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Abstract. Suppose n ≥ 2 and Ai ⊂ {0, 1, · · · , (n−1)} for i = 1, · · · , l, let Ki =
⋃

a∈Ai
n−1(Ki+

a) be self-similar sets contained in [0, 1]. Given m1, · · · ,ml ∈ Z with
∏

i
mi 6= 0, we let

Sx = {(y1, · · · , yl) : m1y1 + · · ·+mlyl = x with yi ∈ Ki ∀i} .
In this paper, we analyze the Hausdorff dimension and Hausdorff measure of the following set

Ur = {x : Card(Sx) = r},
where Card(Sx) denotes the cardinality of Sx, and r ∈ N

+. We prove under the so-called covering

condition that the Hausdorff dimension of U1 can be calculated in terms of some matrix. Moreover,

if r ≥ 2, we also give some sufficient conditions such that the Hausdorff dimension of Ur takes only

finite values, and these values can be calculated explicitly. Furthermore, we come up with some

sufficient conditions such that the dimensional Hausdorff measure of Ur is infinity. Various examples

are provided. Our results can be viewed as the exceptional results for the classical slicing problem

in geometric measure theory.

1. Introduction

Representation of real numbers is a topic of great interest in number theory.
There are many approaches which can represent real numbers, for instance, the
β-expansions [18, 1, 28, 3, 6, 25], the continued fractions [11, 10], multiplication
(division, quadratic sum) on fractal sets [31, 2], the Lüroth expansions [5], and so
forth. These representations are related to many different mathematical aspects, for
instance, the matrix theory, ergodic theory, fractal geometry, Diophantine approxi-
mation, combinatorics, and so on. Different representations have distinct properties
from various aspects. Investigating the ergodic, fractal and combinatorial properties
of these representations consists of one of the main directions in number theory.

Expansions in non-integer bases were pioneered by Rényi [25] and Parry [23]. Let
1 < β < 2. Given any x ∈ [0, (β − 1)−1], a sequence (an) ∈ {0, 1}∞ is called a β-
expansion of x if x =

∑∞
n=1 anβ

−n. Sidorov [26] proved that given any 1 < β < 2, then
almost every point in [0, (β−1)−1] has uncountably many expansions. In fact, Sidorov
[27], Dajani and de Vries [7] proved that given any 1 < β < 2, then Lebesgue almost
every point has uncountably many universal expansions. Erdős et al. [13] proved
that there exist some 1 < β < 2 and x ∈ [0, (β − 1)−1] such that x has precisely k
different β-expansions. However, up to now, there are few results concerning with the
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set of points with exactly k different β-expansions, see [9, 8] and references therein.
In particular, if x has a unique expansion (such point is called the univoque point),
then there are many results [12, 14, 19]. The main reason is that we may give an
criterion of the unique expansions. As such we can discuss the set of points with
unique expansions from the symbolic point of view.

Representation of real numbers also arises naturally from Diophantine approxi-
mation. Let x be a real number. We say that x is badly approximable if there exists
a positive integer n such that for any rational number p/q,

|x− p/q| > (nq2)−1.

Clearly, the set of badly approximable points is of Lebesgue measure zero. However,
Hall [15] proved that every real number can be expressed as the sum of two badly
approximable numbers. For any m ≥ 2, let F (m) denote the set of numbers

F (m) = {[t, a1, a2, · · · ] : t ∈ Z, 1 ≤ ai ≤ m for i ≤ 1},
where

[t, a1, a2, · · · ] = t +
1

a1 +
1

a2 + · · ·
.

Hall [15] proved that F (4) + F (4) = R, where A ± B = {x ± y : x ∈ A, y ∈ B}.
Astels [30] proved that

F (2) + F (5) = R, F (2)− F (5) = R, F (3)− F (4) = R.

There are many other related results for the arithmetic sum of F (m), see the refer-
ences in [15, 30].

The above two representations are prevalent in number theory. In this paper
we shall consider the so-called arithmetic representation of the real numbers. First,
we introduce some background of this representation. Given two non-empty sets
A,B ⊂ R. Define A ∗ B = {x ∗ y : x ∈ A, y ∈ B}, where ∗ is +,−,× or ÷ (when
∗ = ÷, y 6= 0). We call a = x ∗ y, x ∈ A, y ∈ B an arithmetic representation in
terms of A and B. Shortly, we may say a = x ∗ y is an arithmetic representation if
there is no fear of ambiguity. It is well-known that for the middle-third Cantor set
C,

C − C = {x− y : x, y ∈ C} = [−1, 1].

Therefore, for any a ∈ [−1, 1], there are some x, y ∈ C such that a = x− y. The first
proof of this result is due to Steinhaus [29] in 1917. Recently, Athreya, Reznick, and
Tyson [2] considered the multiplication on the middle-third Cantor set, and proved
that 17/21 ≤ L(C · C) ≤ 8/9, where L denotes the Lebesgue measure. Moreover,
they also proved that the division on C, denoted by C

C
, is exactly the union of some

closed sets. In [31], Tian et al. defined a class of overlapping self-similar sets as
follows: let K be the attractor of the IFS

{f1(x) = λx, f2(x) = λx+ c− λ, f3(x) = λx+ 1− λ},
where f1(I)∩f2(I) 6= ∅, (f1(I)∪f2(I))∩f3(I) = ∅, and I = [0, 1] is the convex hull of
K. Then K ·K = [0, 1] if and only if (1−λ)2 ≤ c. Equivalently, they gave a necessary
and sufficient condition such that for any x ∈ [0, 1] there exist some y, z ∈ K such
that x = yz.

Motivated by the multiple β-expansions, generally it is natural to analyze the set
of points in A ∗ B = {x ∗ y : x ∈ A, y ∈ B} such that these points have exactly r
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different representations, i.e. we want to analyze the following set

(1.1) Ur = {x ∈ A ∗B : x has exactly r arithmetic representations},
where r ∈ N+. In this paper, we assume the above algorithm ∗ is + or −. For the
classical middle-third Cantor set, take 1/3 ∈ C − C = [−1, 1], it is not difficult to
prove that 1/3 has only three arithmetic representations in C − C, i.e.

1

3
=

1

3
− 0 =

2

3
− 1

3
= 1− 2

3
.

We may give a new explanation for Steinhaus’ result from the projectional perspec-
tive. Note that C − C is conjugated to

√
2Projθ(C × C), where θ = 3π

4
and Projθ

denotes the orthogonal projection onto Lθ which is the line through the origin in
direction θ. Since C − C = [−1, 1], it follows that

dimH(Projθ(C × C)) = min{dimH(C) + dimH(C), 1}.
In other words, the orthogonal projection of C ×C to the line y = −x does not drop
the expected dimension. Indeed, similar result is still correct for a general class of
self-similar sets. Peres and Shmerkin [24], Hochman and Shmerkin [16] proved the
following elegant result.

Let K1 and K2 be two self-similar sets with IFS’s {fi(x) = rix + ai}ni=1 and
{gj(x) = r′jx+ bj}mj=1, respectively. If there are some ri, r

′
j such that

log |ri|
log |r′j|

/∈ Q,

then
dimH(K1 +K2) = min{dimH(K1) + dimH(K2), 1},

and dimH(K1 + K2) = dimP (K1 + K2) = dimB(K1 + K2). The condition in the
above result is called the irrationality condition. The result above indeed states that
under the irrationality condition, the Hausdorff dimension of the projection of two
self-similar sets through the angle π/4 does not drop.

Now we go back to the middle-third Cantor set, and consider a slicing problem,
i.e. given t ∈ [−1, 1], then the set Ur in (1.1), is

Ur = {t ∈ [−1, 1] : Card({y − x = t} ∩ (C × C)) = r},
where r ∈ N+. In other words, the multiple representational problem is indeed a
slicing problem in geometric measure theory. In this paper, we shall consider the
arithmetic addition or subtraction for more than two Cantor sets. First, we give
some basic definitions.

Suppose n ≥ 2 and Ai ⊂ {0, 1, · · · , (n− 1)} for i = 1, · · · , l, let

Ki =
⋃

a∈Ai

Ki + a

n

be self-similar sets contained in [0, 1]. Fix m = (m1, · · · , ml) ∈ Zl with
∏

imi 6= 0
denote

Sx =
{

y ∈
∏l

i=1
Ki : (m,y) = m1y1 + · · ·+mlyl = x

}

.

In this paper, we will focus on the fractal dimension of

Ur = {x : Card(Sx) = r} for r <∞,

It is worthwhile pointing out that if Card(Sx) = 1 then there is a unique solution for
the equation

x = m1y1 + · · ·+mlyl with yi ∈ Ki ∀i.
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Let m∗ =
∑

mi<0mi and m∗ =
∑

mi>0mi where
∑

b∈∅ b = 0. Given a subset B of

Rl, we write (m, B) =
⋃

b∈B(m, b). For i = (i1, · · · , il) ∈
∏l

i=1Ai and we write the

small cube ci =
(i1,··· ,il)+[0,1]l

n
. We say that the covering condition holds for

∏l

i=1Ki

with respect to m, if
⋃

i∈
∏l

i=1
Ai

(m, ci) = (m, [0, 1]l),

where (m, [0, 1]l) = [m∗, m
∗] and (m, ci) = n−1((m, i) + [m∗, m

∗]).
We call I = n−1[u, u + 1] ⊂ [m∗, m

∗] with u ∈ Z an integer interval, and {Jt =
[t, t+1]}t∈[m∗,m∗)∩Z working intervals. We say I is of type t (with respect to the small

cube ci), if u−(m, i) = t ∈ [m∗, m
∗−1]∩Z for some i ∈∏l

i=1Ai, i.e., t is the relative
position of I according to the projection interval (m, ci) = n−1((m, i) + [m∗, m

∗])
of the small cube ci. For t ∈ [m∗, m

∗) ∩ Z, the corresponding geometric type is
[0, 1]l∩{y : (m,y) ∈ Jt} or its similar copy. Two integer intervals I1 = n−1[u1, u1+1]
and I2 = n−1[u2, u2 + 1] are said to be congruent modulo n, if u1 ≡ u2(mod n), i.e.,
I2 = I1 + k for some k ∈ Z.

For a directed graph, we give a partial order on its strongly connected components
{Hi}i, we denote H ≺ H ′, if H = H ′ or there is a directed path from one vertex of H
to another vertex of H ′. Let ρ(Hi) be the spectral radius of the matrix with respect
to the subgraph restricted in Hi. We say an infinite sequence vi1vi2 · · · vikvik+1

· · · of
vertexes is admissible if there is a directed edge from vik to vik+1

for all k.
In this paper, we need three directed graphs.
(1) The first graph has the vertex set of all integer intervals. For two vertexes

(or integer intervals) I1 and I2, there is a directed edge from I1 to I2, denoted by
I1 → I2, if and only if there exists an integer t ∈ [m∗, m

∗ − 1] such that I1 is of type
t and I2 ⊂ Jt. We denote I ֌ Jt if the integer interval I is of type t.

(2) The second graph is a subgraph of the first. Let Ξ denote the collection of

integer intervals I such that there is a unique i ∈ ∏l

i=1Ai satisfying I ⊂ (m, ci).
Then we obtain a directed subgraph GΞ of the first one. From this directed graph,
we obtain a 0-1 transition matrix M with its spectral radius ρ(M). Denote by {Ξi}i
the strongly connected components of GΞ. In the graph GΞ, we say that a strongly
connected component Ξi can reach Jt, if there is a directed path in GΞ from one
vertex of Ξi to another vertex of type t. We also say that [m∗, m

∗] is dominated by

Ξ for d > 0, if each Jt can be reached by some Ξi with log ρ(Mi)
logn

≥ d.

(3) The third graph G∗ contains GΞ. A subset ω of Ξ is said to be congruent, if
any two of ω are congruent. For congruent subset ω, let

D(ω) = {t : there is an element of ω contained in Jt = [t, t + 1]}.

Let the vertex set of G∗ be the collection of all congruent subsets of Ξ. Then there
is a directed edge from ω to ω′, if and only if for any I ∈ ω, there exists some I ′ ∈ ω′

such that I → I ′ (in the first graph), and for any I ′ ∈ ω′, there exists some I ∈ ω such
that I → I ′ (in the first graph). Denote by {Ωj}j the strongly connected components
of G∗. Note that GΞ is a subgraph of G∗, and any strongly connected component of
GΞ is also a strongly connected component of G∗, hence {ρ(Ξi)}i ⊂ {ρ(Ωj)}j.

Theorem 1. Let s = log ρ(M)
logn

. Then we have the following results.

(1) dimH U1 ≥ s and Hs(U1) > 0.
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(2) Suppose the covering condition holds for
∏l

i=1Ki with respect to m, then

dimH U1 = s.

(3) Suppose the covering condition holds for
∏l

i=1Ki with respect to m and Ki

satisfies the strong separation condition holds (for instance, 1 /∈ Ai − Ai

implies the strong separation condition) for all i. Suppose s > 0, then

Hs(U1) = ∞
if and only if there are two different strongly connected components Ξi and
Ξj in GΞ such that ρ(Ξi) = ρ(Ξj) = ρ(M) and Ξi ≺ Ξj . In particular if M is
irreducible then

0 < Hs(U1) <∞.

Figure 1. Example 1.

Example 1. As in part (a) of Fig. 1, let us consider the equation x = −b1 + b2
with bi ∈ C, where C is the middle-third Cantor set and (m1, m2) = (−1, 1) with
m∗ = −1 and m∗ = 1. Now, the covering condition and the strong separation
condition hold. Using the lines

⋃

d∈3−1{−3,··· ,3}{(x, y) : y − x = d}, we obtain six

integer intervals I0, · · · , I5 and working intervals [0, 1] and [−1, 0]. Four small squares
c(0,0), c(0,2), c(2,0) and c(2,2) are shown in part (a) of Fig. 1. We have Ξ = {I0, I1, I4, I5}
and the transition matrix

M =









1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1









with ρ(M) = 2,

then dimH U1 = log 2
log 3

= s and 0 < Hs(U1) < ∞ since M is irreducible. In this

example, dimH U1 = dimH C = log 2
log 3

.

For part (b) of Fig. 1, let us consider the equation x = b1+ b2 with bi ∈ C, where
C is the middle-third Cantor set and (m1, m2) = (1, 1) with m∗ = 0 and m∗ = 2.
We also have Ξ = {I0, I1, I4, I5} and the same transition matrix M with ρ(M) = 2.
Hence in this case dimH U1 = dimH C = log 2

log 3
.

In the following examples, we have dimH U1 < mini(dimH Ki) or dimH U1 >
maxi(dimH Ki).
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Figure 2. Examples 2 and 3.

Example 2. As in part (a) of Fig. 2, let us consider the equation x = −2b1 + b2
with bi ∈ K =

⋃

a∈{0,3,4,6}
K+a
7
, where (m1, m2) = (−2, 1) with m∗ = −2 and m∗ =

1. The covering condition holds. We have Ξ = {IA, IB, IC , ID, IE , IF , IG} and the
transition matrix

M =



















1 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 1 1



















with ρ(M) =

√
5 + 3

2
.

Then dimH U1 =
log

√
5+3

2

log 7
= s. In this example, the spectral radius is not an integer

and dimH U1 < dimH K = log 4
log 7

.

Example 3. As in part (b) of Fig. 2, let us consider the equation x = −b1 + b2
with b1 ∈ K1 =

⋃

a∈{0,3,5}
K1+a

6
and b2 ∈ K2 =

⋃

a∈{0,4,5}
K2+a

6
, where (m1, m2) =

(−1, 1) with m∗ = −1 and m∗ = 1. The covering condition and the strong separation
condition hold. We have Ξ = {I0, I2, I3, I7, I8, I9, I10, I11} and the transition matrix

M =























1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1























with ρ(M) = 4.
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Then dimH U1 = log 4
log 6

= s and 0 < Hs(U1) < ∞ since M is irreducible. Notice that

in this example dimH U1 > max{dimH K1, dimH K2} = log 3
log 6

.

Given j ∈ {0, · · · , (n − 1)}, a ‖m‖1 × ‖m‖1 matrix Tj = (buv)m∗≤u,v≤m∗−1 is
defined by

buv = Card{i ∈
∏l

i=1
Ai : (nu+ j)− (m, i) = v}.

In fact, buv > 0 if and only if I(u,j) ֌ Jv, where I(u,j) = n−1[nu + j, nu + j + 1] and
Jv = [v, v+ 1]. We also note that buv is the number of small cubes ci such that I(u,j)
has the relative position v according to the projection interval (m, i) of the small
cube ci. Please see the following two examples 4 and 5 for this definition.

Figure 3. Examples 4 and 5.

Example 4. Consider −2C + C as in part (a) of Fig. 3. We have

T0 =

J−2 J−1 J0
I0
I3
I6





1 0 0
0 1 0
1 0 1





, T1 =

J−2 J−1 J0
I1
I4
I7





0 1 0
1 0 1
0 1 0





and T2 =

J−2 J−1 J0
I2
I5
I8





1 0 1
0 1 0
0 0 1





.
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Example 5. Consider −K1+K2 forK1 =
⋃

a∈{0,3,5}
K1+a

6
andK2 = ∪a∈{0,4,5}

K2+a
6

as in part (b) of Fig. 3. We have

T0 =
J−1 J0

I0
I6

(

1 0
1 2

)

, T1 =
J−1 J0

I1
I7

(

0 1
1 1

)

,

T2 =
J−1 J0

I2
I8

(

1 0
0 1

)

, T3 =
J−1 J0

I3
I9

(

0 1
1 0

)

,

T4 =
J−1 J0

I4
I10

(

1 0
1 1

)

, T5 =
J−1 J0

I5
I11

(

2 1
0 1

)

.

In fact, under the covering condition, by the method of [20], we can obtain that
for Lebesgue almost all x ∈ [m∗, m

∗],

dimH Sx = dimB Sx =
ξ

logn
,

where ξ is the Lyapunov exponent for the symmetric independent random product
of T0, · · · , Tn−1, i.e.,

ξ = lim
k→∞

log ‖Tx1
Tx2

· · ·Txk
‖

k
with xk i.i.d. random variables assuming the values {0, 1, · · · , (n − 1)} with equal
probabilities. Related results can be found in [4, 21]. When the direction is fixed,
some general result on sections of self-similar sets can be found in [32].

A mapping ψ :
⋃

I∈Ξint(I) → (m∗, m
∗) is defined by

ψ(x) = n(x− aI) + t(I) for all x ∈ int(I) = (aI , aI + n−1),

where t(I) is the type of I. Then ψ|int(I) is a linear surjection from I to int(Jt) =
(t, t+1) with factor n. Notice that if x1, x2 ∈

⋃

I∈Ξint(I) and x1 = x2+k with k ∈ Z

and xi ∈int(Ii) for i = 1, 2, then

(1.2) ψ(x1)− ψ(x2) = n(k − aI1 + aI2) + (t(I1)− t(I2)) ∈ Z.

That means the integer intervals containing ψ(x1) and ψ(x2) are congruent (modulo
n) if x1, x2 lie in the interiors of the corresponding integer intervals respectively.
In fact, the third graph defined above is based on this observation. Given z ∈
[0, 1)\{ q1

nq2
}q1,q2∈Z and a subset D of Z∩[m∗, m

∗−1], we say that the vector (z+p)p∈D
(with index lying in Z ∩ [m∗, m

∗ − 1]) has an infinite coding ω0ω1 · · ·ωk · · · in G∗,
if ψi(z + p) belongs to the interior of some integer interval of Ξ for each i ≥ 0 and
p ∈ D, and ωi is the smallest congruent subset of Ξ containing

⋃

p∈D{ψi(z + p)} for
each i ≥ 0 such that ω0ω1 · · ·ωk · · · is admissible in G∗. Let ei be the i-th one of the
natural basis on R‖m‖1 for m∗ ≤ i ≤ m∗ − 1.

Theorem 2. Suppose the covering condition holds and Ki satisfies the strong
separation condition for each i. Then

Ur\
{ q1
nq2

}

q1,q2∈Z
6= ∅,

if and only if there exist i, j1, · · · , jk such that

r = ‖eiTj1 · · ·Tjk‖1
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with eiTj1 · · ·Tjk = (βm∗ , · · · , βm∗−1) and D = {p : βp 6= 0} satisfying

(1.3)

{

z ∈ [0, 1)\
{ q1
nq2

}

q1,q2∈Z
: (z + p)p∈D has an infinite coding in G∗

}

6= ∅.

The condition (1.3) implies that the set {ω̄ = ωi0ωi1 · · ·ωik · · · : the infinite sequence
ω̄ is admissible in G∗ with D(ωi0) = D} is non-empty. If the latter set is uncountable,
then (1.3) follows. In particular, if D(ωi0) = D and ωi0 ∈ Ωi such that ρ(Ωj) > 0
with Ωi ≺ Ωj for some Ωj , then (1.3) follows.

Theorem 3. Suppose the covering condition holds. Let Ur 6= ∅ with r ≥ 2 and

dr = dimH Ur.

(1) Then we have

dr ≤
log ρ(M)

log n
.

(2) Moreover, we assume that Ki satisfies the strong separation condition for each
i, then either Ur is countable, or

dr ∈
(

⋃

i
max

{

log ρ(Ωj)

log n
: Ωi ≺ Ωj

})

\ {0} and Hdr(Ur) > 0.

(3) Suppose Ki satisfies the strong separation condition for all i and [m∗, m
∗] is

dominated by Ξ for dr, then Hdr(Ur) = ∞. In particular, if M is irreducible
and the elements in Ξ can reach every working interval, then

Hdr(Ur) = ∞.

Example 6. Let us consider C − C again. We note that for ω = {I0, I4} we
only find the edges from ω to {I0} and {I1}, and the edges from {I1, I5} to {I0} and
{I1}. The effective part of the matrix is the submatrix with respect to GΞ. Then the
non-empty set Ur is countable or has dimension log 2/ log 3. We also check that M in
Example 1 is irreducible and the elements in Ξ can reach every working interval. By
Theorem 3, Ur is countable or dimH Ur = log 2/ log 3 with infinite Hausdorff measure.

Now, we will find r such that Ur is non-empty. Ignoring a countable set { q

3p
}p,q∈Z,

we can take the infinite coding with digit {0, 1, 2, 3, 4, 5} to represent the number in
[−1, 1] uniquely, where digit j represents Ij . Now, the coding is not free, we have
the following rules:

(1) If the current digit is 0, 2 or 4, then the next digit shall be taken in {0, 1, 2};
(2) If the current digit is 1, 3 or 5, then the next digit shall be taken in {3, 4, 5}.

Let

η(i) =

{

1 if i = 0, 1, 4 or 5,

2 otherwise.

Then

Card{(b1, b2) ∈ C × C : x = −b1 + b2} =
∏

k
η(ik),

if x has coding i0i1i2 · · · ik · · · , when we ignore a countable set { q1
3q2

}q1,q2∈Z.
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Figure 4. Example 6.

Let P : {0, 1, 2, 3, 4, 5} → {0, 1, 2} be a projection defined by P (2j) = P (2j+1) =
j, we simplify this above model to the unit interval with 3-adic expansion and take

η̄(j) =

{

1 if j = 0, 2,

2 if j = 1.

Then the cardinality is
∏

k η̄(jk) for the 3-adic expansion 0.j0j1 · · · jk · · · . Using this
projection, U1 becomes the Cantor set, and {x : Card(Sx) = 2u} becomes the set

{0.j0j1 · · · jk · · · : digit 1 appears u times in the expansion}.
Let s = log 2/ log 3. Then one can check that

(1.4) dimH{x : Card(Sx) = 2u} = s, Hs{x : Card(Sx) = 2u} = ∞
for any u ∈ N+. Meanwhile, note red lines of [0, 1]2 and red points of [0, 1] in Fig. 4,
we have

U3·2u ⊂
{ q1
3q2

}

q1,q2∈Z
and Card(U3·2u) = ℵ0,

hence

(1.5) dimH(U3·2u) = 0 with H0(U3·2u) = ∞.

The paper is organized as follows. In Section 2, we provide the preliminaries,
including graph-directed construction [22], multi dynamical systems for sections of
self-similar sets [33] and counting formula of sections [20]. Section 3 is devoted to
Theorem 1. In Section 4, we will prove Theorems 2 and 3 on Ur with r ≥ 2. We also
give some remarks in Section 5.

2. Preliminaries

Note that

(2.1)
∏l

i=1
Ki =

⋃

i∈
∏l

i=1
Ai

∏l
i=1Ki + i

n
.

For notational convenience, we write Si(x) = x+i

n
and Si1···ik = Si1

◦ · · · ◦ Sik
. The

cube Si1···ik([0, 1]
l) with sidelength n−k is said to be a basic cube of rank k. Denote

the hyperplane

Hx = {y ∈ Rl : (m,y) = x}.
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Lemma 1. Suppose the covering condition holds for
∏l

i=1Ki with respect to m.

Then Hx intersects Si1···ik([0, 1]
l) if and only it intersects Si1···ik(

∏l
i=1Ki).

2.1. Graph-directed construction. Recall the graph-directed construction
introduced by Mauldin and Williams [22]. Given a directed graph G = (V,E),
suppose {Hi}i are its strongly connected components and N = (bv,v′)v,v′∈V is the
matrix respect to the graph, i.e., bv,v′ is number of edges from v to v′. Given a
directed edge e, we equip a linear mapping ge : R → R with contracting ratio n−1

where n−1 is also the contracting ratio in (2.1). By the classical result of [22], there
is a unique family of compact subsets {Kv}v∈V ⊂ R such that

Kv =
⋃

v′∈V

⋃

e∈E(v,v′)
ge(Kv′),

where E(v, v′) denotes the set of directed edges from v to v′. We say that the open
set condition holds, if there are non-empty open sets {Uv}v∈V of R such that

⋃

v′∈V

⋃

e∈E(v,v′)
ge(Uv′) ⊂ Uv

and the left hand of the above formula is a disjoint union for each v ∈ V. By the
results in [22], we have the following

Lemma 2. Suppose the open set condition holds. Then

(1) dimH(
⋃

v∈V Kv) =
log ρ(N )
logn

= s;

(2) Suppose s > 0, then Hs(
⋃

v∈V Kv) > 0;
(3) Suppose s > 0, then Hs(

⋃

v∈V Kv) = ∞ if and only if there are two different
strongly connected components H and H ′ such that ρ(H) = ρ(H ′) = ρ(N )
and H ≺ H ′.

(4) Suppose v ∈ Hi, then

dimH Kv = max

{

log ρ(Hj)

log n
: Hi ≺ Hj

}

.

Moreover, if d = dimH Kv > 0, then Hd(Kv) > 0.

For example, let the symbolic system

X = {v̄ = vi0vi1 · · · vik · · · : the infinite sequence v̄ is admissible}
and Xv the collection of infinite admissible sequences starting from v. There is a
metric on X defined by

d(vi0 · · · vikvik+1
· · · , vi0 · · · vikvi′k+1

· · · ) = n−k if vik+1
6= vi′

k+1
.

As in Lemma 2, by results of [22], we conclude that if s = log ρ(N )
logn

> 0 then dimH(X) =

s and Hs(X) > 0 and

dimH Xv = max

{

log ρ(Hj)

logn
: Hi ≺ Hj

}

where v ∈ Hi.

We also have the following

Claim 1. If dimH Xv = 0, then Xv is countable.

Proof. It suffices to show for strongly connected component Hj with ρ(Hj) ≤ 1
the collection of admissible infinite sequences with letters inHj is a finite set. Suppose
γ is a Perron–Frobenius eigenvector γ of the matrix Nj w.r.t. Hj such that ‖γ‖1 = 1,
and Dk denotes the set of admissible sequences of length k such that every letter
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lies in Hj. Using the irreducibility, there exists a constant ς > 0 such that for all k,
Card(Dk) ≤ ‖N k

j (1, · · · , 1)T‖1 ≤ ς‖N k
j γ‖1 = ς‖ρ(Hj)

kγ‖1 ≤ ς. �

2.2. Multi dynamical system. We will construct a multi dynamical system

including many expanding maps from integer intervals to [m∗, m
∗]. In fact, for ev-

ery integer interval I : n−1[u, u + 1] ⊂ [m∗, m
∗], we equip the interval with several

expanding maps with factor n as follows. Suppose I is of type t with u− (m, i) = t,
we let fi : I → Jt = [t, t+ 1] denote the corresponding linear surjection in the form

fi(x) = nx− u+ t : I → Jt.

Then the multi dynamical system consists of {fi}i∈∏l
i=1 Ai

.

The next lemma reveals the connection between the multi dynamical system and
intersections of hyperplanes with basic cubes.

Lemma 3. If x ∈ I = n−1[u, u + 1] (u ∈ Z) and i ∈ ∏l
i=1Ai such that I ⊂

(m, ci), then

(2.2) Hx

⋂

Si([0, 1]
l) = Si(Hfi(x) ∩ [0, 1]l).

Using (2.2) again and again, we obtain

Lemma 4. If x ∈ (m, ci1) and (fij ◦· · ·◦fi1)(x) ∈ (m, cij+1
) for all 1 ≤ j ≤ k−1,

then

Hx

⋂

Si1i2···ik([0, 1]
l) = Si1i2···ik(H(fik◦···◦fi1 )(x)

∩ [0, 1]l)

When I ∈ Ξ, since there is only one i ∈ ∏l
i=1Ai such that I ⊂ (m, ci) and thus

the type t is uniquely determined by I, we can write fi to be fI for convenience.
If there is an admissible sequence Ii0Ii1 · · · Iik−1

Iik · · · of GΞ such that

(2.3) x ∈ int(Ii0) and gk(x) = (fIik−1
◦ · · · ◦ fIi0 )(x) ∈ int(Iik+1

) for all k,

then we say that x ∈ [m∗, m
∗] has an infinite coding Ii0Ii1 · · · Iik−1

Iik · · · of GΞ. By
Lemma 4 we have

Lemma 5. Let gk(x) = fIik−1
◦ · · · ◦ fIi0 (x) be defined as above. Then

(2.4) Hx

⋂

Si1i2···ik([0, 1]
l) = Si1i2···ik(Hgk(x) ∩ [0, 1]l).

Let

Λ = {x ∈ [m∗, m
∗] : x has an infinite coding in Ξ}.

On the other hand, given an admissible sequence Ii0Ii1 · · · Iik−1
Iik · · · in GΞ, by the

theorem of nested interval, there exists a unique x ∈ [m∗, m
∗] such that

(2.5) x ∈ Ii0 and gk(x) ∈ Iik+1
for all k.

That means

Λ̄ = {x ∈ [m∗, m
∗] : Ii0Ii1 · · · Iik−1

Iik · · · is admissible in GΞ such that

x ∈ Ii0 and gk(x) ∈ Iik+1
for all k}

and Λ̄\Λ ⊂ { q1
nq2

}q1,q2∈Z.
We will consider a graph-directed construction induced by Ξ. Suppose I1, I2 ∈ Ξ

with I1 → I2, the mapping

g(I1,I2) = (fI1)
−1|I2 : I2 → I1
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with contracting ratio n−1. Note that the open set condition holds for this graph-
directed construction. By the classical result of [22], there is a unique family of
compact subsets {FI}I such that FI ⊂ I for all I ∈ Ξ and

FI =
⋃

J∈E(I)
g(I,J)(FJ),

where E(I) denotes the set of ending vertex of the edge starting from I. Now, we
have

(2.6) Λ̄ =
⋃

I∈Ξ
FI with dimH(Λ̄) = s.

Moreover, if s > 0 then Hs
(

Λ̄
)

> 0 under the open set condition. Note that

Λ̄\Λ ⊂ { q1
nq2

}q1,q2∈Z

and dimH(Λ) = dimH(Λ̄), by Lemma 2, we have

Lemma 6. Let s = log ρ(M)
logn

. We have

(1) dimH Λ = s;
(2) If s > 0, then Hs(Λ) > 0, moreover, Hs(Λ) = ∞ if and only if there are two

strongly connected components Ξi and Ξj in Ξ such that ρ(Mi) = ρ(Mj) =
ρ(M) and Ξi ≺ Ξj . In particular, if M is irreducible, then 0 < Hs(Λ) <∞.

One can check the following lemma directly in terms of Lemma 2.

Lemma 7. Suppose ω is a congruent subset of Ξ and Ωi is the strongly connected
component of G∗ containing ω. Let

Aω = {z : vector (z + p)p∈D(ω) has an infinite coding in G∗ starting from ω}.

Then dω = dimH Aω = max
{

log ρ(Ωj)

logn
: Ωi ≺ Ωj

}

. If dω > 0, then Hdω(Aω) > 0.

2.3. Counting formula. For z ∈ [0, 1), we let

α(z) = (Card(Sz+m∗),Card(Sz+m∗+1), · · · ,Card(Sz+m∗−1))
T ,

and

σ : [0, 1) → [0, 1) such that σz = nz(mod 1).

Let {x} ∈ [0, 1) denote the decimal part of x = [x] + {x}, e.g. {−3.4} = 0.6.
Using these notations and matrix Tj in Section 1 and results in [20], we have

Lemma 8. Suppose the covering condition holds. Let x ∈ [m∗, m
∗]\{ q1

nq2
}q1,q2∈Z.

If

x = i+ n−1j1 + n−2j2 + · · ·+ n−kjk + · · · ,
i.e., x − i has n-adic expansion 0.j1j2 · · · jk · · · , then ‖eiTj1 · · ·Tjk‖1 is the number
of basic cubes of rank k intersecting the hyperplane Hx. Moreover, if the strong
separation condition holds for each Ki, then

(2.7) Card(Sx) = eiTj1 · · ·Tjkα(σk{x}) = ‖eiTj1 · · ·Tjk‖1.
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3. Dimension of set with unique solution

Proof of Theorem 1. (1) We can show that dimH U1 ≥ s. By Lemma 6, we only
need to verify that

(3.1) Λ\
{ q1
nq2

}

q1,q2∈Z
⊂ U1.

In fact, suppose x ∈ Λ\{ q1
nq2

}q1,q2∈Z has an infinite coding Ii1 · · · Iik · · · in GΞ, then
gk(x) ∈int(Iik+1

) for all k as in (2.3)–(2.4). From the definition of coding and (2.2)–
(2.4), we obtain a family of nested cubes {Qk}k such that Qk is a basic cube of rank k

and
(

∏l

i=1Ki

)

∩Hx ⊂ Qk for all k,which implies that the intersection
(

∏l

i=1Ki

)

∩Hx

is a singleton. Hence (3.1) follows. It follows from (3.1) and Lemma 6 that

Hs(U1) ≥ Hs(Λ) > 0 if s > 0.

If s = 0, for getting Hs(U1) > 0, we only need to show that U1 is non-empty. In fact,
we find Card(Sx) = 1 for x =

∑

mi<0mi(minxi∈Ki
xi)+

∑

mi>0mi(maxxi∈Ki
xi) which

implies U1 6= ∅.
(2) Suppose the covering condition holds. Assume that x /∈ { q1

nq2
}q1,q2∈Z with

Card(Sx) = 1 and y ∈ ∏l

i=1Ki is the unique solution such that (m,y) = x. Denote
by Nk the number of basic cubes with rank k which contain y. By the covering
condition and Lemma 1, we obtain

Nk+1 ≥ Nk for all k.

Note thatNk ≤ 2l for all k. Therefore, there is an integer k0 such thatNk0 = maxkNk.
Fix a basic cube Si1···ik0

([0, 1]l) of rank k0 containing y, by Lemmas 4 and 1 we obtain
that

(fik0 ◦ · · · ◦ fi1)(x) has an infinite coding of GΞ,

Hence

U1 ⊂ {x : (fik ◦ · · · ◦ fi1)(x) ∈ Λ for some fik ◦ · · · ◦ fi1},
Since {fik ◦ · · · ◦ fi1}i1···ik is a countable family, we obtain that

(3.2) dimH U1 ≤ dimH Λ.

It follows from (3.1)-(3.2) and dimH Λ = s (Lemma 6) that

dimH U1 = s

under the covering condition.
(3) Suppose the covering condition and the strong separation condition hold. It

follows from the strong separation condition that basic cubes of rank k are pairwise
disjoint. If x /∈ { q1

nq2
}q1,q2∈Z and Card(Sx) = 1 with the unique solution y, then for

each k there is a unique basic cube Qk of rank k containing y which means x ∈ Λ.
Therefore

(3.3) (U1 \ Λ) ∪ (Λ \ U1) ⊂
{ q1
nq2

}

q1,q2∈Z
.

The other part of Theorem 1 follows from Lemma 6 and (3.3). �
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4. Number of solutions

Proof of Theorem 2. Suppose

x = i+ n−1j1 + n−2j2 + · · ·+ n−kjk + · · · ∈ [m∗, m
∗]\
{ q1
nq2

}

q1,q2∈Z
.

Let Card(Sx) = r with solution set {y1, · · · ,yr}. Denote by Nk the number of basic
cubes of rank k intersecting {y1, · · · ,yr}. It follows from the covering condition that

Nk+1 ≥ Nk for all k.

Note that Nk ≤ r for all k due to the strong separation condition. Then there exists
an integer k0 such that Nk0 = r and thus

Card(Sx) = eiTj1 · · ·Tjk0α(σ
k0{x}) = ‖eiTj1 · · ·Tjk0‖1 = r

due to (2.7) in Lemma 8. Let (βm∗ , · · · , βm∗−1) = eiTj1 · · ·Tjk0 and D = {p : βp 6= 0}.
Then σk0{x}+ p ∈ U1 for all p ∈ D, that means σk0{x}+ p has an infinite coding in
GΞ for all p ∈ D. Hence

{

z ∈ [0, 1)\
{ q1
nq2

}

q1,q2∈Z
: (z + p)p∈D has an infinite coding in G∗

}

6= ∅.

On the other hand, if r = ‖eiTj1 · · ·Tjk‖1 with eiTj1 · · ·Tjk = (βm∗ , · · · , βm∗−1)
and D = {p : βp 6= 0} satisfying

{

z ∈ [0, 1)\
{ q1
nq2

}

q1,q2∈Z
: (z + p)p∈D has an infinite coding in G∗

}

6= ∅.

Then we can construct

x =
(

i+
∑k0

k=1
n−kjk + n−k0z

)

∈ [0, 1)\
{ q1
nq2

}

q1,q2∈Z

and obtain that Card(Sx) = r using (2.7) again. �

Proof of Theorem 3. (1) First we will show that dimH Ur ≤ log ρ(M)
logn

. Let

Card(Sx) = r with solution set {y1, · · · ,yr}. Denote by Nk the number of basic
cubes of rank k intersecting {y1, · · · ,yr}. It follows from the covering condition that

Nk+1 ≥ Nk for all k.

Note that Nk ≤ 2lr for all k. Therefore, there exists an integer k0 such that Nk0 =
maxkNk. Fix a basic cube Si1···ik0

([0, 1]l) of rank k0 intersecting {y1, · · · ,yr}, by
Lemma 4, we obtain that

(fik0 ◦ · · · ◦ fi1)(x) has an infinite coding of GΞ.

Hence
Ur ⊂ {x : (fik ◦ · · · ◦ fi1)(x) ∈ Λ for some fik ◦ · · · ◦ fi1},

Since {fik ◦ · · · ◦ fi1}i1···ik is a countable family, we obtain

dimH Ur ≤ dimH Λ =
log ρ(M)

logn
.

(2) We will obtain the dimension of Ur. Suppose Ur is uncountable. Let x =
i+ n−1j1 + n−2j2 + · · ·+ n−kjk + · · · ∈ [m∗, m

∗]\{ q1
nq2

}q1,q2∈Z. Suppose Nk is defined
as above, by the above discussion, there exists an integer k0 such that Nk0 = r and
thus

(4.1) Card(Sx) = eiTj1 · · ·Tjk0α(σ
k0{x}) = ‖eiTj1 · · ·Tjk0‖1 = r
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due to (2.7) in Lemma 8. Let (βm∗ , · · · , βm∗−1) = eiTj1 · · ·Tjk0 and Dx = {p : βp 6= 0}.
When x is fixed, we use D to replace Dx for notational convenience.

Then the above formula (4.1) implies that

σk0{x}+ p ∈ U1 if p ∈ D.

Let σk0{x} ∈ n−1[hx, hx + 1). Then σk0{x} + p ∈ Λ has an infinite coding in GΞ for
any p ∈ D. Let

FD = {ωh : ωh = {n−1[np+ h, np+ h + 1]}p∈D ∈ Ξ with h ∈ [0, (n− 1)] ∩ Z}.
Suppose ωh ∈ FD and Ωi(h,D) is the strongly connected components containing ωh. If
σk0{y} = z ∈ n−1[h, h+ 1), using the formula in Lemma 8 we have

Card(Sy) = eiTj1 · · ·Tjk0α(z) = (βm∗ , · · · , βm∗−1)α(z) = r,

i.e.,
{

y = i+
∑k0

k=1
n−kjk + n−k0z : z ∈ Λ ∩ [0, 1) whenever p ∈ D

}

⊂ Ur.

In fact, σk0{y}+ p ∈ Λ for all p ∈ D implies that (z + p)
p∈D has an infinite coding in

G∗ starting from ωh, i.e., z ∈ Aωh
, where Aωh

is defined in Lemma 7. Using Lemma
7 we have

dimH Ur ≥ dimH Aωh
= max

{

log ρ(Ωj)

logn
: Ωi(h,D) ≺ Ωj

}

for any ωh ∈ FD = FDx
. In particular, for d′ = max

{

log ρ(Ωj)

logn
: Ωi(h,D) ≺ Ωj

}

, using

Lemma 7 again we have

(4.2) Hd′(Ur) ≥ (n−k0)d
′Hd′(Aωh

) > 0 if d′ > 0.

Let G = {Dx : Card(Sx) = r}. The above discussion shows that

if x ∈ Ur\{
q1
nq2

}q1,q2∈Z, then σk0{x} ∈ Aωhx
for some k0.

Hence

dimH(Ur) = dimH

(

Ur\{
q1
nq2

}q1,q2∈Z
)

≤ max
D∈G

dimH

(

⋃

ω∈FD
Aω

)

≤ max
D∈G

max
ωh∈FD

max

{

log ρ(Ωj)

log n
: Ωi(h,D) ≺ Ωj

}

.

i.e.,

(4.3) dr = dimH Ur = max
D∈G

max
ωh∈FD

max

{

log ρ(Ωj)

log n
: Ωi(h,D) ≺ Ωj

}

.

By (4.2) and (4.3), we obtain that

Hdr(Ur) > 0 if dr > 0.

It suffices to show that dr > 0. In fact, by the above discussion we have

(4.4) Ur ⊂
⋃

D∈G

⋃

ωh∈FD

⋃

(i,j1,···jk0)

{

y = i+
∑k0

k=1
n−kjk + n−k0z : z ∈ Aωh

}

,

where Ur = Ur\{ q1
nq2

}q1,q2∈Z. Note that

dr = max
D∈G

max
ωh∈FD

dimH(Aωh
).

If dr = 0, then dimH(Aωh
) = 0 for all ωh which implies that Aωh

is countable for all
ωh due to Claim 1. Using (4.4) we obtain that Ur is countable, this is a contradiction.
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(3) Now we will obtain the infinity of Hausdorff measure Hdr(Ur) when

Ur = Ur\{
q1
nq2

}q1,q2∈Z 6= ∅ with r ≥ 2

and [m∗, m
∗] is dominated by Ξ for dr. Take x ∈ Ur and ωh ∈ FDx

such that

max

{

log ρ(Ωj)

logn
: Ωi(h,D) ≺ Ωj

}

= dr,

where Ωi(h,D) is the strongly connected component containing ωh. It follows from
Lemma 7 that

Hdr(Aωh
) > 0.

Since [m∗, m
∗] is dominated by Ξ for dr, we note that for x = i+

∑k0
k=1 n

−kjk+· · · ∈ Ji
as above, we take a strongly connected component Ξj of GΞ with

log ρ(Ξj)

logn
≥ dr such

that there is a path P′ in GΞ from some I ∈ Ξj to an integer interval I ′ ∈ Ξ of type
i. Let

Ck = {P : P is a path in Ξj ending at I and |P| = k},
where |P| denotes the length of the path. Then we obtain a family {Bk}k of pairwise
disjoint subsets of Ur as follows

Bk =
{

PP′(i+
∑k0

k=1
n−kjk + n−k0z) : P ∈ Ck and z ∈ Aωh

}

for k = 1, 2, · · · ,
where the coding PP′x1 denotes a real number which is turned to be x1 ∈ [t, t + 1]
through a series of expanding maps with respect to the path PP′ in Ξ and the
expanding map according to I ′ ֌ Ji. Hence

(4.5) Hdr(Bk) ≥ Card(Ck)(n−(k+k0)drHdr(Aωh
)),

and there is a constant c > 0 such that

(4.6) Card(Ck) ≥ cρ(Ξj)
k ≥ cndrk.

Here we can check Card(Ck) ≥ cρ(Ξj)
k in (4.6), because by the irreducibility we can

take a Perron–Frobenius eigenvector γ of the matrix Mj w.r.t. Ξj such that ‖γ‖1 = 1,
and thus

Card(Ck) ≥ c‖Mk
j (1, · · · , 1)T‖1 ≥ c‖Mk

j γ‖1 = c‖ρ(Ξj)
kγ‖1 ≥ cρ(Ξj)

k.

It follows from (4.5) and (4.6) that there is a constant c′ > 0 such that

Hdr(Bk) ≥ c′ for all k.

Hence

Hdr(Ur) ≥ Hdr

(

⋃

k

Bk

)

≥
∑

k
Hdr (Bk) = +∞. �

5. Final remarks

From the slicing point of view, our results can be restated. For instance, the
results concerning with the set Ur = {x : Card(Sx) = r} (r < ∞) in Theorems 1, 2
and 3 are still correct for the following systems: let K ⊂ [0, 1]l be a self-similar set
with IFS {y → n−1(y + a)}a∈A, where A ⊂ {0, 1, · · · , (n− 1)}l. We do not need to
modify the definitions of the directed graphs and the proofs.

The covering condition is essential in this paper. Without this condition, it is
much more difficult to analyze the set Ur. We shall discuss this case in another
paper. Our main ideas may be implemented in the setting of some overlapping self-
similar sets. Nevertheless, the discussion is more complicated. We consider only the
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addition or subtraction on the Cantor sets. It is natural to consider similar problems
for the multiplication or division on self-similar sets, for instance, the set of points
with unique representations.
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