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Abstract. We prove that for each unbounded Bloch function f in the open unit disk D
there exists a singular inner function S and a bounded outer function @ such that neither product
f-S nor f-@ is a normal function.

A function f meromorphic in D = {z: |z| < 1} is called a normal function
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A well known subfamily of the normal functions is the so-called Bloch space
A, which consists of those functions f analytic in D for which

1fllz = sup (1 —|2]*)|f(2)| < o0
zeD

(see, for example, [1]). It is well known that the Bloch functions form a linear
space, but the collection of all normal functions do not, and, moreover, neither
class is closed under multiplication (see [5], [6]). It has been shown that for each
unbounded normal analytic function in D, there exists a Blaschke product B such
that the product f- B is not a normal function (see [2], [6]), and that, in fact, the
Blaschke product B can be replaced by a function g of the disk algebra, where g
has zeros in D (see [3]).
In this paper, we show the following result.

Theorem. If f is an unbounded Bloch function in D, then there exists both
a singular inner function S and a bounded outer function ) such that neither the
product f -S nor the product f-(@) is a normal function.

Since neither S nor ) has zeros in D, this result is not contained in any of
the results mentioned above.
We recall that a singular inner function is a function of the form

S(z) = exp{ — /027r 6# te du(t)}

et — 2
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where g is a finite positive Borel measure on dD which is singular with respect
to Lebesgue measure. Also, a bounded outer function is a function of the form

Q(z) = e exp{ — /027T etz log 1 (e™) dt}

et — z

where v is a real number, ¢ € L>(dD), and log(e®) € L1(OD) (see [4], [8]).

Proof of the Theorem. We first construct the appropriate singular inner func-
tion S.

We note that an unbounded Bloch function f must satisfy the growth condi-
tion

1
}f(z)’zO(logl_M) as |z|] — 1,
(see [1, p. 13]), so it follows that there exists a sequence {z,} in D for which
(1) ’f(zn)}—>oo and (1—|zn|)log}f(zn)’—>Oasn—>oo-

Without loss of generality, we may assume that z, — 1, that 0 < argz,,11 <
arg z, < 3m, and that | f(z,11)| > |f(2a)| > 1 for each n.

Now consider the angular domain

A:{ZED:Imz>O,’arg(1—z)’ < 3%}
and an arc I' C E = {z € D\ A : Imz > 0} where I' has an endpoint at
z = 1. If all but a finite number of the points z, lie in A, then, by a result of
J. McMillan (see [1, p. 33] or [7, p. 269]), |f(z)| cannot be bounded on T', which
means that we may assume that the sequence {z,} lies on the arc I', in addition
to the other properties we have assumed above. Now an elementary calculation
shows that 1 — |z| < |e?8®% — 1] for each z € E. From this, it is easy to see that
we may assume that the sequence {z,} is such that it also has all of the following
properties:

(2) 1 —|zn| < |e"®8%n — 2| for each k # n,
3 1 1 1 log 2 > 1
(3) ( - ‘Zn‘) Og‘f(zn)‘ < ( - |Zn—1|)ﬁv n -1,
and
n—1
log }f(zk)} log 2
_ 2

k=1
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Now, for each positive integer n, let

tn, = arg zn,
1 — |zy]

Cp, = lo Zn) |,
T g|f(z)]

and
= exp(it,) +z
9(2) = 7;1 e exp(ity,) — 2z

397

It follows from (3) that > 7, ¢, < log2, and so the sum defining the function

g(z) is convergent in D. Finally, we set

S(z) = exp (- g(2)),

and we note that S(z) is a singular inner function.
We first show that § < |f(21)S(2s)| < 1. Note that

= - |Zn|2
e (g(zn)) N Zl o ‘ ex(p(it ) — z) ‘2

(=lzP) 5, (=)

iEn ’ ’ exp(it;) — zn’2

1_ ng n—1 (1 — ng o)
co Ul Sk & o
}GXP(”H—%‘ j=1 (1—|Zj|) j=n+1 = |20l

From (4), we have

and from (3),

S e (-l el /()

j=n+1 _‘Zn| j=n+1 (1+|Zj|)(1_|zn|)
>\ 1—|zj_1]log2 log?2
<2 || 2 = 2
j=n-+1
Finally,
1—|z,2 1—|z,)%1 -
U lal) (ol Jog )] o

" | exp(it,) — zn‘Q | exp(it,) — Zn}Q
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so we may combine these inequalities to obtain that
log ’f(zn” < Re (g(zn)) < log ’f(zn)} + log 2.

It follows that

1
— < |8z <« ———,
7] < e I
which is the desired conclusion. We note also that ’S zn)’ < 1.
Also, if h(z) = f(2)S(z) then § < |h(z,)| <1, and so
W (2n)|

1- n2 ‘ 211_ n2 S/n n_Sn /n
(1= [zn )1+\h(zn)\2 5 (1= l2nl?) (19" (20) £ (z0)| = [S(z0) ' (20)])

> %(1 - |Zn|2)’9/(zn>} - % 1/l
and we will be finished if we can show that
(1= 12al?)]9'(zn)| = o0

But

oo

exp(it;) )

L=lznl?)]g'(za)] = (1 = |zal?) ’
(1= zal*) ]9 ()] % explity) — =)

> 2¢,

1+ \zn| a1 |Zn|2)’"§ (1= |z5]) log | £ (%))

1= [z o |exp(ity) — zn‘Q

5y = (1= lzl) log [ £(2))]
—2(1— |z, 5
( = )j:;—l—l }eXp(itﬁ - Zn}

> 210g}f(zn)’ —2log?2 — o0,

again making use of (2), (3), and (4). This completes the proof of the existence of
the appropriate singular inner function.

To show the existence of an appropriate outer function, we again begin by
selecting a sequence {z,} in D such that, without loss of generality, z, — 1,
}f(zn)’ — 00, 0 < |zn| < |2n41], and 0 < argzn,41 < argz, < 3w for each
positive integer n. As in the proof of the first part, we can assume that the
sequence {z,} also satisfies the following conditions:

(5) (1= |2n]) (log }f(zn)’)Q < 1i6 for each n,

(6) 1—|z] < }exp(itj) - zn} for j # n and t = arg(z;),
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(7) 21 < tp for each n,
n—1
log‘f(z')‘ 1
—_ 2 =l CO N B
(8) (1—]zn] )]z::l T < 1610g2, for n > 2,
and
1 1 1 g2 = >
(9) ( - |Zn\) og‘f(zn)‘ < ( - |Zn_1|)W’ orn =~ 2.

Now set ¢, = 4(1 — |zy]) log ’f(zn)} for each n, let

1, fort€ [ty,t, + 2]
n t — ) . ny “n ni’
Xn(?) {O, otherwise

let ¢(e™) = exp (3252 Xn(t)/cn), and define

2w it
o= [ G ogute a
0

et — 2

and Q(z) =exp{ —p(z)}.
First, we show that the intervals [t;,t; + c?] are mutually disjoint. If we fix
j > 1, the definition of ¢; and (5) yield

tj + C? = tj + 16(1 — |Zj|)2(10g ’f(Zj”)Q < tj + 1-— |Zj|,

and from (6), we get t; + 1 — |z;| < t; + |exp(it;) — 2| for each n # j. But
zn — 1, and 0 < t; = arg(z;) < 537 so we conclude that

tj +1-— |Z]| < tj + ’exp(itj) — 1’ < 2tj.
Now, (7) says that 2¢; < ¢;_1, so by combining the inequalities in this paragraph
we conclude that ¢; 4+ ¢; < t;_;, which means that the intervals [t;,t; + ¢j] are

mutually disjoint.
From the disjointness of the intervals and (9), we have that

27 00 00

i 1 log 2

[ esviear =3 (2)d =Y < 2
0 =1 G j=1

Noting that Re (¢(z)) > 0, we conclude that Q(z) is a bounded outer function.
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Further, for ¢ € [t,,t, + 2], we have
i 2 .
e — 2, |” = (1= |2n|)” + 42| sin® ((t — tn)/2)
< (1- |,zn|)2 +(t—ty)* < (1- |zn\)2 +cr.

Now, making use of (5), we obtain

taten 1z (2 1 e (1= |z
t

ag e I TEPe T Al
41 n
_ Og’f(z4>} . >10g’f(zn)}
1+ (41og|f(z0)]) (1 = [2al)
for each n. Also
tj—‘,—c? ].—|Z |2 1 n—1 : 00 9.

— T dt<2(1 -z, — 7 4 J__ < log2

;I/tj |ezt_Zn|20j ( | ‘);(1_|Zj|)2 j—;.11_|zn| g

as consequences of (6), (8), and (9). It follows that

log | f(za)] < Rep(2,) < log|f(zn)| +log2,

which means that
3 <|f(zn)Q(zn)| < 1.
Further,

/ >, [tite 2¢t 1
O (zn) = / —— — dt,
j_zl tj (elt - Zn)Q Cj

and, for large n, the argument of the integrand of the term corresponding to j = n
is always approximately —t, , so that the integral is at least 1/2 of the what its

value would be if the integrand were the constant exp(—it,)(1 — |zn|)_2. Now,
applying (6), we obtain

&' (2n))| Z#—ZL— Z 2¢;

1=z S A-15)" 500 0|z

Applying (8), we get

(1= |20]?) z_: % (1 |2]?) z_: 8(1 — |z]) log [ f ()]

pell (R PH =1 (1—1z0)°
n_18log}f(z‘)‘ log 2
_ _ 2 J g
= (1 |2 | ) g =15 < 5 -

Jj=1
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Also, using (9), we get

(oo?) 3 =2 () 3 S0 0 boslf )

j=n+1 (1 - |Zj|)2 j=n+1 (1 - |Zj|)2

1—zj_1]|log2
<16.Z 1= 2] 2j+1<10g2 for n > 3.

Finally,
Cn o 4log }f(zn)’

(1—|z))> 1= lonl

and so

Alog|/zn)| }f(zn)’ _3 log2 — oo

(1—|zn|2)}¢/(zn)} > 1—|Zn| 5

as n — oo. Now, if k(z) = f(2)Q(z), a computation similar to the one performed
in the first part of the proof shows that

‘k' (zn)‘
(1 = |znl) 3
1+ [k(zn)|
and this completes the proof.
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