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Abstract. In this paper, we are concerned with the existence of weak solutions for the

Schrödinger equation with sign-changing potential in a smooth cone. For solving the Dirichlet

boundary-value problem with respect to the Schrödinger operator, we prove the existence of at

least one weak solution using changes of Schrödingerean harmonic measure, the energy estimate

method and refined inequality technique. Due to the fact that the nonlinearity is allowed to change

sign in our formulation, and the novelty of the boundary conditions, these results are new for dis-

crete and arbitrary time scales. As an application, concentration results are also investigated.

1. Introduction and main results

In this paper, we denote the set R+ × Ω with the domain Ω on S
n−1 by Cn(Ω),

where S
n−1 denotes the unit sphere in R

n (n ≥ 2). And we call it a cone. As in
[7, 17], we also consider the following Schödinger equation

(1) −△u+ a(P )u(P ) = 0,

where P ∈ Cn(Ω) and a is a nonnegative radical potential satisfying certain con-
ditions. Fractional Laplacian can be understood as the infinitesimal generator of a
stable Lèvy diffusion process, and appears in anomalous diffusions in plasmas, flames
propagation and chemical reactions in liquids, population dynamics, geographical
fluid dynamics, and American options in finance. Please see [1, 3, 20] for more
physical background.

In [19], when a is not a radical potential, using variational method, the authors
studied the existences and multiplicity results for the following critical Schödinger
equation

(2) (−△)su+ a(P )u(P ) = 0

where P ∈ Cn(Ω), 0 < s ≤ 1 and the potential a satisfies the following condition

(3) 0 < inf
P=(r,Θ)∈Cn(Ω)

a(P ) < lim
r→∞

a(P ) = a∞ < ∞.

Invoking Ljusternick-schnirelmann category and Morse theory (see [6]), we inves-
tigate the existences and multiplicity results for the following problem

(4) ǫ2s(−△)su+ a(P )u(P ) = f(u),

where P ∈ Cn(Ω). They required that a has a positive lower bound. In [4], the
authors studied (4) via penalization method. They needed a has a positive lower
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bound and the following local condition

0 < c = inf
P∈Λ

a(P ) < inf
P∈∂Λ

a(P ) ,

where Λ is open bounded set of Cn(Ω). In [11], the author considered the Schödinger
equation by Lagrange multiplier method when a has a positive lower bound and

lim
r→∞

a(P ) = ∞.

When ǫ → 0, (4) is equal to the following Schödinger equation

(−△)su+ λa(P )v = f(P, u),

where P ∈ Cn(Ω). However, for

f(P, u) = V (P )|u|p−2u+W (P )|u|q−2u,

where 2 < q < p < 2∗s, the case is different. Especially, W is allowed to be sign-
changing or negative.

In the present paper, our aim is to investigate, a is sign-changing, λ is large, the
existences and concentration results for the Schödinger equation. More precisely, we
are devoted to study the following problem

(5) (−△)su+ a(P )uλ+ ua0(P ) = |u|p−2uV (P ) +W (P )|u|q−2u,

where P ∈ Cn(Ω), λ is large enough and 2 < q < p < 2∗s.
It is well known that there exists no results in literatures on (5) if a is sign-

changing.
Throughout this paper, we always make the following assumptions:

(I) a0 ∈ L∞(Cn(Ω)) and a0 := infx∈RN a0(P ) > 0.
(II) a ∈ C(Cn(Ω), R) and a is bounded from below.

(III) The set {P ∈ Cn(Ω) : a(P ) < b} has finite measure and is nonempty, where b

is a positive constant.
(IV) Define Ω = int a−1(0). Then it is easy to see that it has smooth boundary

and is nonempty. Meanwhile, Ω = a−1(0).
(V) V (P ) ∈ L∞(Cn(Ω)), V0 := infP∈Cn(Ω) V (P ) > 0, and there exists a positive

constant C(λ) satisfying ‖V0‖L∞ ≤ C(λ).
(VI) W (P ) ∈ L∞(Cn(Ω)). W is sign-changing or negative and

{P ∈ Cn(Ω) : W (P ) ≥ 0}

has finite measure.

Theorem 1.1. If a changes its sign, then (5) has at least a weak solution uλ.

Theorem 1.2. If a(P ) ≥ 0, then (5) has at least a weak solution uλ. Further-
more, uλ → u in Hs(Cn(Ω)) as λ → ∞, where u is a weak solution of

{

(−△)su+ a0(P )u = |u|p−2uV (P ) +W (P )|u|q−2u, in Ω,

u = 0, on ∂Ω.

Remark 1.1. If W satisfies W (P ) ∈ L∞(R),W0 := infx∈Cn(Ω)W (P ) > 0. The-
orems 1.1 and 1.2 remain true. In fact, we only need to modify our proofs mildly.

Remark 1.2. a may be coercive or not coercive.

In [13], a(P ) with (V1)–(IV) is first referred as the steep well potential in the
study of nonlinear Schrödinger equation. For more details, the reader is referred to
the papers [9, 10, 23, 22], to the book [15] and to the excellent article [18]. Recently,
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Properties of weak solutions for the stationary Schrödinger equation with radical
potential in a smooth cone and cylinder were studied in [13, 12, 11].

We should point out that we need to reestablish the eigenvalue problem of frac-
tional Schrödinger. And during the research, there are some technical difficulties
to recover compact condition. cλ is uniformly bounded about λ is used to recover
compactness, so we need a elaborate estimate since it is different from Schrödinger
equations. It is very interesting that the initial thought in our present paper is to
study concentration results when V is sign-changing, but we fail since it seems to
need a(P ) ≥ 0 in (5) to obtain {uλ} is bounded in E.

Denote Lebesgue measure of A by |A|. | · |p is the usual norm of Lp(Cn(Ω)). C

and Ci are positive constants, which may be different from line to line. At first, we
recall (−△)s : S → L2(Cn(Ω)) is defined by (see [24])

(−△)su(P ) =

ˆ

Cn(Ω)

u(P )− u(Q)

|P −Q|n+2s
dQ,

where S is be the Schwartz space of rapidly decaying C∞ functions in Cn(Ω). The
Sobolev space HS(Cn(Ω)) is defined as

Hs(Cn(Ω)) =

{

u ∈ L2(Cn(Ω))
|u(P )− u(Q)|2

|P −Q|n+2s
∈ L1(Cn(Ω)× Cn(Ω))

}

endowed

(u, v)Hs =

ˆ

Cn(Ω)

((−△)
s
2u(−△)

s
2v + uv) dP

and norm

‖u‖2Hs =

ˆ

Cn(Ω)

(|(−△)s2u|2 + u2) dP.

Let

E = {u ∈ Hs(Cn(Ω)) :

ˆ

Cn(Ω)

a+(P )u2 dP < ∞},

be equipped with

(u, v) =

ˆ

Cn(Ω)

(

(−△)
s
2u(−△)

s
2 v + a+(P )uv

)

dP

and
‖u‖ = (u, u)

1
2 .

Fixed λ > 0,

(u, v)λ =

ˆ

1Cn(Ω)

(

(−△)
s
2u(−△)

s
2 v + λa+(P )uv

)

dP, ‖u‖λ = (u, u)
1
2

λ

Set Eλ = (E, ‖ · ‖λ). Clearly, ‖u‖ ≤ ‖u‖λ.

Lemma 1.1. E →֒ HS(Cn(Ω)) →֒ Lt(Cn(Ω)) for t ∈ [2, 2s∗] and E →֒ Lt
loc
(Cn(Ω))

for t ∈ [1, 2s∗) is compact.

Proof. Noting that (III) , it holds that a+(P ) 6≡ 0. Denote

A(R) := {P = (r,Θ) ∈ Cn(Ω), R < r, b ≤ a+(P )},

B(R) := {P = (r,Θ) ∈ Cn(Ω), R < r, b > a+(P )}.

Obviously,
ˆ

A(R)

u2 dP ≤
1

b

ˆ

Cn(Ω)

u2 dP.
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Since Hölder inequality and (4) of [14], jointly with |B(R)| < ∞, we obtain
ˆ

B(R)

u2 dP ≤ C

ˆ

Cn(Ω)

|(−△)
s
2u|2 dP.

Similarly,
ˆ

Cn(Ω;(0,R])

u2 dP ≤ C

ˆ

Cn(Ω)

|(−△)
s
2u|2 dP.

Therefore E →֒ HS(Cn(Ω)). It is well known that HS(Cn(Ω)) →֒ Lp(Cn(Ω)) is
continuous. The compact embedding follows from Rellich compactness theorem. �

The functional of (5) can be written as follows

Iλ(u) =
1

2

ˆ

Cn(Ω)

(|(−△)
s
2u|2 + λa(P )u2 + a0(P )u2) dP

−
1

p

ˆ

Cn(Ω)

V (P )|u|p dP −
1

q

ˆ

Cn(Ω)

W (P )|u|p dP.

(6)

Clearly, using Lemma 1.1 and Lebesgue dominated theorem, Iλ is C1 on E.
u ∈ HS(Cn(Ω)) is a weak solution of (5) if and only if I ′λ(u) = 0. Since a is sign-
changing, the quadric form

aλ(u, u)

ˆ

Cn(Ω)

(|(−△)
s
2u|2 + λa(P )u2) dP

is indefinite. Denote

D := {u ∈ E : supp u ⊂ a−1([0, ∞])}

and

F = D
‖·‖λ

= {u ∈ E : supp u ⊂ a−1([0,∞])}
‖·‖λ

,(7)

which means that F is closure of D under the norm ‖ · ‖λ. According to [16, The-
orem 12.4], there exists a closed subspace M such that Eλ = F ⊕M . If a(P ) ≥ 0,
then E = F .

Consider the bilinear form

aλ(u, v) =

ˆ

Cn(Ω)

((−△)
s
2u(−△)

s
2 v + λa(P )uv) dP,

and the eigenvalue problem

(8) (−△)su+ λa+(P )u = αλV −(P )u,

where u ∈ M .
Let A := supp a−. Noting that (III), it holds |A| < ∞. It is easy to check that

there is C > 0, such that for any u ∈ M,
ˆ

Cn(Ω)

(|(−△)
s
2u|2 + λa+(P )u2) dP ≥ C

ˆ

A

λa−(P )u2 dP,(9)

W (u) :=

ˆ

Cn(Ω)

(|(−△)
s
2u|2 + λa+(P )u2) dP.(10)

Lemma 1.2.

α1(λ) = inf
06=u∈M

W (u)
´

A
λa−(P )u2 dP

> 0

is achieved and α1(λ) is the smallest eigenvalue of (8).
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Proof. The proof is standard (see [8, p. 74]). The difference is that M is not
the whole space Eλ. But M is convex closed set. Let {uk} ⊂ M be a minimizing
sequence. In view of M is convex closed set, there exists u ∈ M such that uk ⇀ u in
Eλ. Combining with compact embedding Lemma 1.1, similarly to [8], we obtain the
desired conclusions. �

Similarly to [8, p. 80] (see also [5, p. 13]), λ > 0, we can define αj(λ), j = 2, 3, . . ..
The following results are essentially known.

Proposition 1. Each eigen-subspace is finite dimensional.

Proposition 2. Fixed λ > 0, αj(λ)
j→∞
−−−→ 0.

Proposition 3. The eigenfunctions for different eigenvalue are orthogonal in Eλ.

Lemma 1.3. Fixed j, aj(λ)
λ→∞
−−−→ 0.

Proof. Here we may always assume j ≥ 2. Let ui ∈ M be the corresponding
eigenfunctions of αi(λ), i = 1, 2, . . . , j − l). Denote Vj−1 = span{ui, i = 1, 2, . . . , j−
1}. V ⊥

j−1 denotes the orthogonal complement of Vj−1 in L2. Let u ∈ C∞
0 (Cn(Ω)) such

that supp u ⊂ supp a−, supp u ∩ supp ui = ∅, 1 ≤ i ≤ j − 1. Thus it holds that

αj(λ) ≤

´

Cn(Ω)
|∇u|2

λ
´

Cn(Ω)
a−(P )u2

→ 0 as λ → ∞. �

It follows that there exists Λ > 0 satisfying

Êλ := span{ej αj(λ) ≤ 1}(11)

when λ > Λ from Lemma 1.3 is not empty and aλ(u, u) is negative semidefinite in Êλ,
where ej is the corresponding eigenfunctions of αj(λ). Set E+

λ := span{ej αj(λ) > 1}.

In the light of Propositions 1 and 3, Eλ = M ⊕ F = Êλ ⊕E+
λ ⊕ F and dimEλ < ∞.

2. Proof of Theorem 1.1

We shall prove that Iλ satisfies linking geometric construction of [21, Theo-
rem 2.1.2].

Lemma 2.1. For each λ > Λ, there exist ρλ > 0 and κλ > 0 such that

Iλ(u) ≥ κλ,

for all u ∈ E+
λ ⊕ F with ‖u‖λ = ρλ.

Proof. By the definition of E+
λ , there is δλ > 0 satsifying

aλ(u, u) ≥ δλ‖u‖
2
λ

for u ∈ E+
λ and

aλ(u, u) = ‖u‖2λ,

where u ∈ F . Thus for u = v + w ∈ E+
λ ⊕ F , invoking Sobolev embedding, we get

Iλ(u) =
1

2
aλ(v, v) +

1

2
aλ(w, w) +

1

2

ˆ

Cn(Ω)

a0(P )u2 dP

−
1

p

ˆ

Cn(Ω)

V (P )|u|p dP −
1

q

ˆ

Cn(Ω)

W (P )|u|q dP

≥
1

2
min{δλ, 1}‖u‖2λ − C1‖u‖

p
λ − C2‖u‖

q
λ.(12)
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Taking ǫ > 0, ρλ > 0 and κλ > 0 small enough, we have the desired conclusion. �

By (IV), we take e0 ∈ C∞
0 (Ω) , then e0 ∈ F .

Lemma 2.2. For each λ > Λ, there exists Rλ > 0 such that

sup
u∈∂Q

Iλ(u) < κλ,

where
Q = {u = v + te0 : v ∈ Êλ, t ≥ 0, ‖u‖λ ≤ Rλ}.

Proof. In view of (V) and (VI) , there exist C1 > 0, C2 > 0 such that

1

p
V (P )|u|p +

1

q
W (P )|u|q ≥ C1|u|

p − C2|t|
q.

If u = v + w ∈ Êλ ⊕Re0, noting that

aλ(u, u) = aλ(v, v) + aλ(w, w) ≤ ‖u‖2λ,

jointly with all the norms on finite dimensional space are equivalent and q < p, we
obtain

Iλ(u) ≤ C‖u‖2λ + C3‖u‖
q
λ − C4‖u‖

p
λ

‖u‖λ→∞
−−−−−→ −∞.

Therefore, there exists Rλ > 0 such that Iλ(u) ≤ 0 for u ∈ Êλ⊕Re0 with ‖u‖λ = Rλ∧
.

If u ∈ Êλ, then we have

Iλ(u) ≤
1

2

ˆ

Cn(Ω)

a0(P )u2 dP + C3‖u‖
q
λ − C4‖u‖

p
λ.

So we also obtain the conclusion. �

According to Lemmas 2.1 and 2.2, Iλ has a sequence {un} ⊂ Eλ, i.e.,

(13) Iλ(un) → c, (1 + ‖un‖λ)I
′
λ(un) → 0 in E∗

λ.

Lemma 2.3. {un} is bounded (dependent on λ) in Eλ.

Proof. For n large enough, we have

Iλ(un)−
1

q
〈I ′λ(un), un〉 =

(

1

2
−

1

q

)

‖un‖
2
λ −

(

1

2
−

1

q

)
ˆ

Cn(Ω)

λa−(P )u2
n dP

+

(

1

2
−

1

q

)
ˆ

Cn(Ω)

a0(P )u2
n dP

+

(

1

q
−

1

p

)
ˆ

Cn(Ω)

V (P )|un|
p dP = c+ 1.

(14)

Thus, combining with (II), we get

‖un‖
2
λ ≤ C1λ

ˆ

Cn(Ω)

u2
n dP + C2.

Thus it suffices to prove that {un} is bounded in L2(Cn(Ω)) . If
ˆ

Cn(Ω)

u2
n dP

n→∞
−−−→ ∞.

Denote vn =
un

|un|2
, then |vn|2 = 1. By (14), we have

(15) ‖vn‖
2
λ +

ˆ

Cn(Ω)

a0(P )v2n dP −

ˆ

Cn(Ω)

λa−(P )v2n dP ≤
C

|un|22
.
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Consequently, {‖vn‖
2
λ} is bounded and

(16)

ˆ

Cn(Ω)

a(P )v2n dP ≤
C

|un|22

n→∞
−−−→ 0.

Up to a subsequence we can assume vn ⇀ v in Eλ. It is easy to obtain v = 0
from (15) and Fatou’s lemma. Thus, we have
ˆ

Cn(Ω)

a(P )v2n dP =

ˆ

{x : a(P )≥b}

a(P )v2n dP+

ˆ

{x : a(P )<b}

a(P )v2n dP

≥ b

(

1−

ˆ

{x : a(P )<b}

a(P )v2n dP

)

+ on(1) ≥ b+ on(1) > 0,

which contracts with (16). �

Next lemma will be used in Lemma 2.5 to prove (C)c condition.

Lemma 2.4. cλ is uniformly bounded about λ.

Proof. In the light of [21, Theorem 2.1.2], cλ ∈ [κκ, supu∈Q Iλ(u)]. We only need
to prove supu∈Q Iλ(u) has a positive bound from above independent of λ. Set

Jλ(u) :=
1

2
aλ(u, u) +

1

2

ˆ

Cn(Ω)

a0(P )u2 dP − C1

ˆ

Ω

|u|q dP,

where u ∈ Eλ.
A simple estimate, Iλ(u) ≤ Jλ(u). It follows that there exists rη > 0 satisfying

{

C1|u|
q ≥ 1

2
ηu2, |u| ≥ rη,

C1|u|
q ≤ 1

2
ηu2, |u| ≤ rη,

for any η > 0. Let u = v + w ∈ Êλ ⊕ Re0. It holds that

Jλ(u) ≤
1

2

ˆ

Cn(Ω)

|(−△)s2w|2 dP +
1

2

ˆ

Cn(Ω)

a0(P )u2 dP −
1

2
η

ˆ

Ω

u2 dP

+

ˆ

{x∈Ω: |u(P )|≤rη}

(

1

2
ηu2 − C1|u|

q

)

dP

≤
1

2

ˆ

Cn(Ω)

|(−△)s2w|2 dP + C‖V0‖L∞‖u‖2λ −
η

2

ˆ

Ω

u2 dP + C(η).

(17)

In view of e0 ∈ C∞
0 (Ω) , we get

(18)

ˆ

Cn(Ω)

|(−△)
s
2w|2 dP = aλ(u, w) =

ˆ

Ω

u(−△)sw dP ≤ |(−△)sw|L2(Ω)|u|L2(Ω).

Let (ϕk, µk) be the eigenfunctions and eigenvalues of −△ in Ω with Dirichlet
boundary data. According to [2, Lemmas 3.4 and 3.5], it holds

(19) ‖(−△)sw‖L2(Ω) =

(

∞
∑

k=1

a2kµ
s
k

)
1
2

< ∞,

where

ak =

ˆ

Ω

wϕk dP.
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In view of 0 < µ1 ≤ µ2 · · · ≤ µk · · · and µk → ∞ as k → ∞, we get

(20) ‖(−△)
s
2w‖L2(Ω) =

(

∞
∑

k=1

a2kµ
s
2

k

)

1

2
< ∞.

So

‖(−△)sw‖L2(Ω) ≤ C0‖(−△)
s
2w‖L2(Ω),

where C0 is only dependent with e0.
Noting that (18)–(20) , using Young inequality, it is easy to check

(21)

ˆ

Cn(Ω)

|(−△)
s
2w|2 dP ≤

2

η
C2

0‖(−△)
s
2w‖2L2(Ω) +

η

2
‖u‖2L2(Ω).

Let η ≥ 4C2
0 . Then

ˆ

Cn(Ω)

|(−△)
s
2w|2 u‖2L2(Ω).

If ‖V0‖L∞ ≤
2

CR2
λ

, according to (17), we have Jλ(u) ≤ C(η) + 1. �

Lemma 2.5. Let M be any positive constant. There is Λ = Λ(M) > 0 such
that (C)c sequence {un} satisfies un → u in Eλ, where u is a weak critical point of
Iλ or Iλ satisfies (C)c condition, where c ≤ M.

Proof. In view of Lemma 2.3, if necessary going to a subsequence, un ⇀ u in Eλ.
Since V is sign-changing, we need to divide into two cases:

Case (i). Iλ(u) < 0.
Case (ii). Iλ(u) ≥ 0.
If (i) holds, then it is easy to see that u is weak and the proof is completed. If

(ii) holds, then we will show that un → u in Eλ. Let vn = un − u. By (iii),

(22)

ˆ

Cn(Ω)

v2n dP =

ˆ v2n

{x : a(P )≥b}

dP +

ˆ vn

{x : a(P )<b}

dP ≤
1

λb
‖vn‖

2
λ + on(1).

Thus, it follows from interpolation inequality and Sobolev inequalities that

(23) |vn|p ≤ |vn|
σ
2 |vn|

1−σ
2∗s

≤ d|vn|
σ
2 |(−△)

1

2 vn|
1−σ
2 ≤ d(λb)−

σ
2 ‖vn‖λ + on(1),

where 0 < σ < 1, d is a constant. We have

(24) Iλ(vn) = Iλ(un)− Iλ(u) + on(1), I ′λ(vn) = I ′λ(un) + on(1)

from Brezis–Lieb lemma.
A direct computation, there holds that

(

1

q
−

1

p

)
ˆ

Cn(Ω)

V (P )|vn|
p dP ≤ Iλ(vn)−

1

q
〈I ′λ(vn), vn〉

= c− Iλ(u) + on(1) ≤ M + on(1).

Therefore,

|vn|
p
p ≤

Mpq

V0(p− q)
+ on(1).(25)

Noting that condition (VI) and
ˆ

Cn(Ω)

λa−(P )v2n dP = on(1),
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it follows from (22)–(25) that

on(1) = 〈I ′λ(vn), vn〉 ≥ ‖vn‖
2
λ − C1|vn|

p
p + on(1)

≥

(

1− C1

(

Mpq

V0(p− q)

)
p−2

p d2

(λb)σ

)

‖vn‖
2
λ + on(1).

(26)

Choosing A large enough, we get vn → 0 in Eλ. �

3. Proof of Theorem 1.2

According to our assumptions on Theorem 1.2, we obtain that Iλ has mountain
pass geometry. Invoking [14, Theorem 2.2], Iλ has a Cc sequence. Note that Êλ = {0}
does not influence the results of Lemmas 2.3 and 2.5. Similarly to Lemmas 2.3 and
2.5, we obtain a weak critical point uλ for Iλ with Iλ(uλ) ∈ [κ, C0] for λ large enough
where κ and C0 are independent of λ.

A direct computation, we get

cλn
= Iλn

(un)−
1

q
〈I ′λn

(un), un〉

=

(

1

2
−

1

q

)

‖un‖
2
λn

+

(

1

2
−

1

q

)
ˆ

Cn(Ω)

a0(P )u2
n dP

+

(

1

q
−

1

p

)
ˆ

1Cn(Ω)

V (P )|un|
p dP ≥ (

1

2
−

1

θ
)‖un‖

2
λn
.

(27)

It follows from (27) that {un} is bounded in E. After extracting a subsequence,
we may assume un ⇀ u in E. We have

(28)

ˆ

Cn(Ω)

a(P )u2 dP ≤ lim
n→

inf
∞

ˆ

Cn(Ω)

a(P )u2
n dP ≤ lim

n→
inf
∞

‖un‖
2
λn

λn

= 0

from Fatou’s Lemma.
So u = 0 a.e. in Cn(Ω)\a

−1(0), u ∈ Hs
0(Ω) by (IV). Since for any ϕ ∈ C∞

0 (Ω),
〈I ′λn

(un), ϕ〉 = 0, it is easy to check u is a weak solution of (5). To complete the
proof, we only need to prove un → u in E and u 6= 0. The proof is almost standard
and we refer the readers to [14, Section 3.5] with slight modification. Here we sketch
the proof for the readers’ convenience.

Step 1. Using Lions vanishing [21, Lemma 12.1], we have un → u in Lt(Cn(Ω))
for 2 < t < 2∗s.

Step 2. By 〈I ′λn
(un), un〉 = 〈I ′λn

(un), û〉 we get un → u in E.
Step 3. u 6= 0 is obtained since un 6= 0 and un → u in E.
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