
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 45, 2020, 95–120

A SECOND LOOK OF SOBOLEV SPACES

ON METRIZABLE GROUPS

Przemysław Górka and Tomasz Kostrzewa

Warsaw University of Technology, Department of Mathematics and Information Sciences
Ul. Koszykowa 75, 00-662 Warsaw, Poland; pgorka@mini.pw.edu.pl

Warsaw University of Technology, Department of Mathematics and Information Sciences
Ul. Koszykowa 75, 00-662 Warsaw, Poland; kostrzewat@mini.pw.edu.pl

Abstract. We continue our study of Sobolev spaces on locally compact abelian groups. In this

paper we mainly focus on the case of metrizable groups. We show the density of the Bruhat–Schwartz

space in Sobolev space. We prove the trace theorem on the cartesian product of topological groups.

The comparison of Sobolev and fractional Sobolev spaces are given. In particular, it is proved that

in the case of any abelian connected Lie group Sobolev and fractional Sobolev spaces coincide. Most

of the theorems are illustrated by p-adic groups.

1. Introduction

Sobolev spaces are the main tools in the modern theory of partial differential
equations. They give a very natural functional analytical framework for the study of
existence, regularity and qualitative properties of the boundary value problems. Such
kind of spaces are well understood on the Euclidean space Rn and sufficiently regular
subsets of Rn (see e.g. [2, 42]), complete Riemannian manifolds [5, 23]. On the other
hand, Hajłasz [21] (see also [22]) and Shanmugalingam [36] introduced the Sobolev
spaces on metric measure spaces. Such kind of spaces have found applications in
differential equations e.g. harmonic functions on metric measure spaces [37]. There
are also some works on Sobolev spaces in the p-adic context (see [28, 33] and references
therein), and in special cases of locally compact groups such as the Heisenberg group
(see [6, 10]).

The purpose of this paper is to continue the investigation of Sobolev spaces
on metrizable locally compact abelian (LCA) groups. The Sobolev spaces on LCA
groups have been introduced by Górka and Reyes in [20], where Sobolev embedding
and Rellich-Kondrachov theorem have been proved (see also [16]). In [19] we improved
theorems about continuous and compact embeddings (see also [18] for related result
in the case of countable dual groups). Moreover, in [19] we introduced Sobolev spaces
on subsets of LCA groups and we proved analogue of Rellich lemma for those spaces.
In [17] we have studied Sobolev spaces on locally compact abelian groups in the case
when the dual group is metrizable. We hope that the theory developed here will
shed a new light on the theory of differential equations on metric measure spaces,
e.g. harmonic functions [1, 12].

The remainder of the paper is organized as follows. In Preliminaries we review
some definitions from harmonic analysis and the theory of Sobolev spaces on topo-
logical groups. Moreover, some general remarks about metrizable groups are given
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and the Bruhat–Schwartz spaces are introduced. Then, in Section 3 assuming that
the Bruhat–Schwartz space is contained in the Sobolev space we are able to prove
the density of the Bruhat–Schwartz in the Sobolev space. Moreover, we provide the
class of admissible weights, i.e. such that the Bruhat–Schwartz space is contained in
the Sobolev space. Section 4 is devoted to studying the properties of the Bruhat–
Schwartz space on the cartesian product of groups. Such analysis is crucial to prove
the trace theorem in Section 5. In that section we assume that the dual group is
metrizable and the dual measure is upper β-regular (see Preliminaries for defini-
tions). Furthermore, in Section 5 we prove that in the case of p-adic numbers the
trace operator is surjective. In Section 6 we compare our space with the fractional
Sobolev space. Assuming that the group admits invariant metric and the Haar mea-
sure is β-regular, we obtain some general result about the continuous embedding of
the Sobolev space in the fractional Sobolev space. We show that in the case of con-
nected abelian Lie group, Sobolev space and fractional Sobolev space coincide. The
paper is closed with the Appendix, where some basic facts about p-adic numbers are
contained.

2. Preliminaries

2.1. Sobolev spaces. We use standard notations from harmonic analysis (see
[11] and [24]). Let us fix a locally compact abelian group G. We denote by µG the
unique Haar measure of G and by G∧ the dual group of the group G that is, G∧ is
the locally compact abelian group of all continuous group homomorphisms from G
to the circle group T. We denote by µ̂G Haar measure (Plancherel measure) on G∧.

By e (resp. ê) we shall denote the identity of G (resp. Ĝ). The Lp spaces over G are
defined as usual,

Lp(G) =

{
f : G → C :

ˆ

G

|f(x)|p dµG(x) < ∞

}
,

and we set

‖f‖Lp(G) =

(
ˆ

G

|f(x)|p dµG(x)

)1/p

.

Since the definition of the Sobolev space on locally compact abelian group uses essen-
tially the Fourier transform, we also recall that the Fourier transform on G is defined
as follows: if f ∈ L1(G), then it Fourier transform is the function f̂ : G∧ → C given
by

f̂(ξ) =

ˆ

G

ξ(x)f(x) dµG(x).

Now, let us recall the notion of the Sobolev spaces on locally compact abelian groups
(see [20], [18] and [19]).

Definition 2.1. Let us fix a map γ : G∧ → [0,∞) and a nonnegative real num-
ber s. We shall say that f ∈ L2(G) belongs to the Sobolev space Hs

γ(G) if the
following integral is finite:

ˆ

G∧

(
1 + γ(ξ)2

)s
|f̂(ξ)|2 dµ̂G(ξ).

Moreover, for f ∈ Hs
γ(G) its norm ‖f‖Hs

γ(G) is defined as follows:

‖f‖Hs
γ(G) =

(
ˆ

G∧

(
1 + γ(ξ)2

)s
|f̂(ξ)|2 dµ̂G(ξ)

)1/2

.
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For the basic properties of this kind of spaces we refer to [20].

2.2. Metric groups. We now briefly recall the theory of metrizable locally
compact groups. Let us recall that the Birkhoff–Kakutani theorem [25] states that
the LCA group is metrizable if and only if it is first countable. On the other hand,
by the Struble theorem [39], we know that on a topological group exists proper1 and
invariant (i.e. d(x, y) = d(gx, gy) for all x, y, g ∈ G) metric if and only if the group
is second countable. Furthermore, if G is LCA and second countable, then the dual
group G∧ is second countable too (see [8]).

Next, we recall some definitions.

Definition 2.2. [17] Let G be an LCA group. We say that metrics d : G×G →

R+ and d̂ : G∧ × G∧ → R+ are dual metrics if for each character ξ ∈ G∧ and every
x, y ∈ G we have

|ξ(x)− ξ(y)| ≤ d̂(ξ, ê)d(x, y).

One can easily convince oneself that Rn,Tn and Qn
p with natural metrics satisfy

condition of the above definition2.

Definition 2.3. [17] Let (G, d, µ) be an LCA group with metric d and the Haar
measure µ. We shall say that the measure µ is upper β-regular if:

• G is not discrete and there exists a constant Dβ > 0, such that for all r > 0
we have

µ(B(e, r)) ≤ Dβr
β,

• or, G is discrete and there exists R0 > 0 and Dβ > 0 such that B(e, R0) = {e}
and for r ≥ R0

µ(B(e, r)) ≤ Dβr
β.

Remark 2.1. The number β in Definition 2.3 can be treated as an analogue of
the dimension for groups. Very similar condition appears in the analysis on metric
measure spaces (see [26, 22]).

Remark 2.2. Assuming β-regularity of the dual measure µ̂, the continuity of the
embeddings of the Sobolev space Hs

γ have been proved [17], i.e. Sobolev inequality
(Theorem 1 in [17]), Morrey theorem (Theorem 2 in [17]) and the Moser–Trudinger
inequality (Theorem 3 in [17]).

Example 1. Suppose G and H are LCA groups with metrics d and ρ respectively.
If µG is upper n-regular and µH is upper k-regular then the Haar measure µG×H on
G×H is (n + k)-regular with respect to the metric

(d× ρ)
(
(g1, h1), (g2, h2)

)
= max{d(g1, g2), ρ(h1, h2)}.

3

Having in mind the above example, we can produce the next ones.

Example 2. The Haar measure on Qn
p is upper n-regular.

Example 3. The Haar measure on Zd is upper d-regular.

In the sequel we shall need the following result.

1On a topological space X , metric d is called proper if balls are relatively compact.
2Dual groups of Rn,Tn and Qn

p are Rn,Zn and Qn
p respectively.

3It easily follows from the fact that balls with respect to metric d× ρ are cartesian products of
balls with respect to metrics d and ρ and the Haar measure on G ×H is the product measure of
µG and µH .
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Lemma 2.1. Let G be an LCA group which is metrizable with metric d. Suppose

that the Haar measure µG on G is upper β-regular. If s > β
2
, then there exists C

such that for every R > 0 the following inequality
ˆ

G\B(e,R)

dµG(x)

(1 + d(e, x)2)s
≤ CRβ−2s

holds.

Proof. The lemma is very similar to Lemma 1 in [17]. Nevertheless, for the
convenience of the reader we shall give the proof. The proof falls naturally into two
steps.

(1) G is not discrete. Since β − 2s < 0, we have
ˆ

G\B(e,R)

dµG(x)

(1 + d(x, e)2)s
=

∞∑

k=0

ˆ

B(e,2k+1R)\B(e,2kR)

dµG(x)

(1 + d(x, e)2)s

≤ Dβ

∞∑

k=0

(
2k+1R

)β

22skR2s
=

2βDβR
β−2s

1− 2β−2s
.

(2) G is discrete. If R ≥ R0, then the proof runs as before. Now, for R < R0 we
have

ˆ

G\B(e,R)

dµG(x)

(1 + d(x, e)2)s
=

ˆ

G\B(e,R0)

dµG(x)

(1 + d(x, e)2)s
≤ Dβ

2βRβ−2s
0

1− 2β−2s
≤ Dβ

2βRβ−2s

1− 2β−2s
.

�

2.3. Bruhat–Schwartz classes. Bruhat–Schwartz class was first introduced
by Bruhat in [9]. We will use one of the equivalent definition given by Osborne in [32].
It turns out that this class is very suitable for the theory of Sobolev spaces on LCA
groups.

For the convenience of the reader we recall the relevant material from [32] without
proofs, thus making our exposition self-contained.

Assume that S is a symmetric subset of an abelian group G, i.e. S = S−1. Denote
by 〈S〉 the smallest subgroup of G containing S i.e.

〈S〉 = {a1a2 . . . anb
−1
1 b−1

2 . . . b−1
m : ai, bj ∈ S, n,m ≥ 1},

where Sn = {a1 · · · an : a1, . . . , an ∈ S}.

Remark 2.3. From symmetry of S it follows that

〈S〉 = {a1a2 . . . an : ai ∈ S, n ≥ 1} =
⋃

n≥1

Sn.

Definition 2.4. [32] Let G be a locally compact group. We say that a function
f ∈ L∞(G) belongs to the class A(G) if there exists a compact set C(f) ⊂ G such
that for all n ≥ 1 there is a positive constant Mn such that for all k ≥ 1∥∥∥f

G\C(f)k

∥∥∥
L∞(G)

≤ Mnk
−n.

Remark 2.4. [32]

(i) Sets C(f) can be enlarged at will i.e. we can add to it any compact set
without changing the inequality in the definition of A(G). From now on we
will assume that C(f) contains an open neighbourhood of the identity of G.

(ii) A(G)L∞(G) ⊂ A(G).
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(iii) f vanishes µ-a.e., off 〈C(f)〉.

In general, when some function f ∈ A(G) is given, it might be very hard to find
a compact set C(f) from the above definition. This gets even more complicated if
we need to find those sets for more then one function. Next lemma gives us a simple
solution for such problems.

Lemma 2.2. Let G be an LCA group which is compactly generated i.e. there

exists a compact set such that

G =
∞⋃

n=1

(K ∪K−1)n.

Then there exists a compact set C which is an admissible set for any f ∈ A(G) i.e.

for any n there exists Mn such that for every k∥∥∥f
G\Ck

∥∥∥
L∞(G)

≤ Mnk
−n.

Proof. Let us take f ∈ A(G). Then there exists a compact set C(f) such that
for all n there exists Mn(f) such that for all j the inequality holds

|f(x)| ≤ Mn(f)j
−n

for almost all x ∈ G \ C(f)j. Since G is compactly generated, there exists an open
neighbourhood U of eG with compact closure C := U such that

G =
⋃

Un =
⋃

Cn.

From this, it follows that there exists m(f) such that C(f) ⊂ Cm(f). Thus, without
loss of generality we can assume that C(f) = Cm(f). Observing that

Mn(f)j
−n = Mn(f)(m(f))n(m(f)j)−n

and denoting Mn(f)
′ = Mn(f)m(f)n, we get that

(1) |f(x)| ≤ Mn(f)
′(m(f)j)−n

for almost all x ∈ G\C(f)j = G\Cm(f)j . To prove that C can be taken as a compact
set in the definition of f ∈ A(G) we need to show the above inequality for all natural
numbers. In order to do that, we only need to show an appropriate inequality with
k = m(f)j + 1, m(f)j + 2, . . . , m(f)j +m(f)− 1. To do that fix k = m(f)j + s for
some s ∈ {1, 2, . . . , m(f)− 1} and observe that

M ′
n(f)(m(f)j)−n ≤ Mn(f)

′2n(m(f)j + s)−n.

Denote M ′′
n(f) = 2nM ′

n(f). Since G \ Cm(f)j+s ⊂ G \ Cm(f)j , we can apply inequal-
ity (1) to get for almost all x ∈ G \ Cm(f)j+s the inequality

|f(x)| ≤ M ′
n(f)(m(f)j)−n ≤ M ′′

n(f)(m(f)j + s)−n.

Therefore, we have proved that C is an admissible set for any function f ∈ A(G). �

From the proof of the above lemma, we get the following corollary.

Corollary 2.1. Let G be an LCA group which is compactly generated. Suppose

that U is a subset of G satisfying

(i) U is an open neighbourhood of the identity,

(ii) U is compact,

(iii) G =
⋃

Un.

Then C := U is an admissible set for all f ∈ A(G).
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Lemma 2.3. [32] Let G be a locally compact group. If f ∈ A(G) then for each

positive integer n there exists a constant M ′
n such that for all k ≥ 1 we have

ˆ

C(f)k+1\C(f)k
|f(x)| dµ(x) ≤ M ′

nk
−n.

Corollary 2.2. [32] Let G be a locally compact abelian group. Then A(G) ⊂
L1(G), and for all n there exists a constant M ′′

n such that for all k ≥ 1
∥∥∥f

G\C(f)k

∥∥∥
L1(G)

≤ M ′′
nk

−n.

Next, we introduce the Bruhat–Schwartz class S.

Definition 2.5. [32] Let G be a locally compact abelian group. We say that f

belongs to the Bruhat–Schwartz class S(G) if f ∈ A(G) and f̂ ∈ A(G∧).

Remark 2.5. From Corollary 2.2 we have that A(G) ⊂ L1(G). Since A(G) ⊂
L∞(G) it follows that A(G) ⊂ Lp(G) for any p ≥ 1. Indeed, from the Hölder
inequality we have

ˆ

G

|f(x)|p dµ(x) ≤ ‖f‖p−1
L∞(G)‖f‖L1(G).

It follows that if f ∈ S(G), then f ∈ Lp(G) and f̂ ∈ Lp(G∧) for any p ≥ 1.

Indirect application of Corollary 2.1 leads us to the following examples.

Example. 4

• S(Rn) =
{
f ∈ C∞(Rn) : ∀α, β supx∈Rn

∣∣xα∂βf(x)
∣∣ < ∞

}
,

• S(Zl) =
{
f : Zl → C : ∀M > 0 supx∈Zl

(
1 + ‖x‖2

)M
|f(x)| < ∞

}
,

• S(Tn) = C∞(Tn),
• S(Qn

p ) =
{
f : Qp → C, f is locally constant function with compact support

}
5.

3. Density of Bruhat–Schwartz class in Sobolev spaces

In the celebrated paper [30] Meyers and Serrin proved the fundamental result
about density of regular functions in Sobolev spaces on Rn. In [17] we have proved
that Hs

γ(G)∩C(G) is dense in Hs
γ(G). Nevertheless, the mentioned theorem from [17]

is not enought to develop the theory of Sobolev spaces on LCA groups. Therefore,
in this section we prove the density of Bruhat–Schwartz space in Sobolev spaces.

First of all, we need to recall the following crucial theorem.

Theorem 3.1. [9, 32] Let G be a locally compact abelian group.

(1) The space S(G) is a dense subset of L2(G).
(2) The Fourier transform is a bijection from S(G) onto S(G∧).

Now, we are in position to formulate and prove the main result of this section.

Theorem 3.2. If S(G) ⊂ Hs
γ(G), then S(G) is dense in Hs

γ(G).

Remark 3.1. Let us stress that in the above theorem we do not assume metriz-
ability of the group G.

4Presented examples are known in mathematical community. Although, to the best our knowl-
edge, the proofs appear in no academic publication except for [29]. We are maintaining this tradition
and we aren’t also presenting the proofs.

5Complex-valued function ψ is locally constant if for each point x there is an integer l(x) ∈ Z

such that ψ(x+ x′) = ψ(x) for each x′ ∈ Bn
l(x) = {z : ‖z‖p ≤ pl(x)} (for details see [3]).
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Proof. Let us assume that u ∈ Hs
γ(G) and (u, f)Hs

γ(G) = 0 holds for all f ∈ S(G).
Since

(u, f)Hs
γ(G) =

(
F(u)

(
1 + γ2

)s
,F(f)

)
L2(G∧)

,

we get that for all f ∈ S(G)
(
F(u)

(
1 + γ2

)s
,F(f)

)
L2(G∧)

= 0.

Moreover, because F : S(G) → S(G∧) is onto, we have that for all h ∈ S(G∧)
(
F(u)

(
1 + γ2

)s
, h

)
L2(G∧)

= 0.

Hence, by density of S(G∧) in L2(G∧), we get that

F(u)
(
1 + γ2

)s
= 0,

and u = 0. This finishes the proof. �

3.1. Admissible weights. In Theorem 3.2 we have seen that the sufficient
condition for density of S(G) in Hs

γ(G) is the inclusion S(G) ⊂ Hs
γ(G). Therefore we

will study the class of weights γ for which the inclusion S(G) ⊂ Hs
γ(G) holds. Let

us start our journey with the following counterexample.

Example 4. Let us consider Hs
γs(R

n) with γs(ξ) = exp
(
π‖ξ‖2

s

)
. Then the func-

tion ϕ(x) = exp(−π‖x‖2) is in Schwartz class S(Rn) but does not belong to the
Sobolev space Hs

γs(R
n). Indeed, the Fourier transform of ϕ is

ϕ̂(ξ) = exp(−π‖ξ‖2).

Therefore, γs
s(ξ)ϕ̂(ξ) = 1, which clearly does not belong to L2(Rn). Thus, ϕ is not

an element of the Sobolev space Hs
γs(R

n).

The example shows that the weight can not grow too fast at “infinity”. Now,
assuming that the weight is sublinear, we prove that the Bruhat–Schwartz class is
contained in the Sobolev space.

Proposition 3.1. Let G be an LCA group. Suppose that γ : G∧ → [0,+∞) is

bounded on compact sets and is subadditive i.e. for each ξ, η ∈ G∧ we have

γ(ξη) ≤ γ(ξ) + γ(η).

Then for any s > 0 the inclusion holds S(G) ⊂ Hs
γ(G).

Proof. Let us take f ∈ S(G) and let C ⊂ G∧ be a compact set from the definition

of f̂ ∈ A(G∧). Since γ is bounded on compact sets, there exists a constant c ≥ 1
such that

γ(ξ) ≤ c for all ξ ∈ C.

From the subadditivity of γ follows that for ξ, η ∈ C

γ(ξη) ≤ 2c.

Therefore, by induction for ξ ∈ Ck we get that

(2) γ(ξ) ≤ kc.

We have
ˆ

G∧

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ)

=

ˆ

G∧\C

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ) +

ˆ

C

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ) = I1 + I2.
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The second integral I2 can be estimated as follows

I2 =

ˆ

C

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ) ≤

(
1 + c2

)s
‖f̂‖2L∞(G∧)µ̂G(C) < ∞.

Since f̂ = 0 a.e. on G∧ \ 〈C〉, by Remark 2.3 we can rewrite I1 as follows

I1 =

∞∑

k=1

ˆ

Ck+1\Ck

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ).

Lemma 2.3, inequality (2) and Corollary 2.2 allow us to estimate the integrals in the
following manner

ˆ

Ck+1\Ck

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ)

≤
(
1 + (k + 1)2c2

)s
‖f̂‖L∞(G∧)

ˆ

Ck+1\Ck

|f̂(ξ)| dµ̂G(ξ)

≤
(
1 + (k + 1)2c2

)s
‖f̂‖L∞(G∧)M

′
nk

−n

≤ 23sc2sM ′
n‖f̂‖L∞(G∧)k

2s−n,

where n can be chosen arbitrarily large. Thus, taking n > 2s+ 1, we get

I1 =

∞∑

k=1

ˆ

Ck+1\Ck

(
1 + γ2(ξ)

)s
|f̂(ξ)|2 dµ̂G(ξ) ≤ 23sc2sM ′

n‖f̂‖L∞(G∧)

∞∑

k=1

k2s−n < +∞,

which ends the proof. �

Remark 3.2. In fact, we have proved that

{f ∈ L2(G) : f̂ ∈ A(G∧)} ⊂ Hs
γ(G).

As a corollary we obtain the following result.

Proposition 3.2. Let G be a locally compact abelian group and s ≥ 0. Suppose

that there exists an invariant metric d̂ on G∧ and define γ(ξ) = d̂(ξ, ê). Then S(G) ⊂
Hs

γ(G).

Proof. Due to Proposition 3.1, it is enough to prove that γ(ξ) = d̂(ξ, ê) is

subadditive. Since d̂ is invariant, we obtain

γ(ξη) = d̂(ξη, ê) = d̂(η, ξ−1)

≤ d̂(η, ê) + d̂(ê, ξ−1) = d̂(η, ê) + d̂(ξ, ê) = γ(η) + γ(ξ),

and the proof follows. �

Proposition 3.3. Let G be an LCA group. Suppose that γ : G∧ → [0,+∞) is

such that for each compact set C ⊂ G∧ there exists β > 0 and M ≥ 1 such that for

each number k ≥ 0 we have

∥∥γ
Ck

∥∥
L∞(G)

≤ (Mk)β .

Then S(G) ⊂ Hs
γ(G) for each s ≥ 0.
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Proof. Let ϕ ∈ S(G) and let C ⊂ G∧ be a compact set from the definition of
A(G∧) for ϕ̂. Let us fix n > 2sβ + 1, then from Lemma 2.3 we have

ˆ

G∧

(
1 + γ2(ξ)

)s
|ϕ̂(ξ)|2 dµ̂G(ξ)

=

ˆ

C

(
1 + γ2(ξ)

)s
|ϕ̂(ξ)|2 dµ̂G(ξ)+

+∞∑

k=1

ˆ

Ck+1\Ck

(
1 + γ2(ξ)

)s
|ϕ̂(ξ)|2 dµ̂G(ξ)

≤
(
1 +M2β

)s
ˆ

G∧

|ϕ̂(ξ)|2 dµ̂G(ξ)

+
+∞∑

k=1

(
1 +M2β(k + 1)2β

)s
‖ϕ̂‖∞

ˆ

Ck+1\Ck

|ϕ̂(ξ)| dµ̂G(ξ)

≤
(
1 +M2β

)s
‖ϕ‖22 + 2sM2sβ‖ϕ̂‖∞

+∞∑

k=1

(2k)2sβM ′
nk

−n

=
(
1 +M2β

)s
‖ϕ‖22 + 2s(1+2β)M2sβM ′

n‖ϕ̂‖∞

+∞∑

k=1

k2sβ−n < ∞,

and this proves that ϕ ∈ Hs
γ(G). �

4. Bruhat–Schwartz class on cartesian product of groups

Let G and H be locally compact abelian groups. We will study the properties of
the spaces A(G×H) and S(G×H). Let f : G×H → C and let us fix x ∈ G. We
denote by fx : H → C the following function

fx(y) = f(x, y) for all y ∈ H.

Let us recall some basic properties of multiplication of compact sets (see [32]),
which will be needed in the proof of the next theorem.

Lemma 4.1. Let G be a locally compact abelian group with Haar measure µ.

If C is a compact set containing an open neighbourhood of the group unit, then

(a) there exist a natural number m and points x1, . . . , xm ∈ G such that

C2 ⊂ x1C ∪ . . . xmC,

(b) there exists a natural number m such that for each k ≥ 1 the inequality holds

µ(Ck) ≤ kmµG(C).

Now, we are in position to formulate and prove the properties of restriction for
functions from the space A(G×H).

Theorem 4.1. Let G and H be LCA groups, then:

(i) If f ∈ C(G×H), then fx ∈ C(H).
(ii) If f ∈ A(G×H), then fx ∈ A(H) for almost all x ∈ G.

(iii) If f ∈ A(G×H) ∩ C(G×H) and g(x) =
´

H
fx(y) dµH(y), then g ∈ A(G) ∩

C(G).

Proof. Let us denote by πG and πH the projections of G × H onto G and
H respectively. If C(f) is a compact set from the definition of A(G × H), then
C(f) ⊂ πG(C(f)) × πH(C(f)). Therefore, we can assume that C(f) = A × B for
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some compact sets A and B. We can also enlarge those sets if needed so they contain
an open neighbourhood of the group unit.

(i) The continuity of fx is obvious.
(ii) From the definition of class A(G×H), we have that for all n there exists Mn

such that for all k the following inequality holds∥∥f
G×H\Ak×Bk

∥∥
L∞(G×H)

≤ Mnk
−n.

In particular, we obtain ∥∥f
G×(H\Bk)

∥∥
L∞(G×H)

≤ Mnk
−n.

Hence, by the Fubini theorem we get the existence of sets An,k ⊂ G and Bn,k,x ⊂
H \ Bk with x ∈ An,k such that µG(G \ An,k) = 0, µH(H \ Bk \ Bn,k,x) = 0 and for
all x ∈ An,k and y ∈ Bn,k,x we have

|f(x, y)| ≤ Mnk
−n.

Next, we define the set A =
⋂

n,k An,k of full measure. Therefore, for each x ∈ A, all
k, n and all y ∈ Bn,k,x we have

|f(x, y)| ≤ Mnk
−n.

In other words, we get that for almost all x ∈ G and for all n, k∥∥f(x, ·)
H\Bk

∥∥
L∞(H)

≤ Mnk
−n,

and from that the proof of (ii) follows.
(iii) Assume that f ∈ A(G×H)∩C(G×H). From the proof of (ii) we see that

fx ∈ A(H) for all x ∈ G. Therefore, by Corollary 2.2 we have that fx ∈ L1(H) and
so for all x ∈ G

|g(x)| < +∞.

First of all, we will show that g is a continuous function. For this purpose we fix a
point x0 ∈ G and ε > 0. Let V ⊂ G be an open neighbourhood of x0 such that V is a
compact set. Furthermore, let Ã := A∪V where A is a set from the proof of part (ii).
Then, we have ∥∥f

G×H\Ãl×Bl

∥∥
L∞(G×H)

≤ 1
2
Mnl

−n.

Since f is continuous, from the above inequality we get in particular that for all
x ∈ Ãl and all y ∈ H \Bl

|f(x, y)| ≤ Mnl
−n.

Since fx ∈ A(H) for x ∈ G, we have fx = 0 almost everywhere outside 〈B〉. There-
fore, for each fixed k we have
ˆ

H\Bk

|f(x, y)| dµH(y) =

ˆ

H\〈B〉

|f(x, y)| dµH(y) +

∞∑

l=k

ˆ

Bl+1\Bl

|f(x, y)| dµH(y)

=

∞∑

l=k

ˆ

Bl+1\Bl

|f(x, y)| dµH(y).

By Lemma 4.1, we get that there exists m0 such that for all l ≥ k and each x ∈ Ãk

the following inequality holds
ˆ

Bl+1\Bl

|f(x, y)| dµH(y) ≤ Mnl
−nµH(B

l+1) ≤ Mnl
−n(l + 1)m0µH(B)

≤ 2m0Mnµ(B)lm0−n.
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Next, let us take n = m0 + 2 +N , then
ˆ

H\Bk

|f(x, y)| dµH(y) ≤
∞∑

l=k

2m0Mm0+2+Nµ(B)l−2−N ≤ 2m0Mm0+2+Nµ(B)k−N
∞∑

l=k

l−2.

Denoting M ′
N = 2m0M2+N+m0

µ(B)
∑∞

l=1 l
−2, the above inequality takes the following

form
ˆ

H\Bk

|f(x, y)| dµH(y) ≤ M ′
Nk

−N

for all k,N and any x ∈ Ãk. Subsequently, we fix N = 1 and taking k large enough,
we get that for all x ∈ Ãk

(3)

ˆ

H\Bk

|f(x, y)| dµH(y) ≤
ε

4
.

Furthermore, since f is a continuous function on a compact set V ×Bk, it is uniformly
continuous. It follows that there exists an open neighbourhood Ux0

of x0 such that
for all y ∈ Bk and all x ∈ Ux0

we have

(4) |f(x, y)− f(x0, y)| ≤ ε/2µ(Bk).

Therefore, gathering (3) with (4), we get for x ∈ Ux0
⊂ Ak the following inequality

|g(x)− g(x0)| ≤

ˆ

H\Bk

|f(x, y)|+ |f(x0, y)| dµH(y) +

ˆ

Bk

|f(x, y)− f(x0, y)| dµH(y)

≤ 2ε/4 + µ(Bk) · ε/2µ(Bk) = ε,

which completes the proof of continuity of g.
Next, we will show that g ∈ A(G). By assumptions, for all n there exists Mn > 0

such that for all k ∥∥∥f
G×H\Ak×Bk

∥∥∥
L∞(G×H)

≤ 1
2
Mnk

−n.

Therefore, we obtain

(5) |f(x, y)| ≤ Mnk
−n for (x, y) ∈

(
G \ Ak

)
×H

and

(6) |f(x, y)| ≤ Mnk
−n for (x, y) ∈ G×

(
H \Bk

)
.

Reasoning just like in the proof of continuity of g, by inequality (6), we get that
for all n there exists a constant M ′

n such that for all k and all x ∈ G

(7)

ˆ

H\Bk

|f(x, y)| dµH(y) ≤ M ′
nk

−n.

Let us recall that by Lemma 4.1 there exists a constant n0 such that for all k

µ(Bk) ≤ kn0µ(B).

Therefore, gathering the above inequality with estimates (5) and (7), we obtain for
all x ∈ G \ Ak the following inequality

|g(x)| ≤

ˆ

H\Bk

|f(x, y)| dµH(y) +

ˆ

Bk

|f(x, y)| dµH(y) ≤ M ′
nk

−n + µ(B)kn0Mnk
−n

≤ (M ′
n + µ(B)Mn)k

n0−n.

From this, we obtain that g ∈ A(G) and the whole proof follows. �
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Next, we formulate and prove the properties of restrictions from the Bruhat–
Schwartz space S(G×H).

Theorem 4.2. Let G and H be LCA groups. If f ∈ S(G×H), then

(a) If ξ ∈ G∧ and g(y) := f̂y(ξ), then g ∈ S(H).
(b) For all y ∈ H and ξ ∈ G∧ the equality holds

f̂y(ξ) =

ˆ

H∧

η(y)f̂(ξ, η) dµ̂H(η).

(c) If y ∈ H , then fy ∈ S(G).

Proof. (a) Since each ξ ∈ G∧ is a bounded continuous function, it follows that
multiplication of f by such a function is still in A(G×H) ∩ C(G×H). Therefore,
by virtue of Theorem 4.1 we get that

g(y) = f̂y(ξ) =

ˆ

G

ξ(x)f(x, y) dµG(x) ∈ A(H) ∩ C(H).

Furthermore, from the definition of the Fourier transform we have

f̂(ξ, η) =

ˆ

G×H

ξ(x)η(y)f(x, y) dµG×H(x, y) =

ˆ

H

ˆ

G

ξ(x) · η(y)f(x, y) dµG(x) dµH(y)

=

ˆ

H

η(y)f̂y(ξ) dµH(y) =

ˆ

H

η(y)g(y) dµH(y) = ĝ(η).

Above equality means that ĝ is a restriction of f̂ to the dual group H∧. Hence, since
f̂ ∈ A(G∧ × H∧) ∩ C(G∧ × H∧), by Theorem 4.1 we conclude that ĝ ∈ A(H∧).
Therefore, g ∈ S(H) and this finishes the proof of (a).

(b) Let us note that the Fourier inversion formula is valid for functions from the
Bruhat–Schwartz class. Thus, for all y ∈ H we have

(8) f̂y(ξ) = g(y) =

ˆ

H∧

η(y)ĝ(η) dµ̂H(η) =

ˆ

H∧

η(y)f̂(ξ, η) dµ̂H(η).

(c) Since f ∈ A(G×H)∩C(G×H), from Theorem 4.1 we get fy ∈ A(G)∩C(G).
On the other hand, we have that the following function

u(ξ, η) := η(y)f̂(ξ, η)

belongs to A(G∧ × H∧) ∩ C(G∧ × H∧). Thus, application of Theorem 4.1 to (8)

yields f̂y ∈ A(G), which completes the proof of Theorem 4.2. �

5. Trace of Sobolev functions

In this section we prove the trace theorem on the product of groups. For the
classical trace theorem in the Euclidean space we refer to the paper of Gagliardo [13]
(see also [31, 41, 42]).

Our main result of this section is the following claim.

Theorem 5.1. Let G,H be LCA groups such that H∧ is metrizable with a

metric d̂ and equipped with an upper β-regular measure µ̂H . Suppose that γ : G∧ ×
H∧ → [0,+∞) and γ̃ : G∧ → [0,+∞) satisfy, the following relation:

∀ξ ∈ G∧, η ∈ H∧ γ(ξ, η) ≥ γ̃(ξ) + d̂(η, êH).

If s > β/2 and S(G×H) ⊂ Hs
γ(G×H), then there exists a linear operator

T : Hs
γ(G×H) → H

s−β/2
γ̃ (G)
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such that

1) ∀f ∈ S(G×H) ∀x ∈ G (Tf)(x) = f(x, eH).
2) ∀f ∈ Hs

γ(G×H) ‖Tf‖
H

s−β/2
γ̃ (G)

≤ C‖f‖Hs
γ(G×H).

Proof. Let us take f ∈ S(G×H) and define g ∈ S(G) as follows

∀x ∈ G g(x) = f(x, eH).

From point (b) of Theorem 4.2 we get the equality

ĝ(ξ) =

ˆ

H∧

f̂(ξ, η) dµ̂H(η).

Furthermore, it follows that

|ĝ(ξ)|2 =

∣∣∣∣
ˆ

H∧

f̂(ξ, η) dµ̂H(η)

∣∣∣∣
2

=

∣∣∣∣
ˆ

H∧

f̂(ξ, η)

(
1 + γ2(ξ, η)

)s/2
(
1 + γ2(ξ, η)

)s/2 dµ̂H(η)

∣∣∣∣
2

(9)

≤

ˆ

H∧

(
1 + γ2(ξ, η)

)s
|f̂(ξ, η)|2 dµ̂H(η) ·

ˆ

H∧

(1 + γ2(ξ, η))−s dµ̂H(η).

Now, we claim that there exists a constant C > 0 independent of ξ such that

(10)

ˆ

H∧

(
1 + γ2(ξ, η)

)−s
dµ̂H(η) ≤ C

(
1 + γ̃2(ξ)

)β/2−s
.

Indeed, using assumption on γ we have
ˆ

H∧

dµ̂H(η)(
1 + γ2(ξ, η)

)s ≤

ˆ

H∧

dµ̂H(η)(
1 + γ̃2(ξ) + d̂(êH , η)2

)s .

From Lemma 2.1 we get that for any r > 0 we have
ˆ

H∧\B(êH ,r)

dµ̂H(η)(
1 + d̂(êH , η)2

)s ≤ Crβ−2s.

We need to consider two cases.
1) When H∧ is not discrete, then taking r = 1 + γ̃(ξ) we get
ˆ

H∧

dµ̂H(η)(
1 + γ̃2(ξ) + d̂(êH , η)2

)s

=

ˆ

B(êH ,r)

dµ̂H(η)(
1 + γ̃2(ξ) + d̂(êH , η)2

)s +
ˆ

H∧\B(êH ,r)

dµ̂H(η)(
1 + γ̃2(ξ) + d̂(êH , η)2

)s

≤
1(

1 + γ̃2(ξ)
)s µ̂H(B(êH , r)) + Crβ−2s

≤ Dβ

(
1 + γ̃2(ξ)

)−s(
1 + γ̃(ξ)

)β
+ C

(
1 + γ̃(ξ)

)β−2s

≤ 2β/2Dβ

(
1 + γ̃2(ξ)

)−s(
1 + γ̃2(ξ)

)β/2
+ C2β/2−s

(
1 + γ̃2(ξ)

)β/2−s

=
(
2β/2Dβ + C2β/2−s

)(
1 + γ̃2(ξ)

)β/2−s
.

2) If H∧ is discrete, then we have two possibilities.

(i) If R0 ≤ r = 1 + γ̃(ξ), then we repeat the proof for not discrete groups.
(ii) If R0 ≥ r = 1 + γ̃(ξ), then from Definition 2.3 we have

ˆ

B(êH ,r)

dµ̂H(η)(
1 + γ̃2(ξ) + d̂(êH , η)2

)s =
1

(1 + γ̃2(ξ))s
.
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Therefore we can finish the proof of (10) exploring the methods from 1). This
finishes the proof of inequality (10).

Now, if we combine (9) and (10) we get

|ĝ(ξ)|2 ≤ C
(
1 + γ̃2(ξ)

)β/2−s
·

ˆ

H∧

(
1 + γ2(ξ, η)

)s
|f̂(ξ, η)|2 dµ̂H(η).

The process of multiplying the above inequality by (1 + γ̃2(ξ))s−β/2 and integrating
over G∧ leads us to the following inequality

‖g‖
H

s−β/2
γ̃ (G)

≤ C‖f‖Hs
γ(G×H).

This shows the continuity of the linear operator T : Hs
γ(G × H) ∩ S(G × H) →

H
s−β/2
γ̃ (G).

Finally, using Theorem 3.2 we get that S(G × H) is a dense subset of Hs
γ(G ×

H), thus by the usual limiting argument we can extend our operator to the whole
Hs

γ(G×H). This completes the proof of the theorem. �

It is well known that the trace operator T : Hs(Rn) → Hs−1/2(Rn−1) is surjective
(see e.g. [42, 31]). In the next subsection we shall prove that the trace operator is
surjective in the case of p-adic numbers. Nevertheless, it is not clear if the surjectivity
of the trace operator holds for the product of any two LCA groups. Even it is not
at all clear in the case of the torus Tn. Hence, it is natural to state the following
problem.

Open problem 1. Is T : Hs(Tn) → Hs−1/2(Tn−1) surjective?

5.1. Trace theorem on Qn

p
. In this section we shall study the Sobolev space

Hs(Qn
p ) on p-adic group Qn

p [33, 40]. Let us recall that

Hs(Qn
p ) =

{
u ∈ L2(Qn

p ) :

ˆ

Qn
p

(
1 + ‖ξ‖2p

)s
|û(ξ)|2 dξ < ∞

}
.

Remark 5.1. There are many equivalent norms on Hs(Qn
p ). We shall use the

following equivalent norms

‖u‖21,Qn
p
=

ˆ

Qn
p

max(1, ‖ξ‖p)
2s|û(ξ)|2 dξ

and

‖u‖22,Qn
p
=

ˆ

Q
n−1
p

ˆ

Qp

(
max(1, ‖ξ′‖p) + |ξn|p

)2s
|û(ξ)|2 dξn dξ

′.

Our goal is to show that the Trace operator T : Hs(Qn
p ) → Hs−1/2(Qn−1

p ) con-
structed in the previous section is surjective.

Theorem 5.2. Assume that n > 1 and s > 1/2. Then the Trace operator

T : Hs(Qn
p ) → Hs−1/2(Qn−1

p )

is surjective.

Proof. Let us denote

ω(ξ′) :=

{
1, if ‖ξ′‖p ≤ 1,

p−γ , if ‖ξ′‖p = pγ for some γ ≥ 0.

Then clearly
|ω(ξ′)|p = max(1, ‖ξ′‖p),
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and we can write the equivalent norm on Hs(Qp) in the following manner

‖u‖22,Qn
p
=

ˆ

Qn−1
p

ˆ

Qp

(|ω(ξ′)|p + |ξn|p)
2s|û(ξ)|2 dξn dξ

′.

Now, in order to prove that T is onto we take v ∈ Hs− 1

2 (Qn−1
p ) and define

ũ(ξ′, ξn) := v̂(ξ′)|ω(ξ′)|−1
p ϕ

(
ξn

ω(ξ′)

)
,

where ϕ ∈ S(Qp) is a characteristic function of a unit ball B(0, 1) in Qp.
We claim that ũ ∈ L2(Qn

p ). Indeed, by substituting ξn = tω(ξ′), with the Jaco-
bian |ω(ξ′)|p we have

ˆ

Qp

ϕ2

(
ξn

ω(ξ′)

)
dξn = |ω(ξ′)|p,

hence

|ũ‖2L2(Qn
p )

=

ˆ

Q
n−1
p

ˆ

Qp

|v̂(ξ′)|2|ω(ξ′)|−2
p ϕ2

(
ξn

ω(ξ′)

)
dξn dξ

′

=

ˆ

Q
n−1
p

|v̂(ξ′)|2

|ω(ξ′)|p
dξ′ ≤ ‖v̂‖L2(Qn−1

p ).

Therefore, there exists u ∈ L2(Qn
p ) such that û = ũ.

Now, we shall prove that u ∈ Hs(Qn
p ). Using the change of variable formula, we

have
ˆ

Qp

(|ω(ξ′)|p + |ξn|p)
2s|û(ξ′, ξn)|

2 dξn

=

ˆ

Qp

(|ω(ξ′)|p + |ξn|p)
2s|v̂(ξ′)|2|ω(ξ′)|−2

p ϕ2

(
ξn

ω(ξ′)

)
dξn

=

ˆ

Qp

(|ω(ξ′)|p + |tω(ξ′)|p)
2s|v̂(ξ′)|2|ω(ξ′)|−1

p ϕ2(t) dt

= |ω(ξ′)|2s−1
p |v̂(ξ′)|2p

ˆ

Qp

(1 + |t|p)
2sϕ2(t) dt ≤ 22s|ω(ξ′)|2s−1

p |v̂(ξ′)|2p.

From the above estimates, we get that

‖u‖22,Qn
p
≤ 22s

ˆ

Q
n−1
p

|ω(ξ′)|2s−1
p |v̂(ξ′)|2p dξ

′ = 22s‖v‖2
1,Qn−1

p
.

Since the last norm is equivalent to ‖v‖Hs−1/2(Qn−1
p ), we conclude that u ∈ Hs(Qn

p ).

Finally, we shall prove that Tu = v. Let us observe that6

(11)

ˆ

Qp

û(ξ′, ξn) dξn = v̂(ξ′).

Let fk ∈ S(Qn
p ) be such that fk → u in Hs(Qn

p ). This implies that Tfk → Tu in

Hs−1/2(Qn−1
p ) and in particular we have

T̂ fk → T̂ u in L2(Qn−1
p ).

6This follows from the identity
´

Qp

ϕ(t) dt = 1.
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We will prove that T̂ fk → v̂ in L2(Qn−1
p ) which will show that Tu = v. Since

fk ∈ S(Qn
p ), by Theorem 4.2 we get

T̂ fk(ξ
′) =

ˆ

Qp

f̂k(ξ
′, ξn) dξn.

The Schwarz inequality yields∣∣∣∣
ˆ

Qp

(
f̂k(ξ

′, ξn)− û(ξ′, ξn)
)
dξn

∣∣∣∣ ≤
ˆ

Qp

∣∣f̂k(ξ′, ξn)− û(ξ′, ξn)
∣∣dξn

≤

(
ˆ

Qp

dξn
(1 + |ξn|2p)

s

ˆ

Qp

(
1 + |ξn|

2
p

)s∣∣f̂k(ξ′, ξn)− û(ξ′, ξn)
∣∣2dξn

)1/2

.

Since s > 1/2 and Qp is 1-regular, we have that the integral

C :=

ˆ

Qp

dξn(
1 + |ξn|2p

)s

is finite. Hence, using (11) we get
ˆ

Q
n−1
p

∣∣T̂ fk(ξ′)− v̂(ξ′)
∣∣2 dξ′ =

ˆ

Q
n−1
p

∣∣∣∣
ˆ

Qp

(
f̂k(ξ

′, ξn)− û(ξ′, ξn)
)
dξn

∣∣∣∣
2

dξ′

≤

ˆ

Q
n−1
p

(
C

ˆ

Qp

(
1 + |ξn|

2
p

)s∣∣f̂k(ξ′, ξn)− û(ξ′, ξn)
∣∣2 dξn

)
dξ′

≤ C‖fk − u‖2Hs(Qn
p )
,

which completes the proof. �

6. Sobolev versus Aronszajn–Gagliardo–Slobodecki

In this section we deal with fractional Sobolev spaces on LCA grups equipped
with a β-regular Haar measure. We study their connections with Sobolev spaces.

Definition 6.1. Let G be an LCA group with a metric d and let s ∈ (0, 1).
We shall say that u ∈ L2(G) belongs to the fractional Sobolev space Hs,β(G) if the
following Slobodecki seminorm

[u]2s,β =

ˆ

G

ˆ

G

|u(x)− u(y)|2

d(x, y)β+2s
dµG(x) dµG(y)

is finite. Subsequently, we define the norm in the following way

‖u‖Hs,β
= ‖u‖L2(G) + [u]s,β.

It is an easy exercise from functional analysis to show that Hs,β(G) is a Ba-
nach space. On domains of Rn the above space has been introduced by Aron-
szajn, Gagliardo and Slobodecki (see [4, 14, 38]) and in the literature is also called
Aronszajn–Gagliardo–Slobodecki space. The definition of fractional Sobolev space
uses only the existence of a metric and a measure on LCA group. In order to get
some deeper results we will also require existence of a dual metric.

Theorem 6.1. Let G be a non-discrete LCA group such that d and d̂ are dual

metrics. We assume that d is an invariant metric and µ is an upper β-regular measure.

If s ∈ (0, 1) and γ = d̂, then

Hs
γ(G) →֒ Hs,β(G).
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Moreover, there exists C > 0 such that the following inequality holds

‖u‖Hs,β(G) ≤ C‖u‖Hs
γ(G)

for each u ∈ Hs
γ(G).

Proof. Let us take u ∈ Hs
γ(G). From the definition of a fractional Sobolev

seminorm we have

[u]2s,β =

ˆ

G

ˆ

G

|u(x)− u(y)|2

d(x, y)β+2s
dµG(x) dµG(y).

Since d is invariant and G abelian, by substituting z = x − y and by the Fubini
theorem, we get

[u]2s,β =

ˆ

G

ˆ

G

|u(z + y)− u(y)|2

d(z, e)β+2s
dµG(y) dµG(z).

We claim that

(12) [u]2s,β =

ˆ

G∧

|û(ξ)|2A(ξ)dµ̂G(ξ),

where

A(ξ) =

ˆ

G

|ξ(z)− 1|2

d(z, e)β+2s
dµG(z).

Indeed, by virtue of the Plancherel theorem we have

[u]2s,β =

ˆ

G

ˆ

G

∣∣∣∣
u(z + y)− u(y)

d(z, e)β/2+s

∣∣∣∣
2

dµG(y) dµG(z) =

ˆ

G

∥∥∥∥
u(z + ·)− u(·)

d(z, e)β/2+s

∥∥∥∥
2

L2(G)

dµG(z)

=

ˆ

G

∥∥∥∥F
(
u(z + ·)− u(·)

d(z, e)β/2+s

)∥∥∥∥
2

L2(G∧)

dµG(z) =

ˆ

G

∥∥∥∥
ξ(z)û(ξ)− û(ξ)

d(z, e)β/2+s

∥∥∥∥
2

L2(G∧)

dµG(z)

=

ˆ

G

ˆ

G∧

|ξ(z)− 1|2

d(z, e)β+2s
|û(ξ)|2 dµ̂G(ξ) dµG(z) =

ˆ

G∧

|û(ξ)|2A(ξ)dµ̂G(ξ).

Our next goal is to prove the existence of C such that

(13) A(ξ) ≤ Cd̂(ξ, ê)2s.

Let r > 0, then

A(ξ) =

ˆ

B(e, 1r )

|ξ(z)− 1|2

d(z, e)β+2s
dµG(z) +

ˆ

G\B(e, 1r )

|ξ(z)− 1|2

d(z, e)β+2s
dµG(z)

≤

ˆ

B(e, 1r)

d̂(ξ, ê)2d(z, e)2

d(z, e)β+2s
dµG(z) + 4

ˆ

G\B(e, 1r)

1

d(z, e)β+2s
dµG(z) = I1 + 4I2.
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Taking r = d̂(ξ, ê) and using β-regularity, we estimate I1 and I2 as follows:

I1 ≤ d̂(ξ, ê)2
∞∑

i=1

ˆ

B(e, 1

2ir
)\B(e, 1

2i+1r
)

d(z, e)2

d(z, e)β+2s
dµG(z)

≤ d̂(ξ, ê)2
∞∑

i=1

(
1

2ir

)2 (
2i+1r

)β+2s
Cβ

(
1

2ir

)β

= Cβ2
β+2sd̂(ξ, ê)2s

1

1− 2−2+2s
.

I2 ≤

∞∑

i=1

ˆ

B(e,2i+1r−1)\B(e,2ir−1)

1

d(z, e)β+2s
dµG(z) ≤

∞∑

i=1

Cβ

(
2i+1r−1

)β (
2ir−1

)−β−2s

= Cβ2
βd̂(ξ, ê)2s

1

1− 2−2s
.

This finishes the proof of (13). Hence, we conclude that

[u]2s,β ≤ C

ˆ

G∧

d̂(ξ, ê)2s|û(ξ)|2 dµ̂G(ξ).

Furthermore, since γ = d̂ we see that

[u]2s,β ≤ C

ˆ

G∧

γ(ξ)2s|û(ξ)|2 dµ̂G(ξ),

and this proves the theorem. �

6.1. Examples. In this subsection we provide examples of topological groups
for which Sobolev space and fractional Sobolev class coincide. We start with a very
natural example, namely with the cartesian product of the n-dimensional euclidean
space Rn with the m-dimensional torus Tm.

Theorem 6.2. Let G = Rn ×Tm, then for s ∈ (0, 1)

Hs,l(G) ≃ Hs
d̂
(G), 7

where l = n+m and d̂ is a canonical metric on the dual group G∧.

Remark 6.1. If it is well known (see [27, C Theorem]) that any abelian con-
nected Lie group G of dimension l has the following form

G = Rn ×Tm

for some n,m ≥ 0 such that n +m = l. Thus, from the above theorem follows that
Hs,l(G) ≃ Hs(G), where l = n+m.

Proof. If m = 0, then the theorem is well known in the literature (see e.g. [31]),
if n = 0, then Theorem 6.2 has been proved in [7].

Since for G = Rn × Tm the assumptions of Theorem 6.1 are satisfied, we have
Hs

γ(G) →֒ Hs,n+m(G). Hence, we need to show that there exists a positive constant C
depending only on dimensions n and m such that

(14) ‖u‖Hs(Rn×Tm) ≤ C‖u‖Hs,n+m(Rn×Tm).

Let us stress that the quantity A introduced in the proof of Theorem 6.1 has the
following form

A(ξ, k) =

ˆ

(−1,1]m

ˆ

Rn

sin2 π(ξx+ ky)

‖x‖2s+n+m + ‖y‖2s+n+m
dnx dmy,

where ξ ∈ Rn and k ∈ Zm .

7This equivalence means equality of sets and equivalence of corresponding norms.
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We shall show that there exists C̃ such that for (ξ, k) ∈ Rn × Zm \Rn × {0}

(15) A(ξ, k) ≥ C̃
(
‖ξ‖2s + ‖k‖2s

)
.

For this purpose we define the following quantity

M := max
(
max
1≤i≤n

|ξi|, max
1≤j≤m

|kj|
)
.

Now we can assume without loss of generality that ξ = (ξ1, . . . , ξn), k = (k1, . . . , km),
where ξi ≥ 0 for 1 ≤ i ≤ p and kj ≥ 0 for 1 ≤ j ≤ q, and other position of those
vectors are negative. Then we can estimate from below A(ξ, k) by

ˆ

· · ·

ˆ

D

sin2 π(ξx+ ky)

‖x‖2s+n+m + ‖y‖2s+n+m
dxn . . . dx1 dym . . . dy1,

where

D =

[
1

A
,
3

A

]q
×

[
−3

A
,
−1

A

]m−q

×

[
1

A
,
3

A

]p
×

[
−3

A
,
−1

A

]n−p

,

and A = 4M(m+ n).
On the set D we have

(16)
1

4(m+ n)
≤ ξx+ ky ≤

3

4
.

Indeed, let us write

ξx+ ky = (ξ1x1 + · · ·+ ξpxp + k1y1 + · · ·+ kqyq)

+ (ξp+1xp+1 + · · ·+ ξnxn + kq+1yq+1 + · · ·+ kmym)

and notice that all ingredients in the first bracket are non-negative since all ingredi-
ents of the sum are factors of two non-negative numbers, and all components of the
second bracket are non-negative since each product is a factor of negative numbers
by assumption of numeration of coordinates of ξ and k. It follows that from non-
negativity of each ingredient that ξx + ky is bounded from below by any ξixi and
kjyj for any i = 1, . . . , n and j = 1, . . . , m. From the choice of M there exists i or j
such that |ξi| = M or |kj| = M . It follows that ξi = M or ξi = −M or kj = M or
kj = −M , so

ξx+ ky ≥





Myj , if kj ≥ 0,

−Myj , if kj < 0,

Mxi, if ξi ≥ 0,

−Mxi, if ξi < 0.

Each term on the right side of this inequality we can estimate from below by
1/4(m+ n). To estimate ξx+ ky from above we observe that

ξx+ ky ≤ M(m+ n)
3

4M(m+ n)
=

3

4
.

Therefore, from (16) we get

sin2(π(ξx+ ky)) ≥ sin2 π

4(m+ n)
=: c0 > 0.

Hence, we can bound A as follows

A(ξ, k) ≥ c0

ˆ

. . .

ˆ

D

dxn . . . dx1 dym . . . dy1
‖x‖2s+n+m + ‖y‖2s+n+m

.
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Next, by changing variables M(n+m)xi = zi,M(n+m)yi = ti we get that the RHS
of the above inequality is equal to

c0(m+ n)2sM2s

ˆ

[ 14 ,
3

4 ]
m

ˆ

[ 14 ,
3

4 ]
n

dnz dmt

‖z‖2s+n+m + ‖t‖2s+n+m
= C1M

2s,

where

C1 = c0(m+ n)2s
ˆ

[ 14 ,
3

4 ]
m

ˆ

[ 14 ,
3

4 ]
n

dnz dmt

‖z‖2s+n+m + ‖t‖2s+n+m
.

Moreover, from the definition of M we have

M2s ≥
1

(ns +ms)
(‖ξ‖2s + ‖k‖2s).

Thus, inequality (15) follows with C̃ = C1

ns+ms .
Subsequently, we consider the case k = 0, ξ ∈ Rn. We have the following string

of inequalities

A(ξ, 0) ≥

ˆ

[−1,1]m

ˆ

‖x‖≤1

sin2(πξx)

‖x‖2s+n+m + ‖y‖2s+n+m
dnx dmy

=

ˆ

‖x‖≤1

ˆ

[−1,1]m

sin2(πξx)

‖x‖2s+n+m + ‖y‖2s+n+m
dmy dnx

≥

ˆ

‖x‖≤1

ˆ

‖y‖≤‖x‖

sin2(πξx)

‖x‖2s+n+m + ‖y‖2s+n+m
dmy dnx

≥

ˆ

‖x‖≤1

ˆ

‖y‖≤‖x‖

sin2(πξx)

‖x‖2s+n+m + ‖x‖2s+n+m
dmy dnx =

ωm

2

ˆ

‖x‖≤1

sin2(πξx)

‖x‖2s+n
dnx,

where by ωm we denoted the volume of unit ball in Rm. Thus we proved that

(17)
ωm

2

ˆ

‖x‖≤1

sin2(πξx)

‖x‖2s+n
dnx ≤ A(ξ, 0)

for ξ ∈ Rn.
Now, we are in position to prove inequality (14). We have

‖u‖2Hs =
∑

k∈Zm

ˆ

Rn

(
1 + ‖ξ‖2s + ‖k‖2s

)
|û(ξ, k)|2 dnξ

=
∑

k 6=0

ˆ

Rn

(
1 + ‖ξ‖2s + ‖k‖2s

)
|û(ξ, k)|2 dnξ

+

ˆ

Rn

(
1 + ‖ξ‖2s

)
|û(ξ, 0)|2 dnξ = J1 + J2.

From inequality (15) we get

J1 ≤ max(1, 1/C̃)
∑

k 6=0

ˆ

Rn

(1 + A(ξ, k))|û(ξ, k)|2 dnξ.

Furthermore, let us recall the identity (see [31, Equality (3.12)])
ˆ

Rn

sin2(πξx)

‖x‖2s+n
dnx = Cn,s‖ξ‖

2s,



A second look of Sobolev spaces on metrizable groups 115

where

Cn,s =
(2π)s

2

ˆ

Rn

1− cosx1

‖x‖n+2s
dx.

In this way, combining the above fact with inequality (17) we have

J2 ≤ ‖u‖L2(Rn×Tm) +

ˆ

Rn

‖ξ‖2s|û(ξ, 0)|2 dnξ

= ‖u‖L2(Rn×Tm) +
1

Cn,s

ˆ

Rn

ˆ

‖x‖≤1

sin2(πξx)

‖x‖2s+n
dnx|û(ξ, 0)|2 dnξ

+
1

Cn,s

ˆ

Rn

ˆ

‖x‖>1

sin2(πξx)

‖x‖2s+n
dnx|û(ξ, 0)|2 dnξ

≤ ‖u‖L2(Rn×Tm) +
2

Cn,sCm

ˆ

Rn

A(ξ, 0)|û(ξ, 0)|2 dnξ +
C2

Cn,s

ˆ

Rn

|û(ξ, 0)|2 dnξ,

where

C2 =

ˆ

‖x‖>1

1

‖x‖2s+n
dnx.

Hence, we obtain

J2 ≤ max

(
2

Cn,sCm
, 1 +

C2

Cn,s

)(
ˆ

Rn

A(ξ, 0)|û(ξ, 0)|2 dnξ + ‖u‖2L2(Rn×Tm)

)
.

Combining estimates for J1 and J2 we get

‖u‖2Hs ≤

(
max

(
1,

1

C̃

)
+max

(
2

Cn,sCm

, 1 +
C2

Cn,s

))

·

( ∑

k∈Zm

ˆ

Rn

A(ξ, k))|û(ξ, k)|2 dnξ + ‖u‖2L2(Rn×Tm)

)
.

Therefore, taking into account identity (12) from the proof of Theorem 6.1, we get
inequality (14) and this finishes the proof of the theorem. �

Next, we consider a little more exotic example. Namely, we shall prove the
equivalence of fractional Sobolev and Sobolev spaces on Qn

p .

Theorem 6.3. Let s ∈ (0, 1), then

Hs,n(Q
n
p ) ≃ Hs(Qn

p ).

Proof. Since the Haar measure on Qn
p is n-regular, from Theorem 6.1 we have

Hs(Qn
p ) →֒ Hs,n(Q

n
p ). Thus we need to prove the opposite embedding. But let us

see that it is enough to show the existence of a constant C = C(n, p, s) such that for
all ξ ∈ Qn

p

(18) A(ξ) ≥ C‖ξ‖2sp ,

where

A(ξ) =

ˆ

Qn
p

|ξ(x)− 1|2

‖x‖2s+n
p

dx, ξ ∈ Qn
p .

Let us fix ξ ∈ Qn
p . If ξ = 0, then inequality (18) is satisfied. Thus, we assume that

|ξ1|p = ‖ξ‖p. Note that simple algebraic operations give

|ξ(x)− 1|2 = 4 sin2(π{ξ · x}p),
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where {·}p is a p-adic fractional part. Subsequently, we define the following set

D =
{
x ∈ Qn

p : |ξ1x1|p = p
}
∩
{
x ∈ Qn

p : |x1|p > |x2|p = max
2≤i≤n

|xi|p
}
.

For x ∈ D we have

|ξ2x2 + · · ·+ ξnxn|p ≤ max
2≤i≤n

|ξixi|p ≤ |ξ1|p|x2|p < |ξ1|p|x1|p = p.

Thus
|ξ · x|p = |ξ1x1|p = p.

Hence, for x ∈ D we have

p−1 ≤ {ξ · x}p ≤ 1− p−1,

and
sin2(π{ξ · x}p) ≥ sin2(πp−1) = sin2(π|ξ1x1|

−1
p ).

It follows that

A(ξ) ≥

ˆ

D

4 sin2(π|ξ1x1|
−1
p )

‖x‖2s+n
p

dnx.

Next, exploring the change of variables formula with z1 = ξ1x1, z2 = ξ1x2, . . . , zn =
ξ1xn and jacobian |ξ1|

−n
p we get

ˆ

D

4 sin2(π|ξ1x1|
−1
p )

‖x‖2s+n
p

dnx =

ˆ

D′

1

|ξ1|np
·
4 sin2(π|z1|

−1
p )

∥∥∥ z
ξ1

∥∥∥
2s+n

p

dnz

=

ˆ

D′

|ξ1|
2s+n
p

|ξ1|np
·
4 sin2(π|z1|

−1
p )

‖z‖2s+n
p

dnz

= ‖ξ‖2sp

ˆ

D′

4 sin2(π|z1|
−1
p )

‖z‖2s+n
p

dnz,

where

D′ =
{
z ∈ Qn

p : |z1|p = p
}
∩
{
z ∈ Qn

p : |z1|p > |z2|p = max
2≤i≤n

|zi|p
}
.

Furthermore, by the elementary inequalities

|z1|
−1
p = p−1 ≤

1

2
, sin x ≥

2

π
x for x ∈

(
0,

π

2

)
,

we get
ˆ

D′

4 sin2(π|z1|
−1
p )

‖z‖2s+n
p

dnz ≥ 16

ˆ

D′

|z1|
−2
p

‖z‖2s+n
p

dnz = 16I.

Denoting
S1
k = {z ∈ Qp : |z|p = pk},

we get
S1
1 × S1

0 × · · · × S1
0 ⊂ D′.

Since |z1|p = ‖z‖p, by the Fubini theorem we get

I =

ˆ

D′

dnz

‖z‖2s+n+2
p

=
1

p2s+n+2

ˆ

D′

dnz

≥
1

p2s+n+2

ˆ

S1
1
×S1

0
×···×S1

0

dnz =
1

p2s+n+2

ˆ

S1
1

dz1

(
ˆ

S1
0

dz

)n−1

.
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Finally, the fact that µ(S1
k) = pk − pk−1 leads us to the inequality

I ≥
1

p2s+n+2
(p− 1)

(
p0 − p−1

)n−1
=

(p− 1)n

p2s+2n+1
.

This finishes the proof of (18) and the theorem follows. �

7. Appendix

Let Q be the set of all rational numbers and let p ∈ N be any prime number.
We define p-adic additive valuation vp in the following way:

(i) If x ∈ Z, then vp(x) is equal to the highest power of p which divides x.
(ii) If x = a/b, where a, b ∈ Z, then vp(x) = vp(a)− vp(b).
(iii) We set vp(0) = +∞.

Next we define a map | · |p : Q → R+

|x|p :=

{
p−vp(x), if x 6= 0,

0, if x = 0.

This map is a non-Archimedean norm8 on Q. We define the field of p-adic numbers
Qp as the completion of the field of rational numbers Q in p-adic norm (for details
of this construction see [3, 34]). The p-adic norm | · |p extends to the norm on the
whole Qp. The set of values which this norm takes is discrete and equal to

{pn : n ∈ Z} ∪ {0}.

The set Qp together with p-adic addition and topology induced by p-adic norm is a
locally compact abelian group. We choose a unique Haar measure on Qp satisfying
the condition

ˆ

Zp

dx = 1,

where Zp := B1 = {x ∈ Qp : |x|p ≤ 1} is the set of p-adic integers. Denoting by µ
the Haar measure on Qp we have

µ (Bn) = pn,

where Bn = {x ∈ Qp : |x|p ≤ pn}. Measures of spheres Sn = {x ∈ Qp : |x|p = pn} are
given by the formula

µ(Sn) = pn(1− 1/p).

The dual group of Qp is Qp and each character ξ ∈ Qp has the following form

ξ(x) = exp(2πi{ξx}p),

where {·}p is p-adic fractional part i.e. each p-adic number x ∈ Qp can be written in
the following form (see [3])

(19) x =
∞∑

n=vp(x)

cnp
n,

8Let F be a field. A norm on F is a map ‖ · ‖ : F → R+ such that for all x, y ∈ F we have
(1) ‖x‖ = 0 ⇔ x = 0; (2) ‖xy‖ = ‖x‖ ‖y‖; (3) ‖x+y‖ ≤ ‖x‖+‖y‖. A norm is called non-Archimedean
if it satisfies the additional condition (3′) ‖x+ y‖ ≤ max{‖x‖, ‖y‖}.
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with cvp(x) 6= 0 and cn ∈ {0, 1, 2, . . . , p − 1}. If x has the form (19), then its p-adic
fractional part is

{x}p =

{∑−1
n=vp(x)

cnp
n, if vp(x) < 0,

0, if vp(x) ≥ 0.

One can easily check that if vp(x) < 0, then

pvp(x) ≤ {x}p ≤ 1− pvp(x).

We define Qn
p as a product of n copies of Qp with the product topology and

component-wise operations. Norm on this group is given by

‖x‖p = max
i=1,2,...,n

|xi|p.

The Haar measure on Qn
p is the product of Haar measures on Qp. Balls Bn

k (a) =

{x ∈ Qn
p : ‖x− a‖p ≤ pk} are product of balls Bk(ai) in Qp i.e.

Bn
k (a) = Bk(a1)× · · · × Bk(an),

where Bk(ai) = {x ∈ Qp : |x− ai|p ≤ pk}.
For x, y ∈ Qn

p we define x · y = x1y1 + · · ·+ xnyn, and every character on Qn
p is

of the form

ξ(x) = exp(i2π{ξ · x}p).

Finally, we recall the change of variables formula.

Theorem 7.1. [3] If x is an analytic diffeomorphism of a clopen set K1 ⊂ Qn
p

onto K ⊂ Qn
p , and

det

(
∂x(y)

∂y

)
= det

(
∂xk(y)

∂yj

)
6= 0, y ∈ K1,

then for any f ∈ L1(K) we have
ˆ

K

f(x) dnx =

ˆ

K1

f
(
x(y)

)∣∣∣∣det
(
∂x(y)

∂y

)∣∣∣∣
p

dny.
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