
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 1093–1099

REGULARITY OF THE DERIVATIVES

OF p-ORTHOTROPIC FUNCTIONS

IN THE PLANE FOR 1 < p < 2

Diego Ricciotti

University of South Florida, Department of Mathematics and Statistics
4202 East Fowler Avenue, Tampa, FL 33620, U.S.A.; ricciotti@usf.edu

Abstract. We present a proof of the C1 regularity of p-orthotropic functions in the plane for

1 < p < 2, based on the monotonicity of the derivatives. Moreover we achieve an explicit logarithmic

modulus of continuity.

1. Introduction

In this work we investigate the regularity of p-orthotropic functions in the plane
for 1 < p < 2. Let Ω ⊂ R

2 be an open set. A weak solution of the orthotropic
p-Laplace equation (also known as pseudo p-Laplace equation) is a function u ∈
W 1,p(Ω) such that

(1.1)

2
∑

i=1

ˆ

Ω

|∂iu|
p−2∂iu ∂iφ dx = 0 for all φ ∈ W 1,p

0 (Ω).

Equation (1.1) arises as the Euler–Lagrange equation for the functional

(1.2) IΩ(v) =

2
∑

i=1

ˆ

Ω

|∂iv|
p

p
dx.

The equation is singular when either one of the derivatives vanishes, and does not fall
into the category of equations with p-Laplacian structure. It was proved by Bousquet
and Brasco in [1] that weak solutions of (1.1) for 1 < p < ∞ are C1(Ω). A simple
proof which gives a logarithmic modulus of continuity for the derivatives is contained
in [6] for the case p ≥ 2. The latter relies on a lemma on the oscillation of monotone
functions due to Lebesgue [5] and the fact that derivatives of solutions are monotone
(in the sense of Lebesgue). The purpose of this work is to extend this result to the
case 1 < p < 2 employing methods developed in [6]. We obtain the following:

Theorem 1.1. Let Ω ⊂ R
2 and u ∈ W 1,p(Ω) be a solution of the equation (1.1)

for 1 < p < 2. Fix a ball BR ⊂⊂ Ω. Then, for all j ∈ {1, 2} and Br ⊂⊂ BR/2, we

have

(1.3) osc
Br

(∂ju) ≤ Cp

(

log

(

R

r

))− 1
2
(
 

BR

|∇u|p dx

)
1
p

,

where Cp is a constant depending only on p.

Notation. We indicate balls by Br = Br(a) = {x ∈ R
2 : |x − a| < r} and

we omit the center when not relevant. Whenever two balls Br ⊂ BR appear in a
statement they are implicitly assumed to be concentric. The variable x denotes the
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vector (x1, x2) and we denote the partial derivatives of a function f with respect to
xj as ∂jf .

2. Regularization

We will consider a regularized problem by introducing a non degeneracy param-
eter ǫ > 0. Fix BR ⊂⊂ Ω ⊂ R

2 and consider the regularized Dirichlet problem

(2.1)

{

∑2
i=1

´

BR
(|∂iu

ǫ|2 + ǫ)
p−2
2 ∂iu

ǫ ∂iφ dx = 0

uǫ − u ∈ W 1,p
0 (BR).

Note that uǫ is the unique minimizer of the regularized functional

(2.2) IǫBR
(v) =

2
∑

i=1

ˆ

BR

1

p
(|∂iv|

2 + ǫ)
p
2 dx

among W 1,p(BR) functions v such that v − u ∈ W l,p
0 (BR). By elliptic regularity

theory, the unique solution uǫ of (2.1) is smooth in BR.
Fix an index j ∈ {1, 2}. Then, replacing φ by ∂jφ in equation (2.1) and integrat-

ing by parts, we find that the derivative ∂ju
ǫ satisfies the following equation

(2.3)
2
∑

i=1

ˆ

BR

(ǫ+ |∂iu
ǫ|2)

p−4
2 (ǫ+ (p− 1)|∂iu

ǫ|2) ∂i∂ju
ǫ ∂iφ dx = 0

for all φ ∈ C∞
0 (BR).

We now collect some uniform estimates and convergences (see also [1]).

Lemma 2.1. Let u ∈ W 1,p(Ω) be a solution of (1.1) and uǫ be a solution of

(2.1) for 1 < p < 2. Then we have

(2.4)

ˆ

BR

|∇uǫ|p dx ≤ Cp

(
ˆ

BR

|∇u|p dx+ ǫ
p
2R2

)

where Cp is a constant depending only on p.

Proof. The estimate follows from IǫBR
(uǫ) ≤ IǫBR

(u). �

Proposition 2.2. Let u ∈ W 1,p(Ω) be a solution of (1.1) and uǫ be a solution

of (2.1) for 1 < p < 2. Then, for all j ∈ {1, 2}, we have

sup
BR/2

(ǫ+ |∇uǫ|2) ≤ Cp

(
 

BR

(ǫ+ |∇uǫ|2)
p
2 dx

)
2
p

,(2.5)

ˆ

BR/2

|∇∂ju
ǫ|2 dx ≤ Cp

(
 

BR

(|∇u|p + ǫ
p
2 ) dx

)
2
p

,(2.6)

where Cp is a constant depending only on p.

Proof. The proof of the Lipschitz bound can be found in [4] while (2.6) appears
in [1]. We provide details for completeness. Note that by a change of variables, the
function uǫ

R(x) = uǫ(x0 +Rx) satisfies the equation

(2.7)

2
∑

i=1

ˆ

B1

(|∂iu
ǫ
R|

2 +R2ǫ)
p−2
2 ∂iu

ǫ
R∂iφ dx = 0 for all φ ∈ W 1,p

0 (B1).
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Introduce the notation w = ǫR2 + |∇uǫ
R|

2 and ai(z) = ai(zi) = (ǫR2 + |zi|
2)

p−2
2 zi so

that equation (2.7) rewrites as

2
∑

i=1

ˆ

B1

ai(∂iu
ǫ
R)∂iφ dx = 0 for all φ ∈ W 1,p

0 (B1).

For j ∈ {1, 2} and α ≥ 0 take φ = ∂j(∂ju
ǫ
Rw

α
2 ξ2) so that ∂iφ = ∂j(∂i∂ju

ǫ
Rw

α
2 ξ2 +

α
2
∂iww

α−2
2 ∂ju

ǫ
R ξ2) + 2∂j(ξ∂iξ w

α
2 ∂ju

ǫ
R). Sum in j to get

A +B :=

2
∑

i,j=1

ˆ

B1

ai(∂iu
ǫ
R)∂j(∂i∂ju

ǫ
Rw

α
2 ξ2 +

α

2
∂iww

α−2
2 ∂ju

ǫ
R ξ2) dx

+ 2
2
∑

i,j=1

ˆ

B1

ai(∂iu
ǫ
R)∂j(ξ∂iξ w

α
2 ∂ju

ǫ
R) dx = 0.

Note that ∂iw = 2
∑2

j=1 ∂i∂ju
ǫ
R ∂ju

ǫ
R and ∂iai(∂iu

ǫ
R) ≥ cpw

p−2
2 since 1 < p < 2.

Integrate by parts in A. We get A = A1 + A2 where

A1 :=

2
∑

i,j=1

ˆ

B1

∂iai(∂iu
ǫ
R)(∂i∂ju

ǫ
R)

2w
α
2 ξ2 dx ≥ cp

2
∑

j=1

ˆ

B1

w
p−2+α

2 |∇∂ju
ǫ
R|

2ξ2 dx,

A2 := cα
2
∑

i,j=1

ˆ

B1

∂iai(∂iu
ǫ
R)∂i∂ju

ǫ
R ∂ju

ǫ
R ∂iww

α−2
2 ξ2 dx

= cα
2
∑

i=1

ˆ

B1

∂iai(∂iu
ǫ
R)(∂iw)

2w
α−2
2 ξ2 dx ≥ cpα

ˆ

B1

w
p−4+α

2 |∇w|2ξ2 dx.

Now we estimate B = B1 +B2 +B3;

|B1| :=

∣

∣

∣

∣

∣

2
∑

i,j=1

ˆ

B1

ai(∂iu
ǫ
R)w

α
2 ∂ju

ǫ
R ∂j(ξ∂iξ) dx

∣

∣

∣

∣

∣

≤ Cp

ˆ

B1

w
p+α
2 (|∇ξ|2 + |∇2ξ|) dx,

|B2| :=

∣

∣

∣

∣

∣

α

2

2
∑

i,j=1

ˆ

B1

ai(∂iu
ǫ
R)w

α−2
2 ∂jw ∂ju

ǫ
R ξ ∂iξ dx

∣

∣

∣

∣

∣

≤ Cα

ˆ

B1

w
p+α−2

2 |∇w| ξ |∇ξ| dx

≤ ηα

ˆ

B1

w
p−4+α

2 |∇w|2ξ2 dx+
Cα

η

ˆ

B1

|∇ξ|2w
p+α
2 dx,

|B3| :=

∣

∣

∣

∣

∣

2
∑

i,j=1

ˆ

B1

ai(∂iu
ǫ
R)w

α
2 ∂j∂ju

ǫ
R ξ ∂iξ dx

∣

∣

∣

∣

∣

≤
2
∑

j=1

ˆ

B1

w
p−1+α

2 |∇∂ju
ǫ
R| ξ |∇ξ| dx

≤ η
2
∑

j=1

ˆ

B1

w
p−2+α

2 |∇∂ju
ǫ
R|

2ξ2 dx+
C

η

ˆ

B1

|∇ξ|2w
p+α
2 dx

where we used ai(∂iu
ǫ
R) ≤ w

p−1
2 and Young’s inequality with a parameter η to be

chosen suitably small. We get

cp

2
∑

j=1

ˆ

B1

w
p−2+α

2 |∇∂ju
ǫ
R|

2ξ2 dx+ cpα

ˆ

B1

w
p−4+α

2 |∇w|2ξ2 dx

≤ Cp(α + 1)

ˆ

B1

(|∇ξ|2 + |∇2ξ|)w
p+α
2 dx.

(2.8)
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Note that for α = 0 we get for all j ∈ {1, 2}

(2.9)

ˆ

B1

w
p−2
2 |∇∂ju

ǫ
R|

2ξ2 dx ≤ Cp

ˆ

B1

(|∇ξ|2 + |∇2ξ|)w
p
2 dx,

and since |∇w|2 ≤ c
∑

j |∇∂ju
ǫ
R|

2|∇uǫ
R|

2 we have

ˆ

B1

w
p−4
2 |∇w|2ξ2 dx ≤ c

2
∑

j=1

ˆ

B1

w
p−4
2 |∇uǫ

R|
2|∇∂ju

ǫ
R|

2ξ2 dx

≤ c

2
∑

j=1

ˆ

B1

w
p−2
2 |∇∂ju

ǫ
R|

2ξ2

≤ Cp

ˆ

B1

(|∇ξ|2 + |∇2ξ|)w
p
2 dx.

(2.10)

Now for α ≥ 1, (2.8) implies

(2.11)

ˆ

B1

w
p−4+α

2 |∇w|2ξ2 dx ≤ Cp
α + 1

α

ˆ

B1

(|∇ξ|2 + |∇2ξ|)w
p+α
2 dx

and combining with (2.10) we get
ˆ

B1

|∇(w
p+α
4 ξ)|2 dx ≤ C(p+ α)2

ˆ

B1

(|∇ξ|2 + |∇2ξ|)w
p+α
2 dx

for all α ≥ 0. Using Sobolev’s embedding W 1,2
0 (B1) →֒ L2q(B1) for a fixed q > 1 we

get

(2.12)

(
ˆ

B1

wq p+α
2 ξ2q dx

)
1
q

≤ Cp(p+ α)2
ˆ

B1

(|∇ξ|2 + |∇2ξ|)w
p+α
2 dx.

Now choose a sequence of radii ri = 1/2i + (1 − 1/2i)1
2
, cut-off functions ξ between

ri and ri+1 and αi = qip− p so that p+αi

2
= p

2
qi. Using these in (2.12), raising to the

power 1/qi and iterating we get for all i ∈ N

(

ˆ

Bri+1

w
p
2
qi+1

dx

)
1

qi+1

≤ (Cpq
2i2i)

1
qi

(

ˆ

Bri

w
p
2
qi dx

)
1

qi

≤

i
∏

j=0

(Cpq
2j2j)

1

qj

ˆ

B1

w
p
2 dx.

Observe that
∏∞

i=0(Cpq
2i2i)

1

qi = C(p, q) < ∞ so passing to the limit as i → ∞ we
get

sup
B1/2

w
p
2 ≤ C(p, q)

ˆ

B1

w
p
2 dx

which, after rescaling, proves (2.5). Now going back to (2.9), choosing a cut-off
function between BR/2 and BR and using 1 < p < 2 we get

ˆ

BR/2

|∇∂ju
ǫ|2 dx ≤ Cp sup

BR/2

(ǫ+ |∇uǫ|2)
2−p
p

 

BR

(ǫ+ |∇uǫ|2)
p
2 dx.

Using (2.5) and (2.4) we obtain (2.6). �

Next we collect some facts about the convergence of uǫ to the solution of the
degenerate equation. These are sufficient for our purposes.

Proposition 2.3. Let uǫ be the solution of (2.1) for 1 < p < 2 and u ∈ W 1,p(Ω)
the solution of (1.1). We have
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• uǫ converges to u locally uniformly in BR,

• ∇uǫ converges to ∇u in Lp(BR).

Proof. From the energy estimate (2.4) we obtain a uniform bound for the Lp

norm of ∇uǫ. Therefore (up to a subsequence) uǫ converges to some v ∈ W 1,p(BR)
weakly in W 1,p(BR) and strongly in Lp(BR). Note that we have v − u ∈ W 1,p

0 (BR).
By weakly lower semicontinuity we get

IBR
(v) =

2
∑

i=1

ˆ

BR

|∂iv|
p

p
dx ≤ lim inf

ǫ→0

2
∑

i=1

ˆ

BR

|∂iu
ǫ|p

p
dx

≤ lim inf
ǫ→0

2
∑

i=1

ˆ

BR

1

p
(|∂iu

ǫ|2 + ǫ)
p
2 dx ≤ lim inf

ǫ→0

2
∑

i=1

ˆ

BR

1

p
(|∂iu|

2 + ǫ)
p
2 dx

=
2
∑

i=1

ˆ

BR

1

p
|∂iu|

p dx = IBR
(u).

Note that in the third inequality we used the minimality of uǫ subject to the boundary
condition uǫ−u ∈ W 1,p

0 (BR). By uniqueness of the minimizer of IBR
among functions

with boundary values u in BR, we get v = u. By the uniform Lipschitz estimate (2.5)
and Ascoli–Arzela’ theorem we obtain that the convergence is uniform.

Now we show Lp(BR) convergence of the gradient. Use φ = uǫ − u as a test

function in (2.1), add and subtract the term (|∂iu|
2 + ǫ)

p−2
2 ∂iu to get

2
∑

i=1

ˆ

BR

(

(|∂iu
ǫ|2 + ǫ)

p−2
2 ∂iu

ǫ − (|∂iu|
2 + ǫ)

p−2
2 ∂iu

)

(∂iu
ǫ − ∂iu) dx

=

2
∑

i=1

ˆ

BR

(|∂iu|
2 + ǫ)

p−2
2 ∂iu(∂iu− ∂iu

ǫ) dx.

Since ∂iu− ∂iu
ǫ converges to 0 weakly in Lp(BR), the integral in the right hand side

converges to 0. We can minorize the integral in the left hand side using the inequality

|a− b|2(ǫ+ |a|2 + |b2|)
p−2
2 ≤ Cp((ǫ+ |a|2)

p−2
2 a− (ǫ+ |b|2)

p−2
2 b)(a− b)

valid for 1 < p < 2, and obtain that

(2.13)

ˆ

BR

(

ǫ+ |∂iu
ǫ|2 + |∂iu|

2
)

p−2
2 |∂iu

ǫ − ∂iu|
2 dx −→ 0

as ǫ → 0, for i = 1, 2. Finally by Hölder’s inequality
ˆ

BR

|∂iu
ǫ − ∂iu|

p dx

=

ˆ

BR

|∂iu
ǫ − ∂iu|

p
(

ǫ+ |∂iu
ǫ|2 + |∂iu|

2
)

p(p−2)
2
(

ǫ+ |∂iu
ǫ|2 + |∂iu|

2
)

p(2−p)
2 dx

≤

(
ˆ

BR

|∂iu
ǫ − ∂iu|

2
(

ǫ+ |∂iu
ǫ|2 + |∂iu|

2
)

p−2
2 dx

)
p
2

·

(
ˆ

BR

(

ǫ+ |∂iu
ǫ|2 + |∂iu|

2
)

p
2 dx

)
2−p
2

.

Since the last integral is uniformly bounded in ǫ, using (2.13) we get that ∂iu
ǫ con-

verges to ∂iu in Lp(BR). �
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3. Monotone functions and Lebesgue’s lemma

A continuous function v : Ω −→ R is monotone (in the sense of Lebesgue) if

max
D

v = max
∂D

v and min
D

v = min
∂D

v

for all subdomains D ⊂⊂ Ω. Monotone functions are further discussed in [7].
The next Lemma is due to Lebesgue [5].

Lemma 3.1. Let BR ⊂ R
2 and v ∈ C(BR)∩W 1,2(BR) be monotone in the sense

of Lebesgue. Then

(osc
Br

v)2 log

(

R

r

)

≤ π

ˆ

BR\Br

|∇v(x)|2 dx

for every r < R.

Proof. Assume v is smooth. Let (η, ζ) be the center of BR. Let x1 and x2 be two
points on the circle of radius t, and let γ : [0, 2π] −→ R

2, γ(s) = (η + t cos(s), ζ +
t sin(s)) be a parametrization of the circle such that γ(a) = x1 and γ(b) = x2. Then
we have

v(x1)− v(x2) =

ˆ b

a

d

ds
v(γ(s)) ds =

ˆ b

a

〈∇v(γ(s)), γ′(s)〉 ds ≤

ˆ b

a

t |∇v(γ(s))| ds.

Taking the supremum on angles a and b such that |a − b| ≤ π and using Hölder’s
inequality, we get

(osc
∂Bt

v)2 ≤ πt2
ˆ 2π

0

|∇v(γ(s))|2 ds.

Now diving by t, integrating from r to R, and using polar coordinates we get
ˆ R

r

(osc∂Btv)
2

t
dt ≤ π

ˆ R

r

ˆ 2π

0

t |∇v(γ(s))|2 ds dt = π

ˆ

BR\Br

|∇v(x)|2 dx.

Thanks to the monotonicity of v, for t ≥ r we have

osc
∂Bt

v ≥ osc
Bt

v ≥ osc
Br

v

and we get the result for a smooth function. The general statement follows by
approximation. �

The following is credited to [1] (see Lemma 2.14 for the minimum principle).

Lemma 3.2. (Minimum and Maximum principles for the derivatives) Let uǫ be

the solution of (2.1). Then

min
∂Br

∂ju
ǫ ≤ ∂ju

ǫ(x) ≤ max
∂Br

∂ju
ǫ

for all x ∈ Br, Br ⊂⊂ BR and j = 1, 2. In particular, ∂ju
ǫ is monotone in the sense

of Lebesgue.

Proof. We are going to show that given a constant C, if ∂ju
ǫ ≤ C (resp. ∂ju

ǫ ≥
C) in ∂Br then ∂ju

ǫ ≤ C (resp. ∂ju
ǫ ≥ C) in Br. Let φ± = 1Br(∂ju

ǫ − C)± =
1Br max{±(∂ju

ǫ −C), 0} in the equation satisfied by the derivative (2.3). Since uǫ is

smooth and ∂ju
ǫ ≥ C (resp. ∂ju

ǫ ≤ C) on ∂Br we have φ± ∈ W 1,2
0 (Ω), so they are
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admissible functions. We get

0 =
2
∑

i=1

ˆ

Br

(ǫ+ |∂iu
ǫ|2)

p−4
2 (ǫ+ (p− 1)|∂iu

ǫ|2) |∂i(∂ju
ǫ − C)±|2 dx

≥ ǫ
2
∑

i=1

ˆ

Br

(ǫ+ |∇uǫ|2)
p−4
2 |∂i(∂ju

ǫ − C)±|2 dx

= ǫ

ˆ

Br

(ǫ+ |∇uǫ|2)
p−4
2 |∇(∂ju

ǫ − C)±|2 dx.

This implies (∂ju
ǫ−C)± is constant in Br, and since it is 0 in ∂Br then (∂ju

ǫ−C)± = 0
in Br. �

4. Proof of the main theorem

Proof of Theorem 1.1. Applying Lemma (3.1) and estimate (2.6) we get for all
r < R/2

(4.1) (osc
Br

∂ju
ǫ)2 log

(

R

r

)

≤ C ‖∇∂ju
ǫ‖2L2(BR/2)

≤ C

(
 

BR

|∇u|p dx+ ǫ
p
2

)
2
p

,

and hence for all r < R/2

(4.2) osc
Br

∂ju
ǫ ≤ C

(

log

(

R

r

))− 1
2
(
 

BR

|∇u|p dx+ ǫ
p
2

)
1
p

,

where C is a constant independent of ǫ.
Thanks to Proposition (2.3) we can pass to the limit and get (1.3). �
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