Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 45, 2020, 1187–1207

WEAK ESTIMATES FOR THE MAXIMAL AND RIESZ POTENTIAL OPERATORS ON NON-HOMOGENEOUS CENTRAL MORREY TYPE SPACES IN L1 OVER METRIC MEASURE SPACES

Katsuo Matsuoka, Yoshihiro Mizuta and Tetsu Shimomura

Nihon University, College of Economics
1-3-2 Misaki-cho Kanda Chiyoda-ku Tokyo 101-8360, Japan; katsu.m 'at' nihon-u.ac.jp

Hiroshima University, Graduate School of Science, Department of Mathematics
Higashi-Hiroshima 739-8521, Japan; yomizuta 'at' hiroshima-u.ac.jp

Hiroshima University, Graduate School of Education, Department of Mathematics
Higashi-Hiroshima 739-8524, Japan; tshimo 'at' hiroshima-u.ac.jp

Abstract. In a metric measure space (X,d,μ), our first aim in this paper is to discuss the weak estimates for the maximal and Riesz potential operators in the non-homogeneous central Morrey type space M1,q,a(X) (about x0X) of all measurable functions f on X satisfying

\[ \|f\|_{M^{1,q,a}(X)} = \left( \int_1^{\infty} \left( r^{-a} \|f\|_{L^{1}(B(x_0,r))} \right)^q \frac{dr}{r} \right)^{1/q} < \infty \]

for a ≥ 0 and 0 < q < ∞; when q = ∞, we apply a necessary modification. To do this, we consider the family WMφ,q,a(X) of all measurable functions fLloc1(X) such that

\[ \|f \|_{WM^{\varphi,q,a}(X)} =\sup_{\lambda > 0} \lambda \left( \int_1^\infty \left(r^{-a} \varphi^{-1} \left( \int_{B(x_0,r)} \chi_{E_f(\lambda)}(x) \, d\mu(x) \right) \right)^{q} \frac{dr}{r} \right)^{1/q} < \infty, \]

where φ is a general function satisfying certain conditions and χEf(λ) denotes the characteristic function of Ef(λ) = {x &isin X : |f(x)| > λ}. In connection with M1,q,a(X), we treat the complementary space N∞,q,a(X) of all measurable functions f on X satisfying

\[ \|f\|_{N^{\infty,q,a}(X)} = \|f\|_{L^{\infty}(B(x_0,2))}+ \left( \int_1^{\infty} \left( r^{a} \|f\|_{L^{1}(X\setminus B(x_0,r))} \right)^q \frac{dr}{r} \right)^{1/q} < \infty \]

2010 Mathematics Subject Classification: Primary 31B15, 46E35.

Key words: Non-homogeneous central Morrey type space, metric measure space, maximal function, Riesz potentials, Sobolev's inequality, duality.

Reference to this article: K. Matsuoka, Y. Mizuta and T. Shimomura: Weak estimates for the maximal and Riesz potential operators on non-homogeneous central Morrey type spaces in L1 over metric measure spaces. Ann. Acad. Sci. Fenn. Math. 45 (2020), 1187–1207.

Full document as PDF file

https://doi.org/10.5186/aasfm.2020.4561

Copyright © 2020 by Academia Scientiarum Fennica