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Abstract. We study the least doubling constant C(X,d), among all doubling measures µ

supported on a metric space (X, d). In particular, we prove that for every metric space with more

than one point, C(X,d) ≥ 2. We also describe some further properties of C(X,d) and compute its

value for several important examples.

1. Introduction and motivation

Given a metric space (X, d), a Borel regular measure µ on X is called doubling
if there exists a constant C ≥ 1 such that, for every x ∈ X and r > 0,

(1) µ(B(x, 2r)) ≤ Cµ(B(x, r)),

where B(x, r) = {y ∈ X : d(x, y) < r}. If this is the case, the metric measure space
(X, d, µ) will be called a space of homogeneous type (cf. [5]). Given such (X, d, µ),
we will denote by Cµ the best possible constant appearing in (1); that is,

Cµ = sup
x∈X,r>0

µ(B(x, 2r))

µ(B(x, r))
.

For convenience, let us introduce the following definition.

Definition 1.1. Given a metric space (X, d), we define the least doubling con-
stant as

C(X,d) = inf
{

Cµ : µ doubling measure on (X, d)
}

.

If no doubling measure exists in (X, d), we will write that C(X,d) = ∞. We would
like to note that all references we have found in the literature, place the constant
C(X,d) in the interval [1,∞). One can easily check, unless the metric space reduces
to a singleton, that C(X,d) > 1. An elementary argument shows that the lower bound

C(X,d) ≥ ϕ = 1+
√
5

2
always holds (Proposition 2.6). However, with some more work it

will be shown that, in fact, this estimate can be improved to C(X,d) ≥ 2 (Theorem 3.1).
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In general, it is not true that on every metric space (X, d) one can always find
such a doubling measure (e.g., X = Q with the standard euclidean distance; see also
[14]). However, if a metric space (X, d) supports a non-trivial doubling measure,
then there exists K ∈ N such that, for every x ∈ X and r > 0, the number of
r-separated points in B(x, 2r) is bounded by K, where two points x, y ∈ X are r-
separated provided d(x, y) ≥ r (cf. [5] and Proposition 2.2 below). If this property
holds, then we say that (X, d) is a doubling space (hence, a space of homogeneous
type is doubling). Conversely, for compact [16], or more generally, complete metric
spaces [13], being doubling (in the metric sense) implies the existence of a doubling
measure (see also [9, 17] for related developments).

The doubling constant Cµ given above should not be confused with the doubling
constant of a metric space (X, d), which is usually referred to as the minimal k ∈ N

such that every ball B(x, r) can be covered by at most k balls of radius r/2. This
leads to the definition of doubling dimension of (X, d) as K(X,d) = ⌈log2(k)⌉, which
is of significance in metric embedding theory (cf. [2, 3]).

To motivate our goal, let us see what happens for a couple of particular, but
significant, examples. For α > −1, consider the locally integrable measure dµα(x) =
|x|α dx. It is easy to see that µα is doubling in R with the euclidean distance (this
also follows from the fact that |x|α is a weight in the Muckenhoupt class A∞ [6]). For
the interval I = (−1, 1) we obtain that

Cµα ≥ µα(−2, 2)

µα(−1, 1)
= 2α+1,

and with I = (1, 3),

Cµα ≥ µα(0, 4)

µα(1, 3)
=

4α+1

3α+1 − 1
.

Hence,

Cµα ≥ max

{

2α+1,
4α+1

3α+1 − 1

}

≥ 2,

with equality Cµα = 2 only when α = 0; i.e., for the Lebesgue measure. A second
example, this time in the most trivial discrete setting, comes when we take a set
X = {1, 2} with 2 points, any measure µ and any distance d. Then,

Cµ = max

{

1 +
µ({1})
µ({2}) , 1 +

µ({2})
µ({1})

}

≥ 2.

In the rest of this paper, we will start by giving, in Section 2, some preliminary
results which are of interest in this context. We also show some important properties
for spaces of homogeneous type, like the fact that there is no upper bound for Cµ

(Proposition 2.4). In particular, we will show a short proof that C(X,d) ≥ ϕ = 1+
√
5

2
(Proposition 2.6), as long as X contains more than one point. In Section 3, we prove
that actually C(X,d) ≥ 2. Section 4 is devoted to more general lower bounds for C(X,d),
and finally, Section 5 provides explicit values of C(X,d) for specific metric spaces, both
in the continuous and the discrete settings (see also [12] for further considerations).

The explicit value of the doubling constant Cµ is of significance in several recent
developments in the theory of metric measure spaces (see for instance [1, 4, 11]).
We refer the reader to the monographs [7, 8] for background and applications of this
theory.
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2. Preliminary results and a universal lower bound for Cµ

Throughout, we will always assume that (X, d) is a metric space on which dou-
bling measures exist, and that X contains at least 2 points. Moreover, all balls
B(x, r) =

{

y ∈ X : d(x, y) < r
}

on (X, d) are open sets and we only consider non-
trivial measures µ, in the sense that 0 < µ(B(x, r)) < ∞, for every x ∈ X and r > 0.
Also, for r ∈ R, as usual we denote

⌈r⌉ = min{n ∈ Z : r ≤ n} and ⌊r⌋ = max{n ∈ Z : n ≤ r}.
Lemma 2.1. Let (X, d, µ) be a space of homogeneous type. For every x ∈ X

and 0 < s < r, we have

µ(B(x, r)) ≤ C
⌈log2( rs )⌉
µ µ(B(x, s)).

Proof. Let n = ⌈log2( rs)⌉. This means that

2n−1s < r ≤ 2ns.

Hence, iterating (1) it follows that

�(2) µ(B(x, r)) ≤ µ(B(x, 2ns)) ≤ Cµµ(B(x, 2n−1s)) ≤· · ·≤ C
⌈log2( rs )⌉
µ µ(B(x, s)).

The following result is a quantitative version of [5, Remarque, p. 67]:

Proposition 2.2. Let (X, d, µ) be a space of homogeneous type. If there exist

x ∈ X and (yj)
N
j=1 ⊂ B(x, r) such that B(yj, s) ⊂ B(x, r), for some 0 < s ≤ 2r, and

B(yj, s) ∩B(yk, s) = ∅, for every j, k ∈ {1, . . . , N}, j 6= k, then

N ≤ C
⌈log2( 2rs )⌉
µ .

Proof. Let j0 ∈ {1, . . . , N} be such that

µ(B(yj0, s)) = min
j∈{1,...,N}

µ(B(yj, s)).

Since B(x, r) ⊂ B(yj0, 2r), it follows that

Nµ(B(yj0, s)) ≤
N
∑

j=1

µ(B(yj, s)) ≤ µ(B(x, r))

≤ µ(B(yj0, 2r)) ≤ C
⌈log2( 2rs )⌉
µ µ(B(yj0, s)). �

The previous result yields the well-known fact that balls in spaces of homogeneous
type are totally bounded. For completeness, we include a short proof:

Corollary 2.3. If (X, d, µ) is a space of homogeneous type, then every ball in

X is totally bounded.

Proof. Let x ∈ X and r > 0. Take any ε ∈ (0, 2r). We can inductively
construct a sequence of points in B(x, r) which are ε-separated: let x0 = x, and if
B(x, r) 6⊂ B(x, ε), let x1 ∈ B(x, r)\B(x, ε). Similarly, if B(x, r) 6⊂ B(x0, ε)∪B(x1, ε),
then let x2 ∈ B(x, r)\(B(x0, ε) ∪ B(x1, ε)). Following in this way, for each m ∈ N

either B(x, r) ⊂ ⋃m
i=0B(xi, ε) or we can pick xm+1 ∈ B(x, r)\⋃m

i=0B(xi, ε), and keep
going.

Since we clearly have that

B(xi, ε/2) ∩B(xj , ε/2) = ∅,
for i 6= j, and

B(xi, ε/2) ⊂ B(x, r + ε/2),
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for every i, Proposition 2.2 yields that for some m ≤ C
1+⌈log2(1+2r/ε)⌉
µ we must have

B(x, r) ⊂
m
⋃

i=0

B(xi, ε).

Thus, B(x, r) is totally bounded, as claimed. �

We observe next that if we replace, in Definition 1.1, the infimum by the supre-
mum, then we get no interesting information. In fact, we can prove the following:

Proposition 2.4. If (X, d) is a metric space, containing at least 2 points, then

sup {Cµ : µ doubling measure on (X, d)} = ∞.

Proof. Given a fixed doubling measure µ on (X, d), we set ε = Cµ−1
2Cµ

> 0. Let

x ∈ X and r > 0 such that

(3) 1 <
Cµ + 1

2
= Cµ(1− ε) <

µ(B(x, 2r))

µ(B(x, r))
= 1 +

µ(B(x, 2r) \B(x, r))

µ(B(x, r))
.

For n ∈ N, let us define the function

fn(y) =

{

n, if y ∈ B(x, 2r) \B(x, r),

1, otherwise,

and the measure dνn = fn dµ. Since fn and 1/fn are bounded functions, we have
that νn is a doubling measure in (X, d). Moreover, using (3)

Cνn ≥ νn(B(x, 2r))

νn(B(x, r))
= 1 +

νn(B(x, 2r) \B(x, r))

νn(B(x, r))

= 1 + n
µ(B(x, 2r) \B(x, r))

µ(B(x, r))
> n

Cµ − 1

2
+ 1 −→

n→∞
∞. �

A point x in a metric space (X, d) is isolated if there is some r > 0 such that
B(x, r) = {x}. It is well-known that if (X, d, µ) is a space of homogeneous type, then
µ({x}) > 0 if and only if x is isolated [10, Lemma 2]. For completeness, we are going
to give another proof of this fact based on a reverse inequality.

Proposition 2.5. Let (X, d) be a metric space with non-isolated points; that

is, the set A = {x ∈ X : x is non-isolated} 6= ∅. If µ is a doubling measure in (X, d),
with constant Cµ, then for every x ∈ A, there exists a decreasing sequence rj(x) ↓ 0,
j → ∞, such that

(4) µ
(

B(x, 4rj(x))
)

≥
(

1 + C−2
µ

)

µ
(

B(x, rj(x))
)

.

In particular, µ({x}) = 0, for every x ∈ A.

Proof. Let x ∈ A and pick x1 ∈ X \ {x}. Set r1 = d(x, x1)/2 > 0. Then it is
easy to see that

(i) B(x1, r1) ∩ B(x, r1) = ∅,
(ii) B(x1, r1) ⊂ B(x, 4r1), and
(iii) B(x, r1) ⊂ B(x1, 4r1).

Therefore,

µ
(

B(x, 4r1)
)

≥ µ
(

B(x1, r1)
)

+ µ
(

B(x, r1)
)

≥ 1

C2
µ

µ
(

B(x1, 4r1)
)

+ µ
(

B(x, r1)
)

≥
(

1 + C−2
µ

)

µ
(

B(x, r1)
)

.
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We now choose x2 ∈ B(x, r1) \ {x}, and define r2 = d(x, x2)/2 < r1/2 < r1. As
before, we have

(i) B(x2, r2) ∩ B(x, r2) = ∅,
(ii) B(x2, r2) ⊂ B(x, 4r2), and
(iii) B(x, r2) ⊂ B(x2, 4r2).

Thus, we also get

µ
(

B(x, 4r2)
)

≥
(

1 + C−2
µ

)

µ
(

B(x, r2)
)

.

Iterating this process, we obtain rj < rj−1/2 < r1/2
j−1, j = 2, 3, . . . , so that rj ↓ 0

and (4) holds.
Finally, if x ∈ A, then

µ({x}) = µ

(

⋂

j∈N
B(x, 4rj(x))

)

= lim
j→∞

µ(B(x, 4rj(x))) ≥
(

1 + C−2
µ

)

µ({x}),

which proves that µ({x}) = 0. �

We finish this section with an easy proof of a weaker lower bound than the one
given in Theorem 3.1, but still of interest (for some time, it was the best known
estimate):

Proposition 2.6. If (X, d) is any metric space with |X| > 1, then

C(X,d) ≥ ϕ =
1 +

√
5

2
.

Proof. Pick x, y ∈ X and set r = d(x, y) > 0. Take any λ > 0. Suppose first

(5) µ(B(x, 2r/3)) ≤ λµ(B(y, r/3)).

In this case, since B(x, 2r/3) ∩ B(y, r/3) = ∅ and

B(x, 2r/3) ∪ B(y, r/3) ⊂ B(x, 4r/3),

it follows that

Cµµ(B(x, 2r/3)) ≥ µ(B(x, 4r/3)) ≥ (1 + 1/λ)µ(B(x, 2r/3)).

Thus, in this case, we have Cµ ≥ 1 + 1/λ.
Similarly, if

(6) µ(B(y, 2r/3)) ≤ λµ(B(x, r/3)),

then one also gets Cµ ≥ 1+1/λ. Finally, let us assume that neither (5) nor (6) hold.
In that case we have

Cµ(µ(B(x, r/3)) + µ(B(y, r/3))) ≥ µ(B(x, 2r/3)) + µ(B(y, 2r/3))

> λ(µ(B(y, r/3)) + µ(B(x, r/3))),

which gives Cµ > λ.
Since this works for any λ > 0, in any case we get

Cµ ≥ sup
λ>0

min{λ, 1 + 1/λ}.

Optimizing in λ > 0, the result follows. �

It should be noted that, despite the apparently irrelevant choice of radii of the
balls considered in the previous argument (that is, r/3, 2r/3, and 4r/3), any other
combination actually yields a weaker estimate.
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Remark 2.7. It is interesting to observe that C(X,d) actually depends on the
metric d, and is not invariant under homeomorphisms. We give first an example for
discrete spaces and afterwards a stronger result in the continuous case:

For the complete graph K3, with the standard metric, it is easy to see that
CK3 = 3 (see Proposition 5.2 for the general case of Kn). If we now label the vertices
as K3 = {a, b, c} and define the metric d(a, c) = d(b, c) = 2 and d(a, b) = 1, then
taking the measure µ(a) = µ(b) = 1 and µ(c) = 2, we get

µ(B(a, 2r))

µ(B(a, r))
=

{

1, if 0 < r ≤ 1/2 or r > 2,

2, otherwise,

and similarly for b. At the vertex c:

µ(B(c, 2r))

µ(B(c, r))
=

{

1, if 0 < r ≤ 1 or r > 2,

2, otherwise.

Thus, we find that C(K3,d) ≤ Cµ ≤ 2 6= 3 = CK3 (in fact, using Proposition 3.2 we
have that C(K3,d) = 2).

In the continuous setting of R one can even show that there are metrics d1 and d2
for which (R, d1) and (R, d2) are homeomorphic but C(R,d1) < ∞ and C(R,d2) = ∞.
In fact, taking d1 to be the euclidean metric and

d2(x, y) =
|x− y|

1 + |x− y| ,

we know that the two metrics are topologically equivalent. However, if for 0 < r < 1
we consider the balls

Bd2(x, r) =

(

x− r

1− r
, x+

r

1− r

)

,

it is clear that we can find

[

r
1−r
1/2

1−1/2

]

=
[

r
1−r

]

disjoint balls of radius 1/2 inside Bd2(0, r).

Thus, using Proposition 2.2, if µ were a doubling measure in (R, d2) we get

Cµ ≥
[ r

1− r

]1/⌈2+log2 r⌉ −→
r→1−

∞,

and hence C(R,d2) = ∞, while C(R,d1) ≤ C|·| = 2, where | · | is the Lebesgue measure
(in fact, using Proposition 5.1, we do have the equality C(R,d1) = 2).

Another natural example to consider here would be the “snowflaking” of (R, d1):
fix 0 < ε < 1, and let dε(x, y) = |x − y|ε. A similar argument as above yields that
C(R,dε) ≥ 21/ε > 2 = C(R,d1).

3. On the lower bound C(X,d) ≥ 2

The purpose of this section is to prove the following

Theorem 3.1. If (X, d) is a metric space with |X| > 1, then C(X,d) ≥ 2.

For the proof of this fact we will need first a series of preliminary results.

Proposition 3.2. If (X, d) is a metric space, with |X| > 1, which has an isolated

point, then C(X,d) ≥ 2. In particular, this is the case on discrete or finite metric

spaces.
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Proof. Let x ∈ X be an isolated point, and let rx = sup
{

r > 0: B(x, r) = {x}
}

.
Observe that 0 < rx < ∞ and B(x, rx) = {x}. Take ε ∈ (0, 1/3). By definition of rx,
there is y ∈ X, with rx ≤ d(x, y) < rx(1 + ε). Let now µ be a doubling measure on

(X, d). Since B
(

y, rx(1+ε)
2

)

⊂ B(x, 2rx)\{x}, it follows that

µ
(

B
(

y,
rx(1 + ε)

2

))

≤ µ(B(x, 2rx))− µ({x}) ≤ (Cµ − 1)µ({x}).

Now, since B
(

y, rx(1+ε)
2

)

∪ {x} ⊂ B(y, rx(1 + ε)), we get

Cµ µ
(

B
(

y,
rx(1 + ε)

2

))

≥ µ(B(y, rx(1 + ε))) ≥ µ
(

B
(

y,
rx(1 + ε)

2

))

+ µ({x})

≥
(

1 +
1

Cµ − 1

)

µ
(

B
(

y,
rx(1 + ε)

2

))

.

Therefore, C2
µ − Cµ ≥ Cµ and hence Cµ ≥ 2. �

As a complement to Proposition 3.2, we will see next that if a metric space
contains a line segment (which, in some sense, is the contrary to having an isolated
point), then a different argument yields the same lower bound. Before, we need the
following definition.

Definition 3.3. Let m ∈ N, r > 0, θ ∈ (0, 1]. An (m, r, θ)-configuration is a

finite collection of points (xi)
⌈θm⌉
i=0 ⊂ X such that, for every 1 ≤ i ≤ ⌈θm⌉, we have

(7) r
(

1 +
1

2m

)

≤ d(x0, xi) ≤ r
(

2− 1

2m

)

,

and for i, j ∈ {1, . . . , ⌈θm⌉}, with i 6= j,

(8) d(xi, xj) ≥
r

m
.

Given θ ∈ (0, 1], we will say that a metric space (X, d) contains arbitrarily long
θ-configurations if, for every n ∈ N, there exist m ≥ n, rm > 0 and an (m, rm, θ)-

configuration (xi)
⌈θm⌉
i=0 ⊂ X.

Lemma 3.4. Let θ ∈ (0, 1]. For each n ∈ N, the equation

(9) xn+5 − xn+4 − θ2n−1 = 0

has a unique solution xn > 1, which satisfies xn −→
n→∞

2.

Proof. Let us consider the function f(x) = xn+5 − xn+4 − θ2n−1. It is easy to
check that f is increasing and unbounded, for x > 1, and since f(1) < 0, we can
define xn to be the only zero of f in the set (1,∞). Let us denote yn = xn/2, so that
(9) gives the equality

(10) 25yn+4
n =

θ

2yn − 1
.

Since f(2) > 0, it follows that 1/2 < yn < 1, for every n. We now prove that yn is
monotone increasing with n. Indeed, suppose that there exists n0 ∈ N, such that
yn0 > yn0+1. Then using (10), we get

yn0+4
n0

yn0+5
n0+1

=
2yn0+1 − 1

2yn0 − 1
,



1022 Javier Soria and Pedro Tradacete

which yields

1 <
( yn0

yn0+1

)n0+4

= yn0+1
2yn0+1 − 1

2yn0 − 1
< yn0+1 < 1,

which is a contradiction. Therefore, the sequence is increasing and we find the limit
limn→∞ yn = L ∈ (1/2, 1]. But, if L < 1, then (10) would imply the equality

θ

2L− 1
= 0,

which is again contradiction. Thus, L = 1 and this finishes the proof. �

Theorem 3.5. Let (X, d) be a metric space which contains arbitrarily long θ-
configurations, for some θ ∈ (0, 1]. Then C(X,d) ≥ 2.

Proof. Given k ∈ N, let m ≥ k and rm > 0 such that (xi)
⌈θm⌉
i=0 ⊂ X is an

(m, rm, θ)-configuration. Let us see that the collection of balls
{

B(xi,
rm
2m

) : 1 ≤
i ≤ ⌈θm⌉

}

and B(x0, rm) are pairwise disjoint. Indeed, if there is z ∈ B(x0, rm) ∩
B(xi,

rm
2m

), then we would have

d(x0, xi) ≤ d(x0, z) + d(z, xi) < rm

(

1 +
1

2m

)

,

which is impossible by (7); similarly, if for i, j ∈ {1, . . . , m}, with i 6= j, we can
find z ∈ B(xi,

rm
2m

) ∩ B(xj ,
rm
2m

), then we would have d(xi, xj) < rm/m, which is a
contradiction with (8). Moreover, we clearly have

B
(

xi,
rm
2m

)

⊂ B(x0, 2rm),

for 1 ≤ i ≤ ⌈θm⌉. Therefore, for any doubling measure µ on (X, d), we have

(11) µ(B(x0, rm)) +

⌈θm⌉
∑

i=1

µ
(

B
(

xi,
rm
2m

))

≤ µ(B(x0, 2rm)) ≤ Cµ µ(B(x0, rm)).

Observe that, for every 1 ≤ i ≤ ⌈θm⌉, we also have

B(x0, rm) ⊆ B
(

xi, (6m− 1)
rm
2m

)

.

Indeed, if y ∈ B(x0, rm), then

d(y, xi) ≤ d(y, x0) + d(x0, xi) < rm + rm

(

2− 1

2m

)

= (6m− 1)
rm
2m

.

Hence, since µ is a doubling measure, for every 1 ≤ i ≤ ⌈θm⌉, using Lemma 2.1 we
have

(12) µ(B(x0, rm)) ≤ µ
(

B
(

xi, (6m− 1)
rm
2m

))

≤ C1+log2(6m−1)
µ µ

(

B
(

xi,
rm
2m

))

.

Thus, putting (11) and (12) together, we get

(13) 1 +

⌈θm⌉
∑

i=1

C−1−log2(6m−1)
µ ≤ Cµ.

Let n ∈ N be such that 2n−1 < m ≤ 2n. Thus, for 1 ≤ i ≤ m we have

(14) 1 + log2(6m− 1) ≤ 1 + log2(6 · 2n − 1) < n + 4.

Now, (13) and (14) yield

Cµ > 1 + θ2n−1 1

Cn+4
µ

.
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Hence,

Cn+5
µ − Cn+4

µ − θ2n−1 > 0.

Since Cµ ≥ 1, we must then have Cµ > xn, where xn is the only solution, greater
than 1, of the equation xn+5 − xn+4 − θ2n−1 = 0. Iterating this argument, for any
k ∈ N and 2n ≥ m ≥ k, we can let n → ∞ and, by Lemma 3.4, we obtain xn −→

n→∞
2.

Therefore, Cµ ≥ supn xn = 2 and thus C(X,d) ≥ 2. �

Proposition 3.6. Let (X, d, µ) be a space of homogeneous type such that for

every ε > 0 there exist x, y ∈ X such that

µ(B(x, d(x, y)) ∩B(y, d(x, y)) ≤ εµ(B(x, 2d(x, y)) ∩B(y, 2d(x, y)).

Then Cµ ≥ 2.

Proof. Given ε > 0, let x, y ∈ X as in the hypothesis, and set r = d(x, y). Since

B(x, r) ∪ B(y, r) ⊂ B(x, 2r) ∩ B(y, 2r),

it follows that

µ(B(x, r)) + µ(B(y, r)) = µ(B(x, r) ∪ B(y, r)) + µ(B(x, r) ∩B(y, r))

≤ (1 + ε)µ(B(x, 2r) ∩ B(y, 2r)).

Without loss of generality, let us assume µ(B(x, r)) ≤ µ(B(y, r)). Hence, we have

Cµ ≥ µ(B(x, 2r))

µ(B(x, r))
≥ 2

1 + ε
.

As this holds for every ε > 0, the conclusion follows. �

Corollary 3.7. Let (X, d) be a metric space for which there exist x, y ∈ X with

B(x, d(x, y)) ∩B(y, d(x, y)) = ∅. Then, C(X,d) ≥ 2.

Proposition 3.8. If (X, d) is a metric space such that, for some pair of distinct

points x0, y0 ∈ X, the closed ball {z ∈ X : d(x0, z) ≤ 2d(x0, y0)} is compact, then

C(X,d) ≥ 2.

Proof. Let r0 = d(x0, y0) and set K = {z ∈ X : d(x0, z) ≤ 2d(x0, y0)} be
a compact closed ball in X. Suppose first that for every r ∈ (r0/2, r0) there exists
x(r) ∈ X with d(x0, x(r)) = r. In particular, given m ∈ N, for every i = 1, . . . , m−1,
we can define

xm
i = x

(

r0
2

(

1 +
2i+ 1

2m

)

)

.

Taking xm
0 = x0, it follows that (xm

i )
m−1
i=0 is an (m − 1, r0/2, 1)-configuration. The

conclusion now follows from Theorem 3.5.
Now, suppose there is r ∈ (r0/2, r0) such that

{z ∈ X : d(x0, z) = r} = ∅.
Let A = {z ∈ X : d(x0, z) ≤ r} and B = {z ∈ X : r ≤ d(x0, z) ≤ 2r0}. Clearly, A
and B are non-empty clopen subsets of K such that A ∩B = ∅. Since A and B are
actually compact, there exist xA ∈ A and xB ∈ B such that

d(xA, xB) = inf{d(x, y) : x ∈ A, y ∈ B} ≤ r0.

In this case we have

B(xA, d(xA, xB)) ∩ B(xB, d(xA, xB)) = ∅.
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Indeed, if z ∈ B(xA, d(xA, xB)) ∩B(xB, d(xA, xB)), then

d(x0, z) ≤ d(x0, xA) + d(z, xA) < d(x0, xA) + d(xA, xB) < 2r0.

Therefore, either z ∈ A or z ∈ B which in either case yields a contradiction with
the fact that d(xA, xB) is minimal. Thus, in this case the conclusion follows from
Corollary 3.7. �

It is worth to observe that we did not use the compactness property in the
first part of the previous proof (the existence of the suitable configuration suffices).
The following result is then an immediate consequence and shows that, with the
reasonable hypothesis of completeness (which for a doubling metric space implies the
existence of a doubling measure), the doubling constant is at least 2:

Corollary 3.9. If (X, d) is a complete metric space with |X| > 1, then

C(X,d) ≥ 2.

Proof. Take any two distinct points x0, y0 ∈ X and let us define, as before, the
closed ball K = {z ∈ X : d(x0, z) ≤ 2d(x0, y0)}. Given, any doubling measure µ,
using Corollary 2.3, we have that K is totally bounded and, since X is complete, K
is actually compact. The conclusion follows from Proposition 3.8. �

Proof of Theorem 3.1. Suppose (X, d) is a (non necessarily complete) metric
space with |X| > 1 and a doubling measure µ. Let X̃ denote the completion of X,
and µ̃ the extension of µ given by [14, Lemma 1], which satisfies

Cµ̃ ≤ Cµ.

By Corollary 3.9 we know that Cµ̃ ≥ 2, hence the conclusion follows. �

4. More general lower bounds for C(X,d)

In this section, we look for general estimates for C(X,d) under quite natural as-
sumptions. Let us explore first the case when the measure of a ball essentially depends
on its radius, and not on where its center is. Recall that (X, d, µ) is called Ahlfors
Q-regular, with constant C ≥ 1, if for every x ∈ X and 0 < r < diam(X) we have

1

C
rQ ≤ µ(B(x, r)) ≤ CrQ.

These spaces play an important role in geometric measure theory (cf. [8]). In partic-
ular, if (X, d, µ) is Ahlfors Q-regular, with constant C ≥ 1, then Cµ ≥ 2Q/C2. More
generally, we have the following:

Theorem 4.1. Let (X, d, µ) be a space of homogeneous type with |X| > 1 and

such that for some functions φ1, φ2 : R+ → R+, every x ∈ X and every r > 0, we

have

φ1(r) ≤ µ(B(x, r)) ≤ φ2(r).

If, in addition, φ2 is right continuous, then

Cµ ≥ 2 sup
r>0

φ1(r)

φ2(r)
.

Proof. Given x, y ∈ X let

r(x, y) = inf{s > 0: B(x, s) ∩B(y, s) 6= ∅}.
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Clearly, we have
d(x, y)

2
≤ r(x, y) ≤ d(x, y),

and
B(x, r(x, y)) ∩ B(y, r(x, y)) = ∅.

Now, for every n ∈ N, we can take zn ∈ B(x, r(x, y) + 1/n) ∩ B(y, r(x, y) + 1/n).
Note that, for each n ∈ N, we have

B(x, r(x, y)) ∪ B(y, r(x, y)) ⊂ B(zn, 2r(x, y) + 1/n).

Therefore,

2φ1(r(x, y)) ≤ µ(B(x, r(x, y)) ∪B(y, r(x, y)))

≤ µ
(

B
(

zn, 2r(x, y) +
1

n

))

≤ Cµφ2

(

r(x, y) +
1

2n

)

.

Since φ2 is right continuous, we have that φ
(

r(x, y) + 1
2n

)

−→
n→∞

φ(r(x, y)). Thus,

Cµ ≥ 2φ1(r(x, y))/φ2(r(x, y)), and the claim follows. �

Theorem 4.2. Let (X, d) be a metric space, ε0 > 0 and ϕ : [0, ε0) → R+ be an

increasing continuous function such that for every ε ∈ (0, ε0) there exist K > 0 and

N ∈ N so that, for every n ≥ N , we can find distinct points (xi)
n
i=1 ⊂ X with

(15) max
i,j∈{1,...,n}

d(xi, xj) ≤ Knϕ(ε) min
i 6=j

d(xi, xj).

Then C(X,d) ≥ 21/ϕ(0).

Proof. Given ε ∈ (0, ε0), let K > 0, N ∈ N be as above, and for n ≥ N ,
let (xi)

n
i=1 ⊂ X be distinct points satisfying (15). Let r = mini 6=j d(xi, xj) and

R = maxi,j∈{1,...,n} d(xi, xj). It follows that for every i, j ∈ {1, . . . , n} we have

B(xi, r/2) ⊂ B(xj , R + r/2).

Thus,
n
⋃

i=1

B(xi, r/2) ⊂
n
⋂

j=1

B(xj , R + r/2).

Let µ be a doubling measure on (X, d), and let i0 ∈ {1, . . . , n} be such that

µ(B(xi0, r/2)) = min
i∈{1,...,n}

µ(B(xi, r/2)).

Since B(xi, r/2) ∩ B(xj , r/2) = ∅, whenever i 6= j, it follows that

nµ(B(xi0 , r/2)) ≤ µ
(

n
⋃

i=1

B(xi, r/2)
)

≤ µ
(

n
⋂

j=1

B(xj , R+ r/2)
)

≤ µ(B(xi0 , R+ r/2)).

Therefore, by Lemma 2.1 and (15), it follows that

n ≤ µ(B(xi0 , R + r/2))

µ(B(xi0 , r/2))
≤ C

⌈log2(
R+r/2
r/2

)⌉
µ ≤ C⌈log2(2Knϕ(ε)+1)⌉

µ .

Thus

log2Cµ ≥ log2 n

⌈log2(2Knϕ(ε) + 1)⌉ ≥ log2 n

log2(2K + 1) + ϕ(ε) log2(n+ 1)
−→
n→∞

1

ϕ(ε)
.

Hence, Cµ ≥ 21/ϕ(ε) and letting ε → 0 we get Cµ ≥ 21/ϕ(0). �
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Remark 4.3. The previous result can be used to provide an alternative argu-
ment for Theorem 3.5. Indeed, suppose that for any k ∈ N, there exist m ≥ k and

rm > 0 such that (xi)
⌈θm⌉
i=0 ⊂ X form an (m, rm, θ)-configuration. It is easy to check

that if we set n = ⌈θm⌉, then

max
i,j≤n

d(xi, xj) ≤ 2rm ≤ 2

θ
nmin

i 6=j
d(xi, xj).

Hence, Theorem 4.2 with ϕ(t) = 1, for every t > 0, yields that C(X,d) ≥ 2.

Let Kn denote the complete graph with n vertices. We will say that (X, d)
contains a copy of Kn if there exist r > 0 and (xi)

n
i=1 ⊂ X such that d(xi, xj) = r,

for every i 6= j. The following result is an extension of Proposition 2.6, since (X, d)
always contains a copy of K2.

Theorem 4.4. If (X, d) contains a copy of Kn for some n ≥ 2, then C(X,d) ≥
1+

√
4n−3
2

.

Proof. Let µ be any doubling measure on (X, d). Let (xi)
n
i=1 ⊂ X be such that

d(xi, xj) = r, for every i 6= j. Fix λ > 0. Suppose first, that for some i ∈ {1, . . . , n}
we have

µ(B(xi, 2r/3)) < λ
∑

j 6=i

µ(B(xj, r/3)).

Since for different j, j′ ∈ {1, . . . , n}\{i} we have

(i) B(xi, 2r/3) ∩B(xj , r/3) = ∅,
(ii) B(xj , r/3) ∩ B(xj′, r/3) = ∅,
(iii) B(xj , r/3) ⊂ B(xi, 4r/3),

it follows that

Cµµ(B(xi, 2r/3)) ≥ µ(B(xi, 4r/3)) ≥ µ(B(xi, 2r/3)) +
∑

j 6=i

µ(B(xj, r/3))

> (1 + 1/λ)µ(B(xi, 2r/3)).

Thus, in this case we have Cµ > 1 + 1/λ.
Now, suppose that for every i ∈ {1, . . . , n} we have

µ(B(xi, 2r/3)) ≥ λ
∑

j 6=i

µ(B(xj , r/3)).

Taking the sum over all i ∈ {1, . . . , n}, we get

Cµ

n
∑

i=1

µ(B(xi, r/3)) ≥
n

∑

i=1

µ(B(xi, 2r/3)) ≥
n

∑

i=1

λ
∑

j 6=i

µ(B(xj, r/3)).

Thus, in this case it follows that Cµ ≥ λ(n− 1). Hence, we have proved that

Cµ ≥ sup
λ>0

min{1 + 1/λ, λ(n− 1)}.

Optimizing in λ > 0, the conclusion follows. �

5. Examples

In this Section we are going to find some explicit values of the constants C(X,d) for
a wide range of metric spaces (X, d). We start with the case of the finite dimensional
real spaces with any of the equivalent ℓp metrics, 1 ≤ p ≤ ∞.
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Proposition 5.1. For very n ∈ N and 1 ≤ p ≤ ∞, we have that C(Rn,‖·‖p) = 2n.

Proof. If λ denotes the Lebesgue measure we clearly have C(Rn,‖·‖p) ≤ Cλ = 2n.
Conversely, given 1 ≤ p ≤ ∞, it is an easy geometric fact to observe that there exists a
constant cp > 0 such that, for every k ∈ N, we can find points xj,k ∈ Rn, j = 1, . . . , kn

satisfying that the collection of balls
{

Bp(xj,k, cp/k)
}

j=1,...,kn
are pairwise disjoint and

Bp(xj,k, cp/k) ⊂ Bp(0, 1), where Bp is a ball with respect to the metric ‖ · ‖p.
Hence, Proposition 2.2 yields that, for every doubling measure µ on (Rn, ‖ · ‖p),

it holds that

Cµ ≥ k
n

1+log2(2k/cp) −→
k→∞

2n. �

We consider now the case of a simple and connected graph G, as a metric space
endowed with the shortest path distance d. We will use the standard notation on
G: for finite graphs, n is the number of vertices V (G) and m the cardinality of its
edges E(G); for a vertex v ∈ V (G), d(v) is the degree (the number of neighbors or,
equivalently, the cardinality of the sphere S(v, 1) = {u ∈ V (G) : d(v, u) = 1}); ∆
is the maximum degree of G. For short, we will denote CG = C(G,d) for the least
doubling constant with G equipped with the shortest path distance d.

In general, it is not true that the cardinality measure is always doubling on G. A
necessary (but not sufficient) condition for this to happen is that ∆ < ∞. Moreover,
there are (infinite) graphs G where no doubling measure exists (i.e., CG = ∞), even
though G is always a complete metric space. For example, it is easy to see that this is
the case for the k-homogeneous tree Tk, k ≥ 3, since it is not doubling in the metric
sense [15].

If G is finite, then for the cardinality measure λ we have that, for every x ∈ V (G)
and r > 0

λ(B(x, 2r))

λ(B(x, r))
≤ n

1
.

This inequality, together with Proposition 3.2, gives us that if n = |V (G)| ≥ 2, then
2 ≤ CG ≤ n. It goes without saying that on finite graphs, all measures are doubling
(always assuming the restriction that balls should have positive measure).

Proposition 5.2. Let Kn denote the complete graph with n vertices. Then

CKn = n.

Proof. Let V = {xj : 1 ≤ j ≤ n} denote the set of vertices of Kn. Given a
measure µ on Kn (which is trivially doubling), let aj = µ({xj}). Since µ({xj}) =
µ(B(xj, r)), for any 0 < r ≤ 1, we have that aj > 0, for every 1 ≤ j ≤ n. Let
ak = min{aj : 1 ≤ j ≤ n}. Then

Cµ ≥ µ(B(xk, 3/2))

µ(B(xk, 3/4))
=

∑n
j=1 aj

ak
≥ n.

Thus, n ≥ CKn = inf Cµ ≥ n. �

Proposition 5.3. Let Sn denote the star graph with n vertices; that is, one

vertex of degree n− 1 and n− 1 vertices of degree 1. Then CSn = 1 +
√
n− 1.

Proof. Let V = {xj : 1 ≤ j ≤ n} denote the set of vertices of Sn, with x1 being
the vertex of degree n− 1. Given a doubling measure µ on Sn, let aj = µ({xj}) > 0
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and a =
∑n

j=1 aj . We have that

µ(B(x1, r)) =

{

a1, r ≤ 1,

a, r > 1,
and µ(B(xj , r)) =











aj, r ≤ 1,

aj + a1, 1 < r ≤ 2,

a, r > 2,

for j 6= 1. Therefore,

sup
r>0

µ(B(x1, 2r))

µ(B(x1, r))
= max

{

1,
a

a1

}

=
a

a1
,

while for j 6= 1 we get

sup
r>0

µ(B(xj , 2r))

µ(B(xj , r))
= max

{

1,
aj + a1

aj
,

a

aj + a1

}

.

Since a
aj+a1

< a
a1

, we have that

Cµ = max

{

a

a1
,
aj + a1

aj

}

.

Now, if a1 = min{aj : 1 ≤ j ≤ n}, then

Cµ =
a

a1
≥ n.

Otherwise, suppose aj0 = min{aj : 1 ≤ j ≤ n} < a1. Then we want to compute

A = inf

{

max

{

a

a1
,
aj0 + a1

aj0

}

: 0 < aj0 < a1

}

.

If we set r = a1
aj0

and s =
∑

j 6=1,j0
aj

aj0
, then we get

A ≥ inf

{

max

{

s+ 1

r
+ 1, r + 1

}

: r > 1, s ≥ n− 2

}

.

Note that s+1
r

+ 1 > r + 1 if and only if r <
√
s+ 1. Thus,

A ≥ min

{

inf

{

s+ 1

r
+ 1: 1 < r <

√
s+ 1, s ≥ n− 2

}

,

inf
{

r + 1: r >
√
s+ 1, s ≥ n− 2

}

}

≥ 1 +
√
n− 1.

Hence, we get CSn ≥ 1 +
√
n− 1.

Conversely, if we consider in V the measure µ given by µ({x1}) =
√
n− 1 and

µ({xj}) = 1, for j 6= 1, we finally get

CSn ≤ Cµ = max

{

n− 1 +
√
n− 1√

n− 1
,

√
n− 1 + 1

1

}

=
√
n− 1 + 1.

This finishes the proof. �

Proposition 5.4. For n ≥ 3, let Cn denote the n-cycle graph; that is, a con-

nected graph of n vertices all of them with degree 2. Then, CCn = 3.
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Proof. Let V = {xj : 1 ≤ j ≤ n} denote the set of ordered vertices of Cn.
Given any measure µ on Cn, let aj = µ({xj}) > 0. Let 1 ≤ j0 ≤ n such that
aj0 = min{aj : 1 ≤ j ≤ n}. Hence, we have that

Cµ ≥ µ(B(xj0, 2))

µ(B(xj0, 1))
=

aj0−1 + aj0 + aj0+1

aj0
≥ 3,

(we understand that j0 − 1 = n, if j0 = 1, and j0 +1 = 1, if j0 = n). Since this holds
for any (doubling) measure in Cn, it follows that CCn ≥ 3.

For the converse, let µ# be the counting the measure in Cn; that is, µ#({xj}) = 1,
for 1 ≤ j ≤ n. We first observe that, on any graph, B(x, r) = B(x, ⌈r⌉) and hence
we only need to consider values of r > 0 for which r ∈ N or 2r ∈ N. Moreover, since
µ#(B(x, r)) = min{2r − 1, n}, r ∈ N, then we can easily restrict the radius to the
range 1/2 ≤ r ≤ (n + 1)/4. The important remark for Cn is that if 2r ∈ N, but
r /∈ N (e.g., r = 1/2, 3/2, 5/2, . . .), then B(x, r) = B(x, r+1/2) and hence we obtain

Cµ#
≥ µ#(B(x, 2r + 1))

µ#(B(x, r + 1/2))
≥ µ#(B(x, 2r))

µ#(B(x, r))
,

showing that we can further reduce the radius of the balls to the simpler condition
r ∈ {1, 2, . . . , ⌊(n+ 1)/4⌋}. Finally, for those values of r:

µ#(B(x, 2r))

µ#(B(x, r))
=

4r − 1

2r − 1
≤ 3.

Therefore, Cµ#
= 3 and this finishes the proof. �
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