, u2) u3 lies on.

The third lemma gives a necessary and sufficient condition for four points in
H to be coplanar, in terms of the L -lengths of the segments connecting the points.
We also derive the condition corresponding to the face condition in [4].

Lemma 3.3. Suppose that u1, u2, u3, u4 ∈ H are such that any three are

linearly independent, u1 and u4 lie on different sides of π(0, u2, u3) and let

−λ2
ij = 〈ui, uj〉, L2

ij = λ2
ij − 1
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for i < j . Then u4 lies in π(u1, u2, u3) if and only if

(1) L12L13(L
2
24 + L2

34 − L2
23) + L24L34(L

2
12 + L2

13 − L2
23) = 0.

Furthermore, u4 lies above π(u1, u2, u3) if and only if

(2) L12L13(L
2
24 + L2

34 − L2
23) + L24L34(L

2
12 + L2

13 − L2
23) > 0.

Proof. Since u1, u2, u3 are linearly independent, we may write

π1 = π(u1, u2, u3) =
{

x ∈ M |〈x, s1〉 = −1
}

for some 0 6= s1 ∈ M . Similarly,

π2 = π(u2, u3, u4) =
{

x ∈ M |〈x, s2〉 = −1
}

for some 0 6= s2 ∈ M . We assume π1 6= π2 and denote L = π1 ∩ π2 ∩ π(0, u2, u3) .
The line L divides the plane π1 into two half-planes, which lie on different sides of
π2 ; above if 〈x, s2〉 ≤ −1 and below if 〈x, s2〉 ≥ −1. The situation is symmetric
with respect to π1 and π2 . By assumption, u1 and u2 lie on different sides of
π(0, u2, u3) . Hence there are two possibilities: either u1 lies above π2 and u4

above π1 , or u1 below π2 and u4 below π1 . To distinguish between these we
note that the sets

K1 =
{

x ∈ M |〈x, s1〉 ≤ −1, 〈x, s2〉 ≤ −1
}

K2 =
{

x ∈ M |〈x, s1〉 ≥ −1, 〈x, s2〉 ≥ −1
}

are convex. Hence it suffices to study whether the intersection point u0 of π(0, u2, u3)
and the line connecting u1 and u4 lies in K1 or K2 .

As in the proof of Lemma 3.2 we can choose e ∈ π(0, u2, u3)
⊥ , 〈e, e〉 = 1,

and denote

u1 = βe + α2u2 + α3u3, u4 = β′e + α′

2u2 + α′

3u3.

By assumption, ββ′ < 0. Since u0 = tu1 + (1 − t)u4 and 〈u0, e〉 = 0, t =
|β′|/

(

|β| + |β′|
)

. The condition u0 ∈ K1 is equivalent to

α2 + α3 − 1

|β| +
α′

2 + α′

3 − 1

|β′| ≥ 0,

which is, by calculations similar to those in the proof of Lemma 3.2, equivalent to

a/c
√

1 − (a/c)2
+

a′/c′
√

1 − (a′/c′)2
≥ 0,
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where

a =
L2

12 + L2
13 − L2

23

2 + L2
23

, c =
2L2

12L
2
13

2 + L2
23

a′ =
L2

24 + L2
34 − L2

23

2 + L2
23

, c′ =
2L2

24L
2
34

2 + L2
23

.

Since the last inequality is equivalent to

a/c + a′/c′ ≥ 0,

we get inequality (2).

The equality (1) corresponds to the case π1 = π2 .

Note 3.4. In order to see the geometric meaning of (2) in D we consider the
projection from H to D . Since the projection of π(u1, u2, u3) ∩ H lies on the
circumscribing circle of u1, u2, u3 , the geometric condition corresponding to (2) is
that u4 lies outside the circumscribing circle of u1, u2, u3 and u1 lies outside the
circumscribing circle of u2, u3, u4 .

Hence the face condition is equivalent to the following condition in D : For
two triangles intersecting exactly on an edge, the third vertex of each triangle lies
outside the circumscribing circle of the other triangle.

As in [4, Lemma 5.2] we can show that inequalities of type (2) for all adjacent
triangles in triangulations we shall consider imply all strict triangle inequalities. By
Lemma 3.1, all corresponding planes (for example π(u1, u2, u3) and π(u2, u3, u4))
are then elliptic. In D , the geometric meaning of the plane π(u1, u2, u3) being
elliptic is that π(u1, u2, u3) ∩ H projects onto a circle, which lies in D .

In Chapter 5 we use the fact that the inequality (2) is homogeneous and that
it is similar to the face condition of [4].

4. The circumscribing circle

Let T be a hyperbolic triangle with lengths of sides a, b, e . We assume that
its circumscribing circle C ⊂ D , and calculate a formula for the hyperbolic radius
R in terms of the L -lengths LA =

√
2 sinh(a/2), LB =

√
2 sinh(b/2), LE =√

2 sinh(e/2), see Figure 1. The formula for R turns out to be very similar to
Heron’s formula.

Lemma 4.1. The radius R of the circumscribing circle of T fulfils

1

sinhR
=

√

(LA + LB − LE)(LA + LE − LB)(LB + LE − LA)(LA + LB + LE)√
2LALBLE

.

Proof. We first assume that the center P of C is inside T . We draw per-
pendiculars from P to the sides of T and connect P to the vertices of T . Then
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six right-angled triangles are formed, equivalent in pairs. We denote the angle at
P opposite to a/2 by α , opposite to b/2 by β , and opposite to e/2 by γ . By
hyperbolic trigonometry,

sinh
a

2
= sinhR sin α

sinh
b

2
= sinhR sin β.

Since

γ = π − (α + β), sinh
e

2
= sinhR (sin α cos β + cos α sin β).

Substituting for the trigonometric functions and squaring yields after a cal-
culation

sinh2 R =
4 sinh2 1

2a sinh2 1
2b sinh2 1

2e

4 sinh2 1
2
a sinh2 1

2
b − (sinh2 1

2
e − sinh2 1

2
a − sinh2 1

2
b)2

.

Substituting for LA, LB, LE we get the claimed result.
In case the center P of C is outside T , if the side with length a divides C

into two parts, one containing P and the other containing T , γ = α − β and we
get

sinh
e

2
= sinhR(sinα cos β − cos α sin β).

The formula for R is the same as the one obtained above.

Figure 1.
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Note 4.1. If the vertices of T are projected into the hyperboloid model H
and joined by Euclidean edges, a triangle in an elliptic plane is obtained, since
C ⊂ D . This triangle has L -lengths of sides LA, LB, LE .

We continue to use the notation of Lemma 4.1 and Figure 1 and calculate
formulas for trigonometric functions of γ and ϕ in terms of LA, LB, LE :

Lemma 4.2.

cos γ =
|L2

A + L2
B − L2

E |
2LALB

sin ϕ =
|L2

A + L2
B − L2

E |√
2
√

2 + L2
ELALB

.

Proof. By hyperbolic trigonometry,

sinh
e

2
= sinhR sin γ.

Solving for sin γ , squaring and substituting the formula for sinhR we get

cos γ =
| − sinh2 1

2
e + sinh2 1

2
a + sinh2 1

2
b|

2 sinh 1
2a sinh 1

2b
.

Substituting the formulas for LA, LB, LE yields the first claim. The other
claim follows from the formulas

cos γ = cosh
e

2
sin ϕ, cosh

e

2
=

√

1 + sinh2 e

2
=

√

2 + L2
E

2
.

5. Parametrization of Dirichlet polygons by L-lengths

of the edges in the convex hull

Example 1. We derive a set of L -lengths that are naturally associated with a
Dirichlet polygon to illustrate the following theorems. We start by considering an
example. Let G be the Fuchsian group with Dirichlet polygon D(0) an 18-gon
with pattern 1 (Figure 8 in [1]), depicted in Figure 2 as the inner polygon, and
the points in G(0) labeling adjacent Dirichlet polygons forming the vertices of
the outer polygon. Then 18 triangles with a vertex at 0 are formed. We choose
generators A, B, C, D among the side-pairings of D(0) as indicated in Figure 2
and derive formulas for the rest of the side-pairing transformations in terms of
the chosen generators. The relation is ABA−1B−1 = CDC−1D−1 . The numbers
1, . . . , 6 indicate equivalence classes of vertices.
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Figure 2.

The Dirichlet polygons adjacent to the uppermost vertex labelled 1 have cen-
ters 0, AB(0), ABA−1B−1(0). The hyperbolic triangle with these vertices has
lengths of sides ̺

(

0, AB(0)
)

, ̺
(

0, ABA−1B−1(0)
)

, and ̺
(

AB(0), ABA−1B−1(0)
)

= ̺
(

0, BA(0)
)

. We denote by LAB, LABA−1B−1 , LBA the corresponding L -

lengths, i.e. for example LAB =
√

2 sinh
[

̺
(

0, AB(0)
)

/2
]

.
Similarly, for the vertices in the equivalence class of the vertex labelled

2, we get L -lengths LA, LB, LAB, for the equivalence class of the vertex la-
belled 3 the L -lengths are LA, LB, LBA and for the vertex labelled 4 we get
LCD, LDC , LCDC−1D−1 = LABA−1B−1 . The vertices labelled 5 and 6 are obtained
by symmetry from 2 and 3 by interchanging A, B , to C, D .

In the generic case we are considering, by the definition of the Dirichlet poly-
gon, the vertices are centers of the circumscribing circles of the above 18 triangles,
and for each pair of adjacent triangles (intersecting on an edge), the third vertex of
a triangle lies outside the circumscribing circle of the other triangle. By Note 3.4
the L -lengths fulfil an inequality of type (2) for each edge. For example, for
two adjacent triangles with common side of L -length LAB and remaining sides
LBA, LABA−1B−1 , and LA, LB , respectively, the inequality (2) from Lemma 3.3
reads:

LALB(L2
BA + L2

ABA−1B−1 − L2
AB) + LBALABA−1B−1(L2

A + L2
B − L2

AB) > 0.

Hence, for each 18-gonal Dirichlet polygon we get 9 positive numbers fulfilling
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inequalities of type (2), one for each side-pair, and, in addition, the condition
arising from the fact that the angles of the 18 triangles at the center of the
polygon add up to 2π .

In terms of the convex hull, its vertices are obtained by projecting the orbit of
0 into the hyperboloid model, and the 18 triangles correspond to triangular faces
of the convex hull. The above numbers are the L -lengths of the edges, see [3].
Since the edges of the 18 triangles correspond to extremal edges in the convex
hull, inequalities of type (2) hold for each pair of adjacent triangles.

The process desribed above can be reversed. We first give the ideas in
Minkowski space, but continue then in the Poincaré model. In Minkowski space,
the reverse amounts to constructing first a convex hull with a chosen combinatorial
pattern in the sense described later, and having edges with prescribed L -lengths—
which have to be properly rescaled to fulfil the closing condition—then projecting
to D to get a tesselation of D by triangles (in the generic case). The group
generated by Möbius transformations mapping the triangles onto each other ac-
cording to the pattern can be shown to have a Dirichlet polygon with pattern 1
parametrized by the given (rescaled) L -lengths in the manner indicated in Ex-
ample 1. In order to construct the convex hull we choose nine positive numbers
fulfilling each a condition of type (2), (to ensure that the corresponding edge will
be extremal in the convex hull when two triangles are glued together on the edge),
the combinatorics given by the wanted identification pattern (for example as in
Figure 2) and scale the nine numbers by multiplying with the unique t that will
make the construction close without gaps or overlaps at the vertices; (the existence
of such a multiplier is proved in Lemma 5.1). Then glue together according to the
pattern triangles with vertices in H and with the rescaled L -lengths of sides. By
using Lemma 3.3, Note 3.4, and Lemmas 3.2 and 5.1, we see that a convex hull that
will project homeomorphically to D and a tesselation by triangles as in Figure 2
is obtained.

To reverse in D the process described in Example 1, we use Note 3.4 and
construct directly the tesselation of D by triangles. This is done in Theorem 5.2.
Lemma 5.1 is applicable, since the calculations for the closing condition are done
in D .

Lemma 5.1. For each 9 -tuple of positive numbers L1, . . . , L9 fulfilling con-

ditions of type (2) according to the combinatorics of a chosen pattern, there exists

a unique t > 0 such that in D , the angles at the common vertex of the associated

18 triangles add up to 2π when the numbers above are scaled by multiplying by t .

Proof. Let z ∈ D , L1, . . . , L9 > 0, t > 0. By Note 3.4 we can construct 6
triangles representing the congruence classes, with L -lengths of sides tL1, . . . , tL9 .
We then start gluing them together at the vertex z . In our generic case for genus 2
there are 18 triangles, 3 from each congruence class, to consider. The angle-sum at
z is obtained by adding up the angles of the 6 triangles representing the conguence
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classes. In order for the construction to close at z , the sum should give 2π . Now,
as t → 0, the hyperbolic triangles approach Euclidean, each with angle-sum π ,
i.e. the total angle-sum approaches 6π . In order to show that there exists a unique
t > 0 such that the angle-sum equals 2π after rescaling, we finish by proving that
the total angle-sum decreases monotonously to 0 as t grows: Consider a triangle
T with L -lengths of sides tL1, tL2, tL3 and connect the vertices of T to the center
of its circumscribing circle. Let the angle thus formed, adjacent to the side labelled
by L -length tL3 be ϕ . Then sinϕ has the formula of Lemma 4.2:

sin ϕ =
|L2

1 + L2
2 − L2

3|√
2
√

2 + t2L2
3 L1L2

,

which decreases to zero monotonously as t → ∞ . Since all angles at the vertices of
T (as sums of two angles of the above type) behave similarly, their sum decreases
monotonously to zero as t → ∞ .

Theorem 5.2. Let an identification pattern for a Fuchsian group of genus

2 and a basepoint be given. Then for any positive numbers L1, . . . , L9 satisfying

homogeneous conditions of type (2) for all pairs of adjacent triangles, there exists

a tesselation of D by triangles with uniquely rescaled L -lengths tL1, . . . , tL9 .

The group of Möbius transformations preserving the tesselation according to

the pattern has as its Dirichlet polygon with center z an 18 -gon with the chosen

identification pattern and parameters the rescaled L -lengths.

Proof. We normalize so that the basepoint is 0 and choose the pattern of
Figure 2, use Note 3.4 to make triangles with the chosen numbers as L -lengths of
sides, glue them together with combinatorics of Figure 2 and use Lemma 5.1
to rescale L -lengths to ensure that the angles add up to 2π at 0. We la-
bel the Möbius transformations preserving the tesselation as in Figure 2. Let
G = 〈A, B, C, D; ABA−1B−1 = CDC−1D−1〉 . We claim that the centers of the
circumscribing circles of the triangles provide vertices for D(0).

We want to assure that the centers of the circumscribing circles of the triangles
follow each other in the same order as the triangles. Consider rotating a ray
around 0. Due to Note 3.4, the Euclidean centers of the circumscribing circles of
two adjacent triangles lie on the perpendicular of the common edge in the same
order as the triangles. Since by symmetry the hyperbolic centers lie on the same
ray from 0 as Euclidean, they also follow each other in the correct order.

We then join by geodesics the centers of the circumscribing circles of the
triangles with one vertex at 0. The obtained polygon P can be characterized as

P = ∩
{

z | ̺(z, 0) ≤ ̺
(

z, f(0)
)}

for f ∈ E = {A, B, C, D, AB, BA, ABA−1B−1 = CDC−1D−1, CD, DC} . P is
also the Dirichlet polygon for G = 〈A, B, C, D; ABA−1B−1 = CDC−1D−1〉 since
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for no f 6= I in G \ E is f(0) in the closure of the union of the circumscribing
circles of the triangles with a vertex at 0. (This follows from the validity of a
face condition for each pair of triangles.) By the construction, the identifications
are as in Figure 2, hence G is Fuchsian of genus 2 with only hyperbolic Möbius
transformations.

Note 5.3. For a regular 18-gon all L -lengths fulfil

L =

√

2
( 1

4 sin2(π/18)
− 1

)

.

Note 5.4. The condition for changing the pattern is equivalent to a side-pair
disappearing from the Dirichlet polygon with maximal number of sides. This is
equivalent to an edge in the convex hull disappearing, i.e. an equality of type (1)
for the L -lengths. (This equality is equivalent to the Ptolemy equation of [3].)
Since this is the same condition as the face condition in [4], the parametrization
leads to a cell decomposition. For g = 2 we get 9 types of cells of dimension 8.
The case of Note 5.3 can be considered the center of a cell. The cells correspond to
the 9 patterns in [1]. (In [1] the patterns were considered disregarding orientation,
i.e. up to mirror images. One of them, namely number 4, is not symmetric. Here
its mirror image is counted separately and listed as 4′ see Figures 3–11.) The
boundaries of the 9 top-dimensional cells correspond to “degenerate” Dirichlet
polygons i.e. for g = 2, with 8, 10, . . . , 16 sides.

Note 5.5. Prescribing L -lengths for the edges of the convex hull corresponds to
prescribing lengths of the geodesics joining centers of adjacent Dirichlet polygons.
In terms of the surface F , we get a triangulation of F into 6 triangles with
the base-point as the only vertex, see [3, Theorem 3.4, 3.5]. Hence we get, for
each identification pattern, a Fenchel–Nielsen type parametrization for a cell of
conformal structures of a closed surface with a distinguished point.

Note 5.6. A similar procedure can be carried out for higher genera as well,
see Note 7.3.

6. L-lengths and matrices

The results above have simple interpretations in terms of matrices of Möbius
transformations when the distinguished point is fixed to the origin of D .

Lemma 6.1. Let A be a Möbius transformation with matrix
[

a b
b a

]

, |a|2 − |b|2 = 1.

Then if

LA =
√

2 sinh
̺
(

0, A(0)
)

2
,
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it holds

(3) LA =
√

2 |b|.
Proof. Since

sinh
̺(z, Az)

2
=

|z − Az|
√

1 − |z|2
√

1 − |Az|2
,

where

Az =
az + b

bz + a
,

a straightforward calculation yields

sinh
̺
(

z, A(z)
)

2
=

|bz2 + (a − a)z − b|
1 − |z|2 ,

and substituting z = 0 gives the claim.

Lemma 4.1 corresponds to the following:

Lemma 6.2. Let T ⊂ D be a hyperbolic triangle with vertices 0, A(0), B(0) ,
where the matrices of the Möbius transformations A, B are, respectively

[

a1 b1

b1 a1

]

,

[

a2 b2

b2 a2

]

.

If R is the hyperbolic radius of the circumscribing circle of T , then R fulfils

2

sinhR
=

√

(

|b1| + |b2| − |b3|
)(

|b1| + |b3| − |b2|
)(

|b2| + |b3| − |b1|
)(

|b1| + |b2| + |b3|
)

|b1||b2||b3|
,

where b3 = a2b1 − a1b2 .

Proof. We apply the formula obtained in Lemma 4.1 and substitute LA =√
2 |b1| , LB =

√
2 |b2| , and use the equality ̺

(

A(0), B(0)
)

= ̺
(

0, B−1A(0)
)

to

obtain LE =
√

2 |b3| , b3 = a2b1 − a1b2 .

Lemma 6.3. Let T ⊂ D be the hyperbolic triangle of Lemma 6.2 , P the

center of the circumscribing circle of T , and let T be divided into six right-angled

triangles with one vertex at P by connecting P to the vertices of T and drawing

perpendiculars from P to the sides of T . If γ and ϕ are the angles of a right-

angled triangle, and the side opposite γ has length ̺
(

A(0), B(0)
)

/2 , then

(4)

cos γ =

∣

∣|b1|2 + |b2|2 − |b3|2
∣

∣

2|b1||b2|

sin ϕ =

∣

∣|b1|2 + |b2|2 − |b3|2
∣

∣

2
√

1 + |b3|2 |b1||b2|
,

where b3 = a2b1 − a1b2 .
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Proof. Let T and P be as above. The formulas for the angles obtained
when the triangle is divided into six right-angled triangles with one vertex at P ,
see Figure 1, were calculated in Lemma 4.2. By substituting as in the proof of
Lemma 6.2 we get the formulas (4).

7. A condition for discreteness

We consider the case of genus 2 and continue to use the results of [1].

Theorem 7.1. Let A, B, C, D be Möbius transformations with relation

ABA−1B−1 = CDC−1D−1 , and with matrices

[

a1 b1

b1 a1

]

,

[

a2 b2

b2 a2

]

,

[

a3 b3

b3 a3

]

,

[

a4 b4

b4 a4

]

,

respectively, where |ai|2 − |bi|2 = 1 , i = 1, . . . , 4 . Further, let b5, . . . , b9 denote

the upper right entries in the normalized matrices of AB, BA, ABA−1B−1 =
CDC−1D−1 , CD, DC , respectively.

A necessary and sufficient condition for G = 〈A, B, C, D; ABA−1B−1 =
CDC−1D−1〉 to have D(0) of pattern 1 (or its reflection) with A, B, C, D, AB ,

BA, ABA−1B−1 = CDC−1D−1, CD, DC as side-pairings (see Figure 3) is that

the following conditions are valid:

(5)

6
∑

ℓ=1

∑

Iℓ=(i,j,k)

arc sin
(

∣

∣|bi|2 + |bj|2 − |bk|2
∣

∣

2
√

1 + |bk|2 |bi||bj|

)

= π

with
I1 = (5, 6, 7) I2 = (1, 2, 5) I3 = (1, 2, 6)

I4 = (7, 8, 9) I5 = (3, 4, 8) I6 = (3, 4, 9),

where the inner sum is over the three cyclic permutations of Iℓ , and

(6) |bi||bj|
(

|bm|2 + |bn|2 − |bk|2
)

+ |bm||bn|
(

|bi|2 + |bj|2 − |bk|2
)

> 0,

where the indices are chosen from the two triples Iℓ = {i, j, k} and Ih = {m, n, k}
having the index k in common. Also, we assume that each pair of triangles

fulfilling (6) lie on different sides of the common edge. Since each k = 1, . . . , 9
belongs to exactly two triples, there are nine conditions of type (6) .

Proof. Let D(0) have 18 sides and pattern 1. By choosing A, B, C, D from
the side-pairings as in Figure 3, we can calculate the other side-pairings in terms
of A, B, C, D , see Figure 3 (the 18-gons in Figures 3–11 are drawn to be regu-
lar, since these pictures are only to indicate the combinatorics of the patterns).
The 18 vertices of D(0) fall into six equivalence-classes, each equivalence-class
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being associated to three side-pairings. By depicting the images of 0 under the
side-pairings, 18 triangles are formed. These are permuted by the side-pairings,
and the equivalence-classes thus formed correspond to the six equivalence-classes
of vertices. We denote by Tj , j = 1, . . . , 6 the equivalence-classes of triangles and
label the side-pairings A, B, C, D, AB, BA,ABA−1B−1 = CDC−1D−1, CD, DC
with indices 1, . . . , 9, respectively, to connect with each equivalence-class of trian-
gles Tj a triple Ij , j = 1, . . . , 6 of indices; the index i labelling f is in Ij if each
triangle in the equivalence-class Tj has a side equivalent to the side with vertices
0, f(0).

The following list of triples is obtained:

I1 = (5, 6, 7) I2 = (1, 2, 5) I3 = (1, 2, 6)

I4 = (7, 8, 9) I5 = (3, 4, 8) I6 = (3, 4, 9).

Each index i shared by two triples Ik, Iℓ means that the equivalence-classes of
triangles Tk, Tℓ share a side equivalent to the side with vertices 0, f(0), where f
is labelled by the index i . Hence we get 9 conditions of type (2), for example the
triangles I1 and I2 share the index 5, the remaining indices being (6,7) and (1,2),
hence by using the formula (3), we get

|b1||b2|
(

|b6|2 + |b7|2 − |b5|2
)

+ |b6||b7|
(

|b1|2 + |b2|2 − |b5|2
)

> 0.

Since the angles of the 18 triangles at 0 add up to 2π , from Lemma 6.3 we obtain
the condition

6
∑

ℓ=1

∑

Iℓ

arc sin
(

∣

∣|bi|2 + |bj|2 − |bk|2
∣

∣

2
√

1 + |bk|2 |bi||bj|

)

= π,

where the inner sum is over all three cyclic permutations of the indices in Iℓ =
(i, j, k) .

For sufficiency, we connect in pairs those points in G(0) that are connected in
Figure 2 by an edge of the triangulation. By Lemma 6.1 the condition (6) corre-
sponds to the face condition (2) and (5) to the closing condition. As mentioned in
Note 3.4, our assumptions imply strict triangle inequalities for the corresponding
L -lengths. The triangulation obtained can be continued to a tesselation of the
unit disk and it is the same as that constructed in the proof of Theorem 5.2 (with
same L -lengths) up to orientation and rotation around 0, the choice of orientation
being determined by any two adjacent triangles.

The other patterns for 18-gons can be dealt with in a similar way: we make
choices of generators, see Figures 3–11, label them with indices, and derive the
corresponding lists of triples. (The figures only indicate the combinatorics of the
case. Pattern 4′ denotes the mirror image of pattern 4). The results are presented
in Tables 1 and 2, which are related to the last diagram as explained later.
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Table 1.

Pattern Side-pairings labelled 1, . . . , 9 , and their relation

1 A, B, C, D, AB, BA, ABA−1B−1 = CDC−1D−1, CD, DC

2 A, B,C, D, AB, BA, D−1C−1AB = C−1D−1BA, CD, DC

3 A, B, C, D, A−1CD, BA, D−1C−1AB = C−1D−1BA, CD, DC

4 A, B, C, D, A−1CD, BA, D−1C−1AB = C−1D−1BA, CD, A−1B−1D

4 ′ A, B, C, D, A−1CD, BA, D−1C−1AB = C−1D−1BA, C−1A, DC

5 A, B, C, D, A−1CD, B−1DC, D−1C−1AB = C−1D−1BA, CD, DC

6 A, B, C, D, A−1CD, BA, D−1C−1AB = C−1D−1BA, C−1A, A−1B−1D

7 A, B, C, D, A−1CD, BA, CD−1C−1A = D−1BAB−1, C−1A, A−1B−1D

8 A, D−1C−1ADC, C, D, A−1CD, B−1DC, D−1C−1AB = C−1D−1BA, CD, DC

Table 2.

Pattern Triples of indices

1 (5,6,7) (1,2,5) (1,2,6) (7,8,9) (3,4,8) (3,4,9)

2 (5,7,8) (1,2,5) (1,2,6) (6,7,9) (3,4,8) (3,4,9)

3 (1,5,8) (2,5,7) (1,2,6) (6,7,9) (3,4,8) (3,4,9)

4 (1,5,8) (2,5,7) (1,2,6) (3,7,9) (3,4,8) (4,6,9)

4 ′ (4,5,8) (2,5,7) (1,2,6) (6,7,9) (1,3,8) (3,4,9)

5 (1,5,8) (2,5,7) (2,6,9) (1,6,7) (3,4,8) (3,4,9)

6 (4,5,8) (2,5,7) (1,2,6) (4,6,9) (1,3,8) (3,7,9)

7 (4,5,8) (3,5,7) (1,2,6) (4,6,9) (1,3,8) (2,7,9)

8 (1,5,8) (2,6,7) (2,5,9) (1,6,7) (3,4,8) (3,4,9)

These patterns are obtained, for example starting from pattern 1, by elemen-
tary moves, see [1]. The index corresponding to the removed side-pair is indicated
in the next diagram. For example 1 =⇒

7
2 means that by removing the side-pair

connected to index 7 from pattern 1, pattern 2 is obtained. Table 1 corresponds
to the following diagram:

4

1 2 3 6 7

4′

5 8

8

�#

????????
7

+3________
5

+3________
6

��

����������������������
9

;C��������
8 �#

???????? 7
+3________

9

;C���� ����
2

+3________
Note 7.2. The Dirichlet polygons with 8, 10, . . . , 16 sides are obtained with

certain side-pairs degenerating to vertices of the polygon, i.e. with equality in (6)
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for the corresponding indices. This corresponds to the convex hull having as cells
n -gons, 3 < n ≤ 8.

Note 7.3. The parametrization done above for genus 2 surfaces generalizes
in an analogous manner for a closed surface of higher genus g . Then, the generic
Dirichlet polygon has 4g − 2 equivalence-classes of vertices and 6g − 3 side-pairs.
Hence, there will be 6g − 3 conditions of type (6). The closing condition of type
(5) will have 4g − 2 terms in the outer sum and the triples of indices in the inner
sum will be according to the combinatorics of the identification pattern. The
parametrization leads to a cell decomposition, with cells of dimension 6g − 4.

The surface is triangulated into 4g − 2 triangles with the only vertex at the
distinguished point.

Similar methods are used for groups with elliptic and parabolic elements in
[2] and [4].
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Figures 3–8.
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Figures 9–11.
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