
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 45, 2020, 899–902

MULTILINEAR FRACTIONAL INTEGRAL

OPERATORS: A COUNTER-EXAMPLE

Pablo Rocha

Universidad Nacional del Sur, Departamento de Matemática
Av. Alem 1253 - Bahía Blanca 8000, Buenos Aires, Argentina; pablo.rocha@uns.edu.ar

Abstract. By means of a counter-example we show that the multilinear fractional operator Iγ

(1 < γ < 2) is not bounded from H1(R)×Hp(R) into Hq(R), for 0 < p ≤ γ−1 and 1

q
= 1+ 1

p
− γ.

1. Introduction

Given positive integers m,n and a real number 0 < γ < mn, it is define the
multilinear fractional operator Iγ by

Iγ(f1, . . . , fm)(x) =

ˆ

(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)nm−γ
dy1 · · · dym, x ∈ R

n.

Lin and Lu in [3] proved Hardy space estimates for the multilinear fractional
operator Iγ . More precisely, they proved that if 0 < γ < n, 0 < p1, . . . , pm, q ≤ 1,
and q such that 1

q
= 1

p1
+ · · ·+ 1

pm
− γ

n
> 0, then

‖Iγ(f1, . . . , fm)‖Lq ≤ C‖f1‖Hp1 · · · ‖fm‖Hpm .

Recently, Cruz-Uribe, Moen and Nguyen in [1] generalized the result of Lin and Lu
to weighted Hardy spaces on the full range 0 < γ < nm.

The purpose of this note is to give a counter-example to show that the multilinear
fractional operator Iγ is not bounded from a product of Hardy spaces into a Hardy
space. For them, we consider n = 1, m = 2, γ = α+1 with 0 < α < 1, so 1 < γ < 2,
2− γ = 1− α and the multilinear fractional operator Iα+1 in this case is given by

Iα+1(f1, f2)(x) =

¨

R2

f1(s)f2(t)

(|x− s|+ |x− t|)1−α
ds dt, x ∈ R.

We will prove that the operator Iα+1 is not bounded from H1(R) × Hp(R) into
Hq(R), for 0 < p ≤ (α + 1)−1 and 1

q
= 1

p
− α.

We briefly recall the definition of Hardy space on R
n. The Hardy space Hp(Rn)

(for 0 < p < ∞) consists of tempered distributions f ∈ S ′(Rn) such that for some
Schwartz function ϕ with

´

ϕ = 1, the maximal operator

(Mϕf)(x) = sup
t>0

|(ϕt ∗ f)(x)|

is in Lp(Rn), where ϕt(x) := 1
tn
ϕ(x

t
). In this case we define ‖f‖Hp := ‖Mϕf‖p

as the Hp “norm”. It can be shown that this definition does not depend on the
choice of the function ϕ. For 1 < p < ∞, it is well known that Hp(Rn) ∼= Lp(Rn),
H1(Rn) ⊂ L1(Rn) strictly, and for 0 < p < 1 the spaces Hp(Rn) and Lp(Rn) are not
comparable.
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The following sentences hold in Hardy spaces Hp(Rn) for 0 < p ≤ 1 (see pp.
128–129 in [4]):

(S1) A bounded compactly supported function f belongs to Hp(Rn) if and only if
it satisfies the moment conditions

´

xβf(x) dx = 0 for all |β| ≤ n(p−1 − 1).
(S2) If f ∈ L1(Rn) ∩ Hp(Rn), then

´

xβf(x) dx = 0, whenever |β| ≤ n(p−1 − 1)
and the function xβf(x) is in L1(Rn).

To obtain our result we will compute explicitly in Section 2 the Fourier transform
of the kernel (|x− s|+ |x− t|)α−1 in the x variable, this allows us to get the following
identity

ˆ

R

Iα+1(a1, a2)(x) dx =
α− 1

α

¨

R2

a1(s) a2(t) |t− s|α ds dt

valid for bounded functions a1 and a2 having compact support with
´

a1 = 0 or
´

a2 = 0. Then, from (S2), the counter-example will follow to consider a1 ∈ H1(R)
and a2 ∈ Hp(R) such that

˜

R2 a1(s) a2(t) |t− s|α ds dt 6= 0.

Notation. We use the following convention for the Fourier transform in R

f̂(ξ) =
´

f(x)e−ixξ dx. As usual we denote with S(R) the Schwartz space on R.

2. Preliminaries

We start with the following lemma.

Lemma 1. For 0 < α < 1 and s 6= t ∈ R fixed, let Kα
s,t be the function defined

in R by

Kα
s,t(x) = (|x− s|+ |x− t|)α−1 , x ∈ R.

Then

K̂α
s,t(ξ) = −2α Γ(α) sin

(
(α− 1)π

2

)
e−iξ( s+t

2
)|ξ|−α + |t− s|α−1 sgn (t− s)

ˆ t

s

e−ixξ dx

−
|t− s|α

α
e−i

(s+t)
2

ξ cos

(
|t− s|ξ

2

)
+

i 2α ξe−iξ( s+t

2
)

α

ˆ

|t−s|
2

0

xα sin(xξ) dx,

in the distributional sense.

Proof. First we assume that s < t. Then for each φ ∈ S(R) fixed, we have
(
K̂α

s,t, φ
)
=
(
Kα

s,t, φ̂
)
=

ˆ

R

Kα
s,t(x)φ̂(x) dx

=

ˆ +∞

t

Kα
s,t(x)φ̂(x) dx+

ˆ t

s

Kα
s,t(x)φ̂(x) dx+

ˆ s

−∞

Kα
s,t(x)φ̂(x) dx

= I + II + III.

Let us now proceed to compute each one of these integrals,

I =

ˆ

R

χ(t,+∞)(x) (2x− (s+ t))α−1 φ̂(x) dx

= 2α−1

ˆ

R

xα−1χ( t−s

2
,+∞)(x) (e

−i(·)
(s+t)

2 φ)̂(x) dx

= 2α−1

ˆ

R

xα−1
+ (e−i(·)

(s+t)
2 φ)̂(x) dx− 2α−1

ˆ

R

xα−1χ(0, t−s

2
)(x)(e

−i(·)
(s+t)

2 φ)̂(x) dx

= 2α−1

ˆ

R

xα−1
+ (e−i(·)

(s+t)
2 φ)̂(x) dx
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− 2α−1

ˆ

R

(
(t− s)αe−iξ

(t−s)
2

2αα
+

iξ

α

ˆ t−s

2

0

xαe−ixξ dx

)
e−iξ

(s+t)
2 φ(ξ) dξ,

to compute III we proceed as in I, thus

III = 2α−1

ˆ

R

xα−1
−

(e−i(·) (s+t)
2 φ)̂(x) dx

− 2α−1

ˆ

R

(
(t− s)α

2αα
eiξ(

t−s

2
) −

iξ

α

ˆ t−s

2

0

xαeixξ dx

)
e−iξ

(s+t)
2 φ(ξ) dξ,

so

I + III = 2α−1

ˆ

R

|x|α−1(e−i(·)
(s+t)

2 φ)̂(x) dx

−

ˆ

R

(t− s)α

α
e−i

(s+t)
2

ξ cos

(
(t− s)ξ

2

)
φ(ξ) dξ

+

ˆ

R

(
i 2α ξe−iξ( s+t

2
)

α

ˆ

(t−s)
2

0

xα sin(xξ) dx

)
φ(ξ) dξ.

Now II is easy, indeed

II =

ˆ

R

χ(s,t)(x)(t− s)α−1 φ̂(x) dx =

ˆ

R

(
(t− s)α−1

ˆ t

s

e−ixξ dx

)
φ(ξ) dξ.

Since

|̂x|α−1(ξ) = −2Γ(α) sin

(
(α− 1)π

2

)
|ξ|−α

(see equation (12), p. 173, in [2]), the lemma follows for the case s < t. Finally,
exchanging the roles of s and t we obtain the statement of the lemma. �

Corollary 2. If a1 and a2 are two bounded functions on R with compact support

and such that
´

a1 = 0 or
´

a2 = 0, then
ˆ

R

Iα+1(a1, a2)(x) dx =
α− 1

α

¨

R2

a1(s) a2(t) |t− s|α ds dt.

Proof. It is easy to check that Iα+1(a1, a2)(·) ∈ L1(R). Let ϕ ∈ S(R) be an
even function such that ϕ(0) = 1 and for ǫ > 0 let ϕǫ(x) = ϕ(ǫx). Since

ˆ

R

Iα+1(a1, a2)(x) dx = lim
ǫ→0+

ˆ

R

Iα+1(a1, a2)(x)ϕǫ(x) dx,

we will proceed to compute this limit.

lim
ǫ→0+

ˆ

R

Iα+1(a1, a2)(x)ϕǫ(x) dx = lim
ǫ→0+

¨

R2

a1(s)a2(t)

(
ˆ

R

Kα
s,t(x)ϕǫ(x) dx

)
ds dt

= lim
ǫ→0+

¨

R2

a1(s)a2(t)

(
ˆ

R

K̂α
s,t(ξ)ϕ̂ǫ(ξ) dξ

)
ds dt

=

¨

R2

a1(s)a2(t) lim
ǫ→0+

(
ˆ

R

K̂α
s,t(ǫ ξ)ϕ̂(ξ) dξ

)
ds dt

=
α− 1

α

¨

R2

a1(s) a2(t) |t− s|α ds dt,
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where the last equality follows from Lemma 1, the moment condition of a1 (or a2)
and that ϕ(0) = 1. �

3. A counter-example

We take a1(s) = χ(−1,0)(s)− χ(0,1)(s) and a2(t) = a1(t− 2). From (S1) it follows

that a1 ∈ H1(R) and a2 ∈ H(α+1)−1
(R) for each 0 < α < 1. A computation gives

¨

a1(s)a2(t)|t− s|α ds dt =
4 · 3α+2 − 4α+2 − 6 · 2α+2 + 4

(α + 1)(α+ 2)
6= 0.

From (S2) and corollary 2 it obtains that Iα+1(a1, a2)(·) /∈ H1(R), for each 0 < α < 1.
For 0 < p < (α+1)−1 and 1

q
= 1

p
−α, we take N as any fixed integer with N > p−1−1,

then the set of all bounded, compactly supported functions for which
´

xβf(x) dx = 0,
for all |β| ≤ N is dense in Hr(R) for each p ≤ r ≤ 1 (see 5.2 b), pp. 128, in
[4]). In particular, there exists b ∈ Hp(R) such that ‖a1‖H1‖a2 − b‖

H(α+1)−1 <∣∣´
R
Iα+1(a1, a2)(x) dx

∣∣ /2C. Then
∣∣∣∣
ˆ

R

Iα+1(a1, b)(x) dx

∣∣∣∣ ≥
∣∣∣∣
ˆ

R

Iα+1(a1, a2)(x) dx

∣∣∣∣−
ˆ

R

|Iα+1(a1, a2 − b)(x)| dx

≥

∣∣∣∣
ˆ

R

Iα+1(a1, a2)(x) dx

∣∣∣∣− C‖a1‖H1‖a2 − b‖
H(α+1)−1

>
1

2

∣∣∣∣
ˆ

R

Iα+1(a1, a2)(x) dx

∣∣∣∣ > 0,

where the second inequality follows from Theorem 1.1 in [1] with p1 = 1, p2 =
(α+1)−1 and q = 1. But then the operator Iα+1 is not bounded from H1(R)×Hp(R)
into Hq(R) for 0 < p ≤ (α+ 1)−1 and 1

q
= 1

p
− α, since

´

R
Iα+1(a1, b)(x) dx 6= 0.

We conclude this note by summarizing our main result in the following theorem.

Theorem 3. For 1 < γ < 2, let Iγ be the multilinear fractional integral operator

given by

Iγ(f1, f2)(x) =

¨

R2

f1(s)f2(t)

(|x− s|+ |x− t|)2−γ
ds dt, x ∈ R.

Then the operator Iγ is not bounded from H1(R)×Hp(R) into Hq(R) for 0 < p ≤ γ−1

and 1
q
= 1 + 1

p
− γ.
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