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Abstract. In this paper, we study the following nonlinear problem of Kirchhoff type

(0.1) −
(

a+ b

ˆ

Ωr,ρ

|∇u|2
)

∆u+ u = |u|p−1u, u > 0, x ∈ Ωr,ρ, u ∈ H1

0 (Ωr,ρ),

where Ωr,ρ is a half space with a hole which is related to r, ρ in R
3, a, b > 0 are constants and

3 < p < 5. We prove that problem (0.1) has a positive high energy solution by using a linking

argument with barycenter map restricted on a Nehari manifold.

1. Introduction

Let R
3
+ = {(x1, x2, x3) ∈ R

3 | x3 > 0} be the upper half space. We consider the
following nonlinear problem of Kirchhoff type:

(1.1) −
(

a+ b

ˆ

Ωr,ρ

|∇u|2
)

∆u+ u = |u|p−1u, u > 0, x ∈ Ωr,ρ, u ∈ H1
0 (Ωr,ρ),

where a, b > 0 are constants, 3 < p < 5, r > 0, Ωr,ρ is an unbounded smooth domain
such that

Ωr,ρ ⊂ R
3
+,

and its complement
Ωr,ρ

c ⊂ Bρ(ar) and Ωr,ρ
c ⊂ R

3
+,

where Bρ(ar) is the open ball in the Euclidean space with center ar = (a, r) 6∈ Ωr,ρ

and radius ρ > 0. Indeed, Ωr,ρ is a half space with a hole.
Problem (1.1) has two features. Firstly, we consider the following elliptic problem

(1.2) −∆u + u = |u|p−1u, x ∈ Ω, u ∈ H1
0 (Ω),

where 1 < p < 5. When Ω is a bounded domain, by applying the compactness of
the embedding H1

0 (Ω) →֒ Lp(Ω), 1 < p < 6, there is a positive solution of (1.2). If
Ω is an unbounded domain, we can not obtain a solution for problem (1.2) by using
Mountain Pass Theorem directly because the embedding H1

0 (Ω) →֒ Lp(Ω), 1 < p < 6
is not compact. However, if Ω = R

3, Berestycki–Lions [3] proved that there is a radial
positive solution of equation (1.2) by applying the compactness of the embedding
H1

r (R
3) →֒ Lp(R3), 2 < p < 6, where H1

r (R
3) consists of the radially symmetric

functions in H1(R3). By the Lions’s Concentration-Compactness Principle [13], there

https://doi.org/10.5186/aasfm.2019.4462
2010 Mathematics Subject Classification: Primary 58J05, 35J60.
Key words: Kirchhoff type equations, Nehari manifold, positive high energy solution, half

space with a hole.



1176 Haiyang He and Xing Yi

exists an unique positive solution for problem (1.2) in R
3. By the moving plane

method, Gidas–Ni–Nirenberg [5] also proved that every positive solution of equation

(1.3) −∆u + u = |u|p−1u, x ∈ R
3, u ∈ H1(R3)

is radially symmetric with respect to some point in R
3 satisfying

(1.4) u(r)rer = γ + o(1) as r → ∞.

Kwong [9] proved that the positive solution of (1.3) is unique up to translations.
From the above researches, we believed that the existence of the solution to the

equation (1.2) will be affected by the topological property of the domain Ω. In fact,
Esteban and Lions [4] proved that there is no any nontrivial solution of equation (1.2)
when Ω is an Esteban–Lions domain (for example R

3
+). Thus, we want to change the

topological property of the domain Ω to look for a solution of problem (1.2). Wang
[15] proved that if ρ is sufficiently small and z0N → ∞, then equation (1.2) admits a
positive higher energy solution in half space with a hole. Such a problem has been
extensively studied in recent years, see for instance, [2, 12] and references therein.

Secondly, we consider the following Kirchhoff problem

(1.5) −
(

a+ b

ˆ

Ω

|∇u|2
)

∆u+ u = |u|p−1u, x ∈ Ω, u ∈ H1
0 (Ω),

which is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−
(

P0

h
+

E

2L

ˆ L

0

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dx

)

∂2u

∂t2
= 0

presented by Kirchhoff in [8].
When Ω = R

3, Li and Ye [11] proved that

(1.6) −
(

a+ b

ˆ

R3

|∇u|2
)

∆u+ u = |u|p−1u, x ∈ R
3, u ∈ H1(R3),

has a positive ground state solution by using a monotonicity trick and a new version
of global compactness lemma. There are many works about the existence of nontrivial
solutions to (1.6) by using variational methods, see [6, 7, 14, 17, 18] etc. Li–Peng–
Xiang [10] proved that every positive solution of (1.6) is unique up to translations.
Indeed, they obtained that the positive solutions of problem (1.6) will be expressed
as

u(x) = Q

(

x− t√
c

)

, x ∈ R
3

for some t ∈ R
3, where Q(x) ∈ H1(R3) is the unique positive radial function of

problem (1.3), and c > 0 satisfies

√
c =

1

2

(

b‖∇Q‖22 +
√

b2‖∇Q‖42 + 4a

)

,

which implies that

M =

{

Q

(

2(x− t)

b‖∇Q‖22 +
√

b2‖∇Q‖42 + 4a

)

∣

∣

∣

∣

x, t ∈ R
3

}
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consists of all the positive solutions of equation (1.6). Therefore, by the similar
method of [10], we get that the following problem

(1.7) −
(

a+ b

ˆ

R3
+

|∇u|2
)

∆u+ u = |u|p−1u, x ∈ R
3
+, u ∈ H1

0 (R
3
+),

has no any nontrivial solution. In fact, if there exists a solution ũ of problem (1.7),
it implies that Equation (1.2) will also have a solution

Q̃(x) = ũ(x
√
c) and c = a + b

ˆ

R3
+

|∇ũ|2 dx

in R
3
+. However, by Esteban–Lions’ conclusion, we know that R

3
+ is an Esteban–

Lions domain and there is no nontrivial solution of problem (1.2). Thus we get a
contradiction and it is interesting to consider the existence of the high energy equation
for the problem (1.1) in the half space with a hole in R

3.

Theorem 1.1. There is ρ0 > 0, r0 > 0 such that if 0 < ρ ≤ ρ0 and r ≥ r0, then
there is a positive solution of equation (1.1).

From the fact that the ratio
´

Ωr,ρ
a|∇u|2 + u2 dx+ b

(

´

Ωr,ρ
|∇u|2 dx

)2

(

´

Ωr,ρ
|u|p+1 dx

)
2

p+1

is not invariant under scaling, so we can’t deal with it in the set
{

u ∈ H1
0 (Ωr,ρ)\{0}

∣

∣

∣

∣

ˆ

Ωr,ρ

|u|p+1 dx = 1

}

by the similar argument in [2, 15]. In this paper, we try to consider it in the Nehari
manifold

Mr,ρ=







u ∈ H1
0 (Ωr,ρ)\{0}

∣

∣

∣

∣

ˆ

Ωr,ρ

a|∇u|2 + u2 dx+ b

(

ˆ

Ωr,ρ

|∇u|2 dx
)2

=

ˆ

Ωr,ρ

|u|p+1 dx







.

The paper is organized as follows. In Section 2, we give some preliminary results.
The compactness lemma will be given in Section 3. At last, we give the proof of
Theorem 1.1.

2. Some preliminary results

It is well known that the solutions for equation (1.1) are the critical points of the
energy function IΩr,ρ

: H1
0 (Ωr,ρ) → R defined as

(2.1) IΩr,ρ
(u) =

1

2

ˆ

Ωr,ρ

(a|∇u|2+u2) dx+
b

4

(

ˆ

Ωr,ρ

|∇u|2 dx
)2

− 1

p+ 1

ˆ

Ωr,ρ

|u|p+1 dx.

In order to obtain the existence of solution for equation (1.1), we must consider
the equation (1.6). Now, we denote the energy function I : H1(R3) → R associated
to (1.6) as

(2.2) I(u) =
1

2

ˆ

R3

(a|∇u|2 + u2) dx+
b

4

(
ˆ

R3

|∇u|2 dx
)2

− 1

p+ 1

ˆ

R3

|u|p+1 dx,
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and we introduce an equivalent norm on H1(R3): the norm of u ∈ H1(R3) is defined
as

‖u‖ =

(
ˆ

R3

(a|∇u|2 + u2) dx

)
1
2

.

Consider the set of solutions to equation (1.6)

(2.3) m = inf{I(v) : v ∈ H1(R3) is a nontrival solution to (1.6)}.

A nontrivial solution u to equation (1.6) is called a ground state solution if

I(u) = m.

First, we recall some known facts from Li, Peng and Xiang [10].

Lemma 2.1. Let a, b > 0 be positive constants and 1 < p < 5 . Let m be the
ground state energy defined as in (2.3). Then, there exists a ground state of (1.6)
which is positive, and there holds

m > 0.

Moreover, for any positive solution u, there hold

(1) (smoothness) u ∈ C∞(R3);
(2) (symmetry) there exists a decreasing function v : [0,∞) → (0,∞) such that

u(x) = v(|x− x0|) for a point x0 ∈ R
3;

(3) (asymptotics) for any multi-index α ∈ N
n, there exist constants δα > 0 and

Cα such that

(2.4) |Dαu(x)| ≤ Cαe
−δα|x| for all x ∈ R

3.

Lemma 2.2. Let a, b > 0 be positive constants and 1 < p < 5. Then, the
positive solutions of equation (1.6) are unique up to translations [10].

Now, we define the following Nehari manifolds

Mr,ρ =

{

u ∈ H1
0 (Ωr,ρ)\{0}

∣

∣

∣

∣

(2.5)

ˆ

Ωr,ρ

a|∇u|2 + u2 dx+ b

(

ˆ

Ωr,ρ

|∇u|2 dx
)2

=

ˆ

Ωr,ρ

|u|p+1 dx

}

,

M =

{

u ∈ H1(R3)\{0}
∣

∣

∣

∣

(2.6)

ˆ

R3

a|∇u|2 + u2 dx+ b

(
ˆ

R3

|∇u|2 dx
)2

=

ˆ

R3

|u|p+1 dx

}

,

and

mR3 = inf
u∈M

I(u), mΩr,ρ
= inf

u∈Mr,ρ

IΩr,ρ
(u).

Lemma 2.3. (i) Each critical point of I in M is a critical point of I in
H1(R3) and

mR3 = m.

(ii) Each critical point of IΩr,ρ
in Mr,ρ is a critical point of IΩr,ρ

in H1
0 (Ωr,ρ).
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Proof. (i) Suppose that u is a critical point of I|M , i.e. 〈I ′(u), u〉 = 0, u ∈ M ,
then there is a Lagrange multiplier λ ∈ R such that 〈I ′(u), ϕ〉−λ〈g′(u), ϕ〉 = 0, ϕ ∈
H1(R3), where g(u) =

´

R3 a|∇u|2 + u2 dx+ b(
´

R3 |∇u|2 dx)2 −
´

R3 |u|p+1 dx and

〈g′(u), u〉 = 2

ˆ

R3

a|∇u|2 + u2 dx+ 4b

(
ˆ

R3

|∇u|2 dx
)2

− (p+ 1)

ˆ

R3

|u|p+1 dx

= (1− p)

ˆ

R3

a|∇u|2 + u2 dx+ (3− p)b

(
ˆ

R3

|∇u|2 dx
)2

.

Since 〈g′(u), u〉 6= 0, we get λ = 0. Thus 〈I ′(u), ϕ〉 = 0, ∀ϕ ∈ H1(R3) and u is a
critical point of I in H1(R3). Moreover, u is also a nontrivial solution to equation
(1.6). Then mR3 ≥ m. On the other hand, we can get mR3 ≤ m. Indeed, if v is a
ground state solution to equation (1.6), it holds v ∈ M .

(ii) By the similar method, we can prove that each critical point of IΩr,ρ
|Mr,ρ

is a
critical point of IΩr,ρ

in H1
0 (Ωr,ρ). �

Take

(2.7) ξ ∈ C∞(R+,R), η ∈ C∞(R,R),

such that

ξ(t) =

{

0, 0 ≤ t ≤ ρ,

1, t ≥ 2ρ,
η(t) =

{

0, t ≤ 0,

1, t ≥ 1,

and 0 ≤ ζ ≤ 1, 0 ≤ η ≤ 1.
Now, we define

fy(x) = ξ(|x− ar|)η(x3)u(x− y),

and

fy,t(x) = tξ(|x− ar|)η(x3)u(x− y),

where u(x) is a solution of problem (1.6).

Lemma 2.4. Let y = (y
′
, y3) , where y

′
= (y1, y2), then we have

(1) ‖fy − u(x− y)‖Lp(R3) = o(1), |y− ar| → ∞, and y3 → +∞, or y3 → +∞ and
ρ → 0;

(2) ‖fy−u(x−y)‖ = o(1), |y−ar| → ∞, and y3 → +∞, or y3 → +∞ and ρ → 0.

Proof. By Lemma 2.1, and similarly as Lemma 4 of [2], we have

‖fy − u(x− y)‖p
Lp(R3) =

ˆ

Ωr,ρ

|ξ(|x− ar|)η(x3)− 1|p|u(x− y)|p dx

≤ 2p
ˆ

B2ρ(ar)∪{x3≤1}

|u(x− y)|p dx

≤ 2p
ˆ

B2ρ(ar)

|u(x− y)|p dx+ 2p
ˆ

{x3≤1}

|u(x− y)|p dx,

and
ˆ

B2ρ(ar)

|u(x− y)|p dx ≤ |B2ρ(ar)|max
x∈R3

u(x) → 0 as ρ → 0,

ˆ

B2ρ(ar)

|u(x− y)|p dx ≤ |B2ρ(ar)| max
x∈B2ρ(ar)

Cαe
−δα|x−y| → 0 as |y − ar| → ∞,
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ˆ

{x3≤1}

|u(x− y)|p dx =

ˆ

{x3≤1}

|u(x− y)|p dx ≤
ˆ

{x3≤1}

|u(x− y)|p dx

≤
ˆ

{x3≤1}

(

Cαe
−δα

|x−y|
2

)p (

Cαe
−δα

|x−y|
2

)p

dx

=

ˆ

{x3≤1}

(

Cαe
−δα

|x−y|
2

)p
(

Cαe
−δα

((x′−y′)2+(x3−y3)
2)

1
2

2

)p

dx

≤
ˆ

{x3≤1}

(

Cαe
−δα

|x−y|
2

)p
(

Cαe
−δα

((y3−1)2)
1
2

2

)p

dx

=

(

Cαe
−δα

((y3−1)2)
1
2

2

)p ˆ

{x3≤1}

(

Cαe
−δα

|x−y|
2

)p

dx

→ 0 as y3 → +∞.

So ‖fy − u(x − y)‖Lp(R3) = o(1), |y − ar| → ∞, and y3 → +∞, or y3 → +∞ and
ρ → 0.

(2) In the same manner we can see that, we have

‖fy − u(x− y)‖ = ‖(ξ(|x− ar|)η(x3)− 1)u(x− y)‖2

≤ c

ρ

ˆ

B2ρ(ar)∪{x3≤1}

|∇u(x− y)|2 + |u(x− y)|2 dx = o(1),

|y − ar| → ∞, and y3 → +∞, or y3 → +∞ and ρ → 0. �

Now, we will prove that for any y ∈ R
3, there exists ty ∈ R

+ such that

fy,ty ∈ Mr,ρ,

and
ty → 1, as |y − ar| → ∞, and y3 → +∞.

Lemma 2.5. Let u(x− y), fy and fy,t be definition as above, then ∃ty ∈ R
+ s.t.

fy,ty ∈ Mr,ρ and ty → 1 as |y − ar| → ∞ and y3 → +∞.

Proof. Firstly, we prove that there exists ty ∈ R
+ s.t. fy,ty ∈ Mr,ρ. Indeed, let

g(fy,t) : = 〈I ′Ωr,ρ
(fy,ty), fy,ty〉 = 〈I ′Ωr,ρ

(tfy), tfy〉

= t2
ˆ

Ωr,ρ

a|∇fy|2 + f 2
y dx+ bt4

(

ˆ

Ωr,ρ

|∇fy|2 dx
)2

− tp+1

ˆ

Ωr,ρ

|fy|p+1 dx,

then we have g(fy,t) → −∞ as t → +∞ if 3 < p < 5. It is easy to prove that there
exists δ > 0, ∀0 < t < δ, s.t. g(fy,t) > 0, and ∃ty ∈ R

+ s.t. fy,ty ∈ Mr,ρ.
Next we prove that ty is unique. We suppose that there are two points 0 < t1y < t2y,

s.t. g(fy,t1y) = g(fy,t2y) = 0, then

(tiy)
2

ˆ

Ωr,ρ

a|∇fy|2 + f 2
y dx+ b(tiy)

4

(

ˆ

Ωr,ρ

|∇fy|2 dx
)2

− (tiy)
p+1

ˆ

Ωr,ρ

|fy|p+1 dx,

i = 1, 2, and

0 <

(

1

(t1y)
2
− 1

(t2y)
2

)
ˆ

Ωr,ρ

a|∇fy|2 + f 2
y dx = [(t1y)

p−3 − (t2y)
p−3]

ˆ

Ωr,ρ

|fy|p+1 dx < 0,

which is a contradiction.
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Secondly, we will prove ty → 1 as |y−ar| → ∞ and y3 → +∞. Since u(x−y) ∈ M
and fy,ty ∈ Mr,ρ, we get

〈I ′(u(x− y)), u(x− y)〉 =
ˆ

R3

a|∇u(x− y)|2 + u(x− y)2 dx(2.8)

+ b

(
ˆ

R3

|∇u(x− y)|2 dx
)2

−
ˆ

R3

|u(x− y)|p+1 dx = 0,

〈I ′Ωr,ρ
(fy,ty), fy,ty)〉 = t2y

ˆ

Ωr,ρ

a|∇fy|2 + (fy)
2 dx+ bt4y

(

ˆ

Ωr,ρ

|∇fy|2 dx
)2

(2.9)

− tp+1
y

ˆ

Ωr,ρ

|fy|p+1 dx = 0.

From fy,ty ∈ Mr,ρ and
´

R3 |fy|p+1 dx 6= 0, we obtain ty 9 +∞ and there exists a
constant C > 0 such that ty → C. Thus

C2

ˆ

Ωr,ρ

a|∇fy|2 dx+ (fy)
2 dx+ bC4

(

ˆ

Ωr,ρ

|∇fy|2 dx
)2

− Cp+1

ˆ

Ωr,ρ

|fy|p+1 dx

= o(1),

(2.10)

and
ˆ

R3

a|∇u(x− y)|2 + (u(x− y))2 dx+ b

(
ˆ

R3

|∇u(x− y)|2 dx
)2

−
ˆ

R3

|u(x− y)|p+1 dx = 0.

(2.11)

By (2.10), it holds

(2.12)

ˆ

Ωr,ρ

a|∇fy|2+(fy)
2 dx+bC2

(

ˆ

Ωr,ρ

|∇fy|2 dx
)2

−Cp−1

ˆ

Ωr,ρ

|fy|p−1 dx = o(1).

By (2.11), (2.12) and Lemma 2.4, there hold

(2.13) (1− C2)b

(
ˆ

R3

|∇u(x− y)|2 dx
)2

= (1− Cp−1)

ˆ

R3

|u(x− y)|p+1 dx,

and

(2.14) b

(
ˆ

R3

|∇u(x− y)|2 dx
)2

=

ˆ

R3

|u(x− y)|p+1 dx− ‖u(x− y)‖2.

Then we have

(C2 − 1)‖u(x− y)‖ = (C2 − Cp−1)

ˆ

R3

|u(x− y)|p+1 dx+ o(1)

≤ A(C2 − Cp−1)‖u(x− y)‖p+1,

which implies that

(2.15) (C2 − 1) ≤ A(C2 − Cp−1)‖u(x− y)‖p−1.

By (2.15) and 3 < p < 5, we get

C ≤ 1.
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If C < 1, from (2.10) and Lemma 2.4, it holds

C2

ˆ

R3

a|∇u(x− y)|2 dx+ bC4

(
ˆ

R3

|∇u(x− y)|2 dx
)2

− Cp+1

ˆ

R3

u(x− y)p+1 dx = 0.

(2.16)

By (2.6) and (2.16), we have

(2.17) (C2−Cp+1)

ˆ

R3

a|∇u(x−y)|2 dx+b(C4−Cp+1)

(
ˆ

R3

|∇u(x− y)|2 dx
)2

= 0.

As 3 < p < 5 and

(2.18)

ˆ

R3

a|∇u(x− y)|2 dx > 0, and

(
ˆ

R3

|∇u(x− y)|2 dx
)2

> 0,

it implies that there is a contradiction, so C = 1. �

Lemma 2.6. Problem (1.1) has no ground state solution, that is mΩr,ρ
is not a

critical value of IΩr,ρ
.

Proof. The proof is similar to that of Theorem 2.4 of [15], and we only give a
sketch here. Note that mΩr,ρ

≥ mR3 since each function in H1
0 (Ωr,ρ) can be extended

by 0 outside Ωr,ρ. Take a sequence yn in Ωr,ρ such that

|yn − ar| → ∞, and yn3 → +∞ as n → ∞.

Then by Lemma 2.4 and Lemma 2.5, we have

‖fy − u(x− y)‖Lp(R3) = o(1), |y − ar| → ∞, and y3 → +∞,

‖fy − u(x− y)‖ = o(1), |y − ar| → ∞, and y3 → +∞,

IΩr,ρ
(fy,tyn )− I(u(x− yn)) = o(1).

So

mR3 = I(u(x− y)) = IΩr,ρ
(fy,tyn ) + o(1) ≥ mΩr,ρ

.

We then conclude that mR3 = mΩr,ρ
.

Now let us suppose that there is a u0 ∈ Mr,ρ such that IΩr,ρ
(u0) = mR3 . By

putting u0 = 0 in R
3 \ Ωr,ρ, we see that u0 could be regarded as an element of

H1(R3). Thus u0 would be a minimizer for M and a solution of (1.6) strictly positive
in R

3 (by the strong maximum principle): a contradiction. In other words, if u0 is a
solution of (1.1) satisfying u0 ∈ Mr,ρ, then IΩr,ρ

(u0) > mΩr,ρ
. �

3. A compactness lemma

The arguments of the above Lemma 2.6 provide a picture of how the Palais–
Smale condition may fail. Now, we will state a decomposition theorem for a (PS)τ
sequence of problem (1.1).

For τ ∈ R, a sequence {un} is a (PS)τ sequence in H1
0 (Ωr,ρ) for IΩr,ρ

if

IΩr,ρ
(un) → τ, IΩr,ρ

(un) = o(1) strongly in H−1(Ωr,ρ).
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Lemma 3.1. (Palais–Smale decomposition lemma for IΩr,ρ
) Let {un} be a boun-

ded (PS)τ sequence in H1
0 (Ωr,ρ) for IΩr,ρ

with τ > 0. Then there exists u ∈ H1
0 (Ωr,ρ)

and A ∈ R such that J ′
A,Ωr,ρ

(u) = 0, where

(3.1) JA,Ωr,ρ
(u) =

a+ bA2

2

ˆ

Ωr,ρ

|∇u|2 dx+
1

2

ˆ

Ωr,ρ

u2 dx− 1

p+ 1

ˆ

Ωr,ρ

|u|p+1 dx,

and either

(i) un → u in H1
0 (Ωr,ρ), or

(ii) there exists l ∈ N and {ykn} ⊂ R
3, |ykn| → +∞ as n → +∞ for each 1 ≤ k ≤ l,

nontrivial solutions w1, · · · , wl of the following problem

(3.2) −(a + bA2)∆u+ u = |u|p−1u, u > 0, x ∈ R
3,

with its related functional

(3.3) JA,R3(u) =
a+ bA2

2

ˆ

R3

|∇u|2 dx+
1

2

ˆ

R3

u2 dx− 1

p + 1

ˆ

R3

|u|p+1 dx,

such that

(3.4) τ +
bA4

4
= JA,Ωr,ρ

(u) +

l
∑

k=1

JA,R3(wk),

and

(3.5)

∥

∥

∥

∥

∥

un − u−
l
∑

k=1

wk(x− ykn)

∥

∥

∥

∥

∥

→ 0,

(3.6) A2 =

ˆ

R3

|∇u|2 dx+

l
∑

k=1

ˆ

R3

|∇wk|2 dx.

Moreover,

(3.7) JA,R3(w1) = mΩr,ρ
+

bA4

4
.

Proof. Note that each function in H1
0 (Ωr,ρ), by extending it to be 0 outside Ωr,ρ,

can be considered as a function in H1(R3) . Since {un} is bounded in H1
0 (Ωr,ρ), there

exists a u ∈ H1
0 (Ωr,ρ) and A ∈ R such that

(3.8) un ⇀ u in H1
0 (Ωr,ρ),

and

(3.9)

ˆ

Ωr,ρ

|∇un|2 dx → A2.

Then I ′Ωr,ρ
(u) → 0 implies that

(3.10)

ˆ

Ωr,ρ

a∇u∇ϕ+ uϕ dx+ bA2

ˆ

Ωr,ρ

∇u∇ϕdx−
ˆ

Ωr,ρ

|u|p−1uϕ dx = 0

for all ϕ ∈ H1
0 (Ωr,ρ), i.e. J ′

A,Ωr,ρ
(u) = 0, where

(3.11) JA,Ωr,ρ
(u) =

a + bA2

2

ˆ

Ωr,ρ

|∇u|2 dx+
1

2

ˆ

Ωr,ρ

u2 dx− 1

p+ 1

ˆ

Ωr,ρ

|u|p+1 dx.



1184 Haiyang He and Xing Yi

Since

JA,Ωr,ρ
(un) =

a+ bA2

2

ˆ

Ωr,ρ

|∇un|2 dx+
1

2

ˆ

Ωr,ρ

u2
n dx− 1

p + 1

ˆ

Ωr,ρ

|un|p+1 dx

=
a

2

ˆ

Ωr,ρ

|∇un|2 dx+
1

2

ˆ

Ωr,ρ

u2
n dx+

b

4
(

ˆ

Ωr,ρ

|∇un|2 dx)2

− 1

p+ 1

ˆ

Ωr,ρ

|un|p+1 dx+
bA2

4

ˆ

Ωr,ρ

|∇un|2 dx+ o(1)

= IΩr,ρ
(un) +

bA4

4
+ o(1),

(3.12)

and

〈J ′
A,Ωr,ρ

(un), ϕ〉 = (a+ bA2)

ˆ

Ωr,ρ

∇un∇ϕ+ unϕdx−
ˆ

Ωr,ρ

|un|p−1unϕdx

=

ˆ

Ωr,ρ

a∇un∇ϕ+ unϕdx+ b

ˆ

Ωr,ρ

|∇un|2
ˆ

Ωr,ρ

∇un∇ϕdx

−
ˆ

Ωr,ρ

|un|p−1unϕdx+ o(1)

= 〈I ′

Ωr,ρ
(un), ϕ〉+ o(1).

(3.13)

We conclude that

JA,Ωr,ρ
(un) → τ +

bA4

4
, J ′

A,Ωr,ρ
(un) → 0 in H−1

0 (Ωr,ρ).

We next show that either (i) or (ii) holds. The argument is similar to [11].
Step 1. Set u1

n = un−u , by (3.8) and the Brezis–Lieb Lemma of [16] we get that

a.1 |∇u1
n|22 = |∇un|22 − |∇u|22 + o(1);

b.1 |u1
n|22 = |un|22 − |u|22 + o(1);

c.1 JA,R3(u1
n) → mR3 + bA4

4
− JA,Ωr,ρ

(u);
d.1 J ′

A,R3(u1
n) → 0 in H−1(R3).

Decompose R
3 into nonoverlapping countable cubes Qi with centres (x′, m+1/2)

for integers m and side length 1. Let

hn = sup
|i|=0,1,2,···

ˆ

Qi

|u1
n|2 dx,

and

σ1 = lim sup
n→+∞

hn.

Vanishing: If σ1 = 0, then it follows from the Brezis–Lieb Lemma that u1
n → 0

in Ls(R3) for s ∈ (2, 2∗). Since J ′
A,R3(u1) → 0 in H−1(R3), we see that u1

n → 0 in

H1(R3) and the proof is completed.
Non-Vanishing: If σ1 > 0, then we can find a sequence {Q1

n} with centre y1n of
the form {x′

n, mn +
1
2
}, such that

ˆ

Q1
n

|u1
n|2 dx >

σ1

2
.
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Set w1
n = u1

n(x + y1n), then {w1
n} is bounded in H1(R3) and we may assume that

w1
n ⇀ w1 in H1(R3). It implies J

′

A,R3(w1) = 0. By

ˆ

Q

|w1
n|2 dx >

σ1

2
,

where Q = {(x′, x3) ∈ R
2 × R | |x′| < 1

2
,−1/2 < x3 < 1/2}, we see that w1 6= 0.

Moreover, w1
n ⇀ 0 in H1(R3) implies that {y1n} is unbounded. Hence, we may assume

that |y1n| → ∞.
Step 2: Set u2

n = un − u− w1(x− y1n) , we can similarly check that

a.2 |∇u2
n|22 = |∇un|22 − |∇u|22 − |∇w1|22 + o(1);

b.2 |u2
n|22 = |un|22 − |u|22 − |w1|22 + o(1);

c.2 JA,R3(u1
n) → mR3 + bA4

4
− JA,Ωr,ρ

(u)− JA,R3(w1);
d.2 J ′

A,R3(u2
n) → 0 in H−1(R3).

Similar to the arguments in Step 1, let

σ2 = lim sup
n→+∞

sup
|i|=0,1,2,···

ˆ

Qi

|u2
n|2 dx.

If vanishing occurs, then‖u2
n‖ → 0, i.e. ‖un − u − w1(x − y1n)‖ → 0. Moreover, by

(3.9) and (a.2) (c.2), we see that

A2 = |∇u|22 + |∇w1|22 and τ +
bA4

4
= JA,R3(w1) + JA,Ωr,ρ

(u).

If non-vanishing occurs, then there exists a sequence {y2n} ⊂ R
3 and a nontrivial

w2 ∈ H1(R3) such that w2
n = u2

n(x + y1n) ⇀ w2 in H1(R3). Then by (d.2), we
have J ′

A,R3(w2) = 0. Furthermore, u2
n ⇀ 0 in H1(R3) implies that |y1n| → ∞ and

|y2n − y1n| → ∞ .
We next proceed by iteration. Recall that if wk is a nontrivial solution of JA,R3,

then JA,R3(wk) > 0. So there exists some finite l ∈ N such that only the vanishing
case occurs in Step l. Then the lemma is proved.

Next, we prove that

JA,R3(w1) = mΩr,ρ
+

bA4

4
.

Let {un} ⊂ Mr,ρ be a minimizing sequence for mΩr,ρ
, then by the Ekelands variational

principle (see Theorem 8.5 in [16]), there exists a sequence {vn} ⊂ Mr,ρ such that

IΩr,ρ
→ mΩr,ρ

, (IΩr,ρ
|Mr,ρ

)′(vn) → 0 in H−1(Ωr,ρ), ‖vn − un‖ → 0.

By Lemma 2.3(ii), (IΩr,ρ
)′(vn) → 0 in H−1(Ωr,ρ). Since {vn} is a bounded (PS)mΩr,ρ

sequence for IΩr,ρ
, either (i) or (ii) holds. However, since Lemma 2.6 has showed that

mr,ρ is not a critical value of IΩr,ρ
, (ii) holds.

If u 6= 0, then J ′
A,Ωr,ρ

(u) = 0 and

0 = 〈J ′
A,Ωr,ρ

(u), u〉 = (a + bA2)

ˆ

Ωr,ρ

|∇u|2 dx+

ˆ

Ωr,ρ

u2 dx−
ˆ

Ωr,ρ

|u|p+1 dx

≥
ˆ

R3

a|∇u|2 + u2 dx+ b

(
ˆ

R3

|∇u|2 dx
)2

−
ˆ

R3

|u|p+1 dx = g(u).
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Hence there exists an unique t ∈ (0, 1] such that ut ∈ MΩr,ρ
. So

JA,Ωr,ρ
(u) = [JA,Ωr,ρ

(u)−
〈J ′

A,Ωr,ρ
(u), u〉
4

− bA2

4

ˆ

Ωr,ρ

|∇u|2 dx] + bA2

4

ˆ

Ωr,ρ

|∇u|2 dx

=
a

4

ˆ

Ωr,ρ

|∇u|2 dx+

ˆ

Ωr,ρ

1

4
|u|p+1 dx− 1

p+ 1
|u|p+1 dx+

bA2

4

ˆ

Ωr,ρ

|∇u|2 dx

≥ at2

4

ˆ

Ωr,ρ

|∇u|2 dx+

ˆ

Ωr,ρ

1

4
|tu|p+1 − 1

p+ 1
|tu|p+1 dx+

bA2

4

ˆ

Ωr,ρ

|∇u|2 dx

= IΩr,ρ
(ut)−

1

4
〈J ′

A,Ωr,ρ
(ut), ut〉+

bA2

4

ˆ

Ωr,ρ

|∇u|2 dx

≥ mΩr,ρ
+

bA2

4

ˆ

Ωr,ρ

|∇u|2 dx.

Since J ′
A,R3(wi) = 0 (i = 1, 2, · · · , l), similar to the above process, we have

(3.14) JA,R3(wi) ≥ mR3 +
bA2

4

ˆ

R3

|∇wi|2 dx = mΩr,ρ
+

bA2

4

ˆ

R3

|∇wi|2 dx.

Then

mΩr,ρ
+

bA2

4
= JA,Ωr,ρ

(u) +

l
∑

k=1

JA,R3(wk)

≥ mΩr,ρ
+

bA2

4

ˆ

Ωr,ρ

|∇u|2 dx+ lmΩr,ρ
+

bA2

4

l
∑

k=1

ˆ

R3

|∇wk|2 dx

≥ 2mΩr,ρ
+

bA4

4
,

which is a contradiction. So u ≡ 0, by (3.14) we have

mΩr,ρ
+

bA2

4
=

l
∑

k=1

JA,R3(wk) ≥ mΩr,ρ
+ lmΩr,ρ

+
bA2

4

l
∑

k=1

ˆ

R3

|∇wk|2 dx

≥ mΩr,ρ
+

bA4

4
,

which implies l = 1. Thus JA,R3(w1) = mΩr,ρ
+ bA4

4
. �

Lemma 3.2. Let {un}⊂Mr,ρ be (PS)τ sequence for IΩr,ρ
with τ ∈(mΩr,ρ

,2mΩr,ρ
),

then up to a subsequence, un → u in H1
0(Ωr,ρ) for some u ∈ H1

0 (Ωr,ρ)\{0}.
Proof. Let {un} ⊂ Mr,ρ be (PS)τ sequence for IΩr,ρ

with τ ∈ (mΩr,ρ
, 2mΩr,ρ

),
then {un} is a bounded in H1

0 (Ωr,ρ). Applying Lemma 3.1, either (i) or (ii) holds.
We next show that (i) holds with u 6= 0 by discussing the following two cases.

Case 1. u ≡ 0. If u ≡ 0, then (i) dose not occur since τ > 0, hence (ii) holds.
Similar to (3.15), we have

τ +
bA4

4
=

l
∑

k=1

JA,R3(wk) ≥ lmΩr,ρ
+

bA4

4
.
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Then l = 1. Since τ < 2cΩr,ρ
, and by (3.7), we have

τ +
bA4

4
= JA,R3(w1) = mΩr,ρ

+
bA4

4
,

which contradicts to τ > mΩr,ρ
. So Case 1 does not occur.

Case 2. u 6= 0. If (ii) holds, then we still have (3.14) and (3.14) hold. Hence if
l 6= 0, similar to (3.15), we have

τ +
bA2

4
= JA,Ωr,ρ

(u) +
l
∑

k=1

JA,R3(wk) ≥ 2mΩr,ρ
+

bA4

4
,

which contradicts to τ < 2cΩr,ρ
. Thus, l = 0, (i) holds and the lemma is proved. �

4. Proof of Theorem 1

In order to get such (PS)τ sequence given in Lemma 3.1, we try to use linking
arguments with a barycenter map restricted to the Nehari manifold Mr,ρ.

Recall the definition and some properties of the barycenter map, which can be
also found in [1]. The barycenter map β : H1(R3)\{0} → R

3 is defined as: for any
u ∈ H1(R3)\{0},

β(u) =
1

|V |L1

ˆ

R3

xV (x) dx,

where V (x) = (µ(x)− 1
2
maxx∈R3 µ(x))+ and µ(x) = 1

|B1(x)|

´

B1(x)
|u(y)| dy.

Since V (x) has compact support and is continuous, β(u) is well defined and has
the following properties:

(a) β(u) is continuous;
(b) If u is radial, then β(u) = 0;
(c) For any y ∈ R

3, then β(u(· − y)) = β(u) + y;
(d) If u is radial, then for any y ∈ R

3 and t > 0, β(tu(· − y)) = y.

Set
M̃r,ρ = {u ∈ Mr,ρ | β(u) = ar}

and
m̃Ωr,ρ

= inf
M̃r,ρ

I(u),

we have

Lemma 4.1. m̃Ωr,ρ
> mΩr,ρ

.

Proof. It easy to see that m̃Ωr,ρ
≥ mΩr,ρ

. By contradiction, we just suppose that

m̃Ωr,ρ
= mΩr,ρ

. Let {un} ⊂ M̃r,ρ be a minimizing sequence for m̃Ωr,ρ
, then {un} is also

a minimizing sequence for mΩr,ρ
. Then there exists a bounded (PS)mΩr,ρ

sequence

{vn} ⊂ M̃r,ρ for ImΩr,ρ
such that

(4.1) ‖vn − un‖ → 0.

Moreover,

(4.2) vn → w1(· − y1n) in H1(R3)

with y1n ∈ R
3 and |y1n| → +∞. By the continuity of β and (4.1), we have β(vn) →

β(un) = ar However, by (4.2), we see that

|ar| = lim
n→+∞

|β(vn)| = lim
n→+∞

|β(w1) + y1n| = +∞,
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which is impossible. Hence m̃Ωr,ρ
> mΩr,ρ

. �

Proof of Theorem 1.1. Let u be the radial and positive ground state solution of
(1.6). By Lemma 2.5, we have

∃ty ∈ R
+ s.t. fy,ty ∈ Mr,ρ and ty → 1 as |y − ar| → +∞ and y3 → +∞.

Then,we define a continuous map K : R3 → Mr,ρ as

K(y)(x) := fy,ty(x) = ξ(|x− ar|)η(x3)tyu(x− y).

By Lemma 2.4, we have

(4.3) ‖fy − u(x− y)‖ = o(1), |y − ar| → ∞, and y3 → +∞.

By the continuity of β and (4.3) and Lemma 2.5,

(4.4) β(K(y)) → β(u(x− y)) = y, as |y − ar| → +∞ and y3 → +∞.

By (4.4) we see β(K(y)) → y 6= ar, as r → +∞, for y ∈ ∂B r
2
(ar), and there exists

r1 > 0, if r ≥ r1 , then we have

(4.5) β(K(y)) 6= ar for y ∈ ∂B r
2
(ar)

and

(4.6) 〈β(K(y)), y〉 > 0 for y ∈ ∂B r
2
(ar).

From Lemma 2.6, it shows that

(4.7) IΩr,ρ
(K(y)) → mΩr,ρ

, as |y − ar| → +∞ and y3 → +∞
and there exists r2 > 0, if r ≥ r2 > r1, it holds

(4.8) IΩr,ρ
(K(y)) < 2mΩr,ρ

for y ∈ ∂B r
2
(ar).

Since m̃Ωr,ρ
> mΩr,ρ

, by (4.7) there exists r3 > r2 > 0 and r ≥ r3 such that

(4.9) max
∂B r

2
(ar)

IΩr,ρ
(K(y)) < m̃Ωr,ρ

.

From Lemma 2.4 and (4.8), fix ρ0 > 0, r0 ≥ r3, if 0 < ρ < ρ0, r ≥ r0, then

IΩr,ρ
(K(y)) < 2mΩr,ρ

for y ∈ B r
2
(ar).

From now on, fixing ρ0, r0, for r ≥ r0. Let set Q = K(B r
2
(ar)), and S = M̃r,ρ,

which is given in (4.1). Now, we prove ∂Q and S are linking. Indeed, for any
u ∈ ∂Q, by (4.5) we see β(u) 6= ar, hence u /∈ S, and ∂Q ∩ S = . For any

h ∈ H = {h ∈ C(Q, Mr,ρ)|h|∂Q = id}, we define a map G : B r
2
(ar) → R

3, as

G(y) = (β ◦ h ◦K)(y), ∀y ∈ B r
2
(ar).

Then G is continuous since it is a composition of continuous maps. Moreover, consider
the homotopy, for 0 ≤ t ≤ 1

(4.10) F (t, y) = (1− t)G(y) + ty, for y ∈ R
3.

If y ∈ ∂B r
2
(ar), by (4.6),

〈β(K(y)), y〉 > 0.

It implies that

〈F (t, y), y〉 = 〈(1− t)G(y), y〉+ 〈ty, y〉 = 〈(1− t)β(K(y)), y〉+ t〈y, y〉 > 0

Thus F (t, y) 6= 0 for y ∈ ∂B r
2
(ar). By the homotopic invariance of the degree

d(K(y), B r
2
(ar), ar) = d(I, B r

2
(ar), ar) = 1.
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There is ỹ ∈ B r
2
(ar) such that G(ỹ) = ar, which implies that h(K(ỹ)) ∈ S. Then

K(ỹ) ∈ h(Q) ∩ S. So S and ∂Q link. By (4.8) and (4.9), we see that

inf
u∈S

IΩr,ρ
= m̃Ωr,ρ

> max
u∈∂Q

IΩr,ρ
and sup

u∈Q
IΩr,ρ

(u) < 2mΩr,ρ
.

Applying the Linking Theorem, there exists a (PS)τ sequence {un} for IΩr,ρ
, where

τ = inf
h∈H

max
u∈Q

IΩr,ρ
(h(u)).

Since h(Q)∩S 6= ∅ for any h ∈ H , τ ≥ m̃Ωr,ρ
. On the other hand, τ ≤ maxu∈Q IΩr,ρ

(u)
< 2mΩr,ρ

. So {un} is a (PS)τ sequence for IΩr,ρ
with τ ∈ (mΩr,ρ

, 2mΩr,ρ
). By

Lemma 3.2, there exists u ∈ H1
0 (Ωr,ρ)\{0} such that un → u in H1

0 (Ωr,ρ). So u is a
nontrivial solution of problem (1.1). �
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