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Abstract. In this paper we are concerned with existence of positive solution to the class of
nonlinear problems of the Kirchhoff type given by

Lǫ(u) = H(u− β)f(u) + u2
∗

−1 in R
N ,

u ∈ H1(RN ) ∩W 2,
q

q−1 (RN ),

where N ≥ 3, q ∈ (2, 2∗), ǫ, β > 0 are positive parameters, f : R → R is a continuous function, H
is the Heaviside function, i.e., H(t) = 0 if t ≤ 0, H(t) = 1 if t > 0 and

Lǫ(u) :=

[
M

(
1

ǫN−2

ˆ

RN

|∇u|2 dx+
1

ǫN

ˆ

RN

V (x)|u|2 dx

)]
[−ǫ2∆u+ V (x)u].

The function M is a general continuous function. The function V is a positive potential that satisfies

following hypothesis: or V satisfies the Palais–Smale condition or there is a bounded domain Ω in

R
N such that V has no critical point in ∂Ω. Here we use a suitable truncation to apply a version of

the penalization method of Del Pino and Felmer [16] combined with the Mountain Pass Theorem

for locally Lipschitz functional.

1. Introduction

Problem of the type

(1) −(a+ b

ˆ

Ω

|∇u|2 dx)∆u = g(x, u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain in RN is very known as Kirchhoff problem. Its hyper-
bolic equation version which is given by




utt −
(
a+ b

´

Ω
|∇u|2 dx

)
∆u = g(x, u) in Ω× (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

was studied in the first time by Kirchhoff in [26] with N = 1. This equation extends
the classical d’Alembert’s wave equation by considering the effects of the changes in
the length of the strings during the vibrations.

Many authors have studied problem (1) using Variational methods and exploring
the compactness of H1

0(Ω) in Ls(Ω) with 1 ≤ s < 2∗. Another widely used situation is
the dimension N = 3. In general the dimension N = 3 avoids the competition of the
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term
(
a+ b

´

Ω
|∇u|2 dx

)
with the growth of nonlinearity. For more information on

this competition see [20, Introduction]. Since it is impossible to cite all the authors
that study problem (1) with N = 3, we cite the most recent publications, such as [6],
[15], [27], [29] and [31].

Problem (1) in RN is more difficult due to the lack of compactness of Sobolev
immersions. In general, in order to overcome this difficult, the author put a po-
tential which the geometry allows to recover the compactness. See here the latest
publications with these arguments, [11], [18], [24], [25], [32] and [33].

In this paper we are concerned with existence of positive solution to the class of
nonlinear problems of the Kirchhoff type given by

(2)

{
Lǫ(u) = H(u− β)f(u) + u2∗−1 in RN ,

u ∈ H1(RN) ∩W 2, q

q−1 (RN),

where N ≥ 3, q ∈ (2, 2∗), ǫ, β > 0 are positive parameters, f : R → R is a continuous
function, H is the Heaviside function, i.e., H(t) = 0 if t ≤ 0, H(t) = 1 if t > 0 and

Lǫ(u) :=

[
M

(
1

ǫN−2

ˆ

RN

|∇u|2 dx+
1

ǫN

ˆ

RN

V (x)|u|2 dx

)]
[−ǫ2∆u+ V (x)u].

In order to enunciate the main result, we need to give some hypotheses on the
functions M , V and f . The hypothesis on the continuous function M : [0,+∞) →
(0,∞) is the following:

(M1) The function M is nondecreasing.

Now we give some examples of functions that satisfy the hypothesis (M1). The
example M(t) = m0 + bt with m0, b > 0 was considered in [26]. Another examples
are M(t) = log(t + 1) + 1 or M(t) = exp t2.

The hypotheses on the continuous function V : RN → R are the following:

(V0) There is V0 > 0 such that V (x) ≥ V0, for all x ∈ RN .

(V1) V ∈ C2(RN) and V, ∂V
∂xi

, ∂2V
∂xi∂xj

are bounded in RN , i, j = 1, 2, . . . , N.

(V2) V verifies the Palais–Smale condition, that is, if (xn) ⊂ RN is such that,
(V (xn)) is bounded and ∇V (xn) → 0, then, (xn) possesses a convergent
subsequence in RN .

(V3) There is a bounded domain Ω ⊂ RN , such that ∇V (x) 6= 0, for all x ∈ ∂Ω.

The hypotheses on the continuous function f : R → R are the following:

(f1) For all t ∈ R, there are C > 0 and q ∈ (2, 2∗) such that

|f(t)| ≤ C(1 + |t|q−1).

(f2) For all t ∈ R, there exists θ ∈ (2, 2
∗

) such that

0 < θF (t) = θ

ˆ t

0

f(s) ds ≤ tf(t).

(f3) There is β > 0, that will be fixed later, such that

H(t− 2β) ≤ f(t), for all t ∈ R.

(f4) lim sup
t→0+

f(t)

t
= 0 and f(t) = 0 if t ≤ 0.
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A typical example of a function satisfying the conditions (f1), (f2), (f3) and (f4)
is given by

f(t) =

l∑

k=1

|t|qk−1

2βqk−1
if t ≥ 0 and qk ∈ (2, 2∗) and f(t) = 0 if t ≤ 0.

Before our main result, we define weak solution and strong solution for problem

(2). A weak solution for (2), we understand as a function uǫ ∈ H1(RN)∩W 2, q

q−1 (RN)
verifying

Lǫ(uǫ(x))− u2∗−1
ǫ (x) ∈ [f(uǫ(x)), f(uǫ(x))] a.e. in RN ,

where f(t) and f(t) are N -measurable functions (see [9]) defined by

f(t) := lim
δ↓0

ess inf |t−s|<δ H(s− β)f(s) and f(t) := lim
δ↓0

ess sup|t−s|<δ H(s− β)f(s).

By a strong solution for (2), we understand as a function uǫ ∈ H1(RN) ∩

W 2, q

q−1 (RN) verifying

(3) Lǫ(uǫ(x)) = H(uǫ(x)− β)f(uǫ(x)) + u2∗−1
ǫ (x) a.e. in RN .

Our main result is as follows:

Theorem 1.1. Suppose that M satisfies (M1), f satisfies (f1), (f2), (f3), (f4)
and V satisfies (V0), (V1) and (V2) or (V0), (V1) and (V3). Then, there exists ǫ∗ > 0
small, such that for each ǫ ∈ (0, ǫ∗), the problem (2) has a weak positive solution uǫ.
Moreover:

(i) The set {x ∈ RN : uǫ(x) = β} has null measure and so uǫ satisfies (3).
(ii) The set {x ∈ RN : uǫ(x) > β} has positive measure.

Some physical problems are related to discontinuous surface

Γβ(u) = {x ∈ Ω ; u(x) = β}

which causes difficulties in analyzing this kind of problems. The interest in the
study of nonlinear partial differential equations with discontinuous nonlinearities has
increased because many free boundary problems arising in mathematical physics may
be stated in this form. Among these problems, we have the obstacle problem, the
seepage surface problem, and the Elenbaas equation, see for example [10, 8, 9]. Still
related to elliptic problems with discontinuous nonlinearity, we cite the papers of
Alves, Bertone and Gonçalves [2], Alves, Santos and Gonçalves [3], Badiale [4, 5],
Dinu [17], Radulescu [30], Gazzola and Radulescu [21] and their references. Several
techniques have been developed or applied in their study, such as variational methods
for nondifferentiable functionals, lower and upper solutions, global branching, and the
theory of multivalued mappings.

Our result is related with the articles [1], [14] and [19]. Alves in [1] used in the
first time the hypotheses on the potential V in the problem

(4) −ǫ2∆u+ V (x)u = g(u) in RN ,

where g was continuous and subcritical. The version of this problem with discontin-
uous nonlinearity was studied in [19]. In [14] was studied a problem with a nonlocal
operator and discontinuous nonlinearity in bounded domain. But in this paper, the
nonlocal term does not contemplate the Kirchhoff function.

We have completed some previous results in the following sense:
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i) Here, we can not use Variational Methods for C1 functionals, because in
our case, the energy functional is only locally Lipschitz continuous, and so,
we have to use Variational Methods for for nondifferentiable functionals, see
Section 2 for more details.

ii) In [1] was necessary some estimates involving the boundedness of solution of
an auxiliary problem (see Lemma 2.1 in [1]). Since our problema has a nonlo-
cal term and the functional associated is only locally Lipschitz continuous it
was necessary to develop new arguments to get the boundedness of solution
of auxiliary problemas (see Lemma 3.6).

iii) This paper is a version of [19] considering the Kirchhoff term and critical
growth.

iv) In this paper we consider N ≥ 3. In order to overcome the competition
between the operator and the nonlinearity, we make a truncation the operator
like [20].

This paper is organized as follows. In the Section 2 we make a revision about
functional Liploc. In the Section 3 we make a truncation of the operator and another
truncation in the nonlinearity. After that we show existence of positive solution of
an auxiliary problem. Finally, we show that the solution of auxiliary problem is a
solution of original problem in the Sections 4 and 5.

2. Variational framework and preliminary results

In this section, for the reader’s convenience, we recall some definitions and basic
results on the critical point theory of locally Lipschitz continuous functionals as
developed by Chang [10], Clarke [12, 13] and Grossinho and Tersian [23].

Let X be a real Banach space. A functional I : X → R is locally Lipschitz
continuous, I ∈ Liploc(X,R) for short, if given u ∈ X there is an open neighborhood
V := Vu ⊂ X and some constant K = KV > 0 such that

| I(v2)− I(v1) |≤ K ‖ v2 − v1 ‖, vi ∈ V, i = 1, 2.

The directional derivative of I at u in the direction of v ∈ X is defined by

I0(u; v) = lim sup
h→0 σ↓0

I(u+ h + σv)− I(u+ h)

σ
.

Hence I0(u; .) is continuous, convex and its subdifferential at z ∈ X is given by

Υ0(u; z) =
{
µ ∈ X∗ ; I0(u; v) ≥ I0(u; z) + 〈µ, v − z〉, v ∈ X

}
,

where 〈., .〉 is the duality pairing between X∗ and X. The generalized gradient of I
at u is the set

∂I(u) =
{
µ ∈ X∗ ; 〈µ, v〉 ≤ I0(u; v), v ∈ X

}
.

Since I0(u; 0) = 0, ∂I(u) is the subdifferential of I0(u; 0). A few definitions and
properties will be recalled below.

∂I(u) ⊂ X∗ is convex, non-empty and weak*-compact,

(5) Λ(u) = min
{
‖ µ ‖X∗ ;µ ∈ ∂I(u)

}

and
∂I(u) =

{
I ′(u)

}
if I ∈ C1(X,R).

A critical point of I is an element u0 ∈ X such that 0 ∈ ∂I(u0) and a critical
value of I is a real number c such that I(u0) = c for some critical point u0 ∈ X.
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We say that I ∈ Liploc(X,R) satisfies the Palais–Smale condition at level c ∈ R
((PS)c-condition for short), if the following holds: Every sequence (un) ⊂ X, such
that I(un) → c and Λ(un) → 0 has a strongly convergent subsequence.

Theorem 2.1. Let X be a Banach space and let I ∈ Liploc(X,R) with I(0) = 0.
Suppose there are numbers ̺, r > 0 and e ∈ X, such that

(i) I(u) ≥ ̺, for all u ∈ X; ‖u‖ = r,
(ii) I(e) < 0 and ‖e‖ > r.

Let

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) and Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}.

Then c ≥ ̺ and there is a sequence (un) ⊂ X (named a (PS)c-sequence) satisfying

I(un) → c and Λ(un) → 0.

If, in addition, I satisfies the (PS)c-condition, then c is a critical value of I.

3. An auxiliary problem

Using the change variable v(x) = u(ǫx), it is possible to prove that (2) is equiv-
alent to the following problem

L̃ǫ(u) = H(u− β)f(u) + u2∗−1 in RN ,

u ∈ H1(RN) ∩W 2, q

q−1 (RN),
(6)

where

L̃ǫ(u) :=

[
M

(
ˆ

RN

|∇u|2 +

ˆ

RN

V (ǫx)|u|2
)]

[−∆u + V (ǫx)u].

In this section, we fix some notations and an auxiliary problem, which are key
points in our arguments. To establish the existence of positive solutions, we will
make a truncation on the function M as in [20] and we will adapt the penalization
method due to Del Pino and Felmer [16], which consists in considering an auxiliary
problem. To this end, we need to fix some notations.

In this section, on the function V, we assume only (V0) and (V1). From (M1),
there exists t0 > 0 such that M(0) ≤ M(t0) <

θ
2
M(0) where θ is given by (f2). We

set

(7) M0(t) :=

{
M(t), if 0 ≤ t ≤ t0,

M(t0), if t ≥ t0.

Using (M1) and (7), we get

(8) M(0) ≤ M0(t) <
θ

2
M(0), for all t ≥ 0.

Note that by (f4) we have

lim
t→0

[
f(t)

t
+ t2

∗−2

]
= 0 and lim

t→+∞

[
f(t)

t
+ t2

∗−2

]
= +∞.

Then there exists a > 0 such that

f(a)

a
+ a2

∗−2 =
V0

k
,(9)
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where V0 is given in (V0) and

k >
2θ

θM(0)− 2M(t0)
,(10)

where θ is given in (f2). In (f3) we choose β > 0 such that β < a < 2β.
Using the above numbers, let us define the function

f̃(t) =





0 if t ≤ 0,

H(t− β)f(t) + t2
∗−1 if 0 < t < a,

V0

k
t if t ≥ a.

Fixing Ω ⊂ RN a bounded domain and using the function f̃ , let us consider the
function

(11) g(x, t) = χΩ(x)(H(t− β)f(t) + t2
∗−1) + (1− χΩ(x))f̃(t),

where χΩ is the characteristic function related to Ω. Now consider the auxiliary
problem

(Pǫ)a

{
M0

(
´

RN (|∇u|2 + V (ǫx)|u|2)
)
(−∆u+ V (ǫx)u) = g(ǫx, u),

u ∈ H1(RN) ∩W 2, q

q−1 (RN).

A weak solution for (Pǫ)a, we understand as a function uǫ ∈ H1(RN) ∩W 2, q

q−1 (RN)
verifying

M0

(ˆ

RN

(|∇uǫ|
2 + V (ǫx)|uǫ|

2)
)
(−∆uǫ(x) + V (ǫx)uǫ(x))

∈ [g(ǫx, uǫ(x)), g(ǫx, uǫ(x))] a.e. in RN ,

where

g(x, t) := lim
δ↓0

ess inf|t−s|<δg(x, s) and g(x, t) := lim
δ↓0

ess sup|t−s|<δg(x, s),

which are N -measurable.
By a strong solution for (Pǫ)a, we understand as a function uǫ ∈ H1(RN) ∩

W 2, q

q−1 (RN) verifying

M0

(
ˆ

RN

(|∇uǫ|
2 + V (ǫx)|uǫ|

2)

)
(−∆uǫ(x)+V (ǫx)uǫ(x)) = g(ǫx, uǫ(x)) a.e. in RN .

Remark 3.1. The problem (Pǫ)a is strongly related to (6), because if uǫ is a
solution of (Pǫ)a verifying ‖uǫ‖ ≤ t0 and uǫ(x) ≤ a in RN \Ωǫ where Ωǫ = Ω/ǫ, then
by definitions of M0 and g, uǫ will be a solution for (6).

From (f1)–(f4), the function g satisfies the following conditions uniformly in
x ∈ RN :

(g1) g(x, t) = 0 for all t ≤ 0 and lim sup|t|→0
g(x,t)
|t|

= 0.

(g2) g(x, t) = H(t− β)f(t) + t2
∗−1, for all x ∈ Ω, t > 0, or x ∈ Ωc and t ∈ [0, a].

(g3) g(x, t) ≤ f(t) + t2
∗−1 for all x ∈ RN , t ∈ R.

(g4) 0 < θG(x, t) = θ
´ t

0
g(x, s) ds ≤ g(x, t)t, for all x ∈ Ω, t > 0, and 0 <

2G(x, t) ≤ g(x, t)t ≤ g(x, t)t ≤ 1
k
V0t

2, for all x 6∈ Ω, t ≥ 0.

We note that from (V0) and (V1), we can work in H1(RN) with the norm

‖u‖ :=

(
ˆ

RN

|∇u|2 + V (ǫx)|u|2
)1/2

, u ∈ H1(RN),
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which is equivalent to the usual norm.
Let Ψ̂ǫ be a functional given

Ψ̂ǫ(u) =

ˆ

RN

G(ǫx, u), for all u ∈ L2∗(RN).

Using (g2), (f1) and (11), we obtain a constant C = C(β) > 0, such that

(12) |g(ǫx, t)| ≤ C|t|2
∗−1, for all x ∈ RN , t ∈ R.

As an immediate consequence of (12), we obtain the following version of Theo-
rems 2.1 and 2.2 due to Chang [10] and its proof will be omitted.

Lemma 3.2. The functional Ψ̂ǫ satisfies:

(i) Ψ̂ǫ ∈ Liploc(L
2∗(RN),R) and

∂Ψ̂ǫ(u) ⊆

ˆ

RN

∂G(ǫx, u), for all u ∈ L2∗(RN),

in the sense that for every ξ∗ ∈ ∂Ψ̂ǫ(u) there exists ξ ∈ L
2
∗

2∗−1 (RN), such that,
ξ(x) ∈ ∂G(ǫx, u(x)) ⊂ [g(ǫx, u(x)), g(ǫx, u(x))] a.e. in RN and

〈
ξ∗, ϕ

〉
=

ˆ

RN

ξϕ, for all ϕ ∈ L2∗(RN).

(ii) If Ψǫ = Ψ̂ǫ |H1(RN ), then ∂Ψǫ(u) = ∂Ψ̂ǫ(u), for all u ∈ H1(RN).

The functional associated with (Pǫ)a is given by Jǫ(u) = Qǫ(u) − Ψǫ(u), u ∈
H1(RN), where

Qǫ(u) =
1

2
M̂0(‖u‖

2), M̂0(t) =

ˆ t

0

M0(s) ds and Ψǫ(u) =

ˆ

RN

G(ǫx, u).

The functional Qǫ ∈ C1(H1(RN),R), Jǫ ∈ Liploc(H
1(RN),R) with

〈
Q′

ǫ(u), ϕ
〉
= M0(‖u‖

2)

ˆ

RN

(∇u∇ϕ+ V (ǫx)uϕ), for all u, ϕ ∈ H1(RN)

and

∂Jǫ(u) = {Q′
ǫ(u)} − ∂Ψǫ(u), for all u ∈ H1(RN).

Lemma 3.3. Let (un) be a (PS)c sequence for Jǫ, then (un) is bounded in
H1(RN).

Proof. Let (wn) ⊂ H−1(RN) be such that Λ(un) = ‖wn‖∗ = on(1), where Λ
appeared in (5). Since wn ∈ ∂Jǫ(un), there exists ξ∗n ∈ ∂Ψǫ(un) verifying

(13)
〈
wn, ϕ

〉
=

〈
Q′

ǫ(un), ϕ
〉
−
〈
ξ∗n, ϕ

〉
, for all ϕ ∈ H1(RN).

From (13), (M1) and (g4), we have

(14) Jǫ(un)−
1

θ

〈
wn, un

〉
≥

(
M(0)

2
−

M(t0)

θ

)
‖un‖

2 +

ˆ

Ωc
ǫ

[
1

θ
ξnun −G(ǫx, un)

]
,

where ξn ∈ [g(ǫx, un), g(ǫx, un)].
Since θ > 2, the relation (g4) imply that

(15)

ˆ

Ωc
ǫ

[
1

θ
ξnun −G(ǫx, un)

]
≥

2− θ

θ

1

2k

ˆ

Ωc
ǫ

V (ǫx)|un|
2.
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Using (14) and (15), we obtain

C + C‖un‖ ≥

(
M(0)

2
−

M(t0)

θ

)
‖un‖

2 +
2− θ

θ

1

2k
‖un‖

2.

By choice of k, see (10), we have,

C + C‖un‖ ≥
1

2

(
M(0)

2
−

M(t0)

θ

)
‖un‖

2.

Therefore, (un) is bounded in H1(RN). �

Lemma 3.4. Let (un) be a (PS)c sequence for Jǫ. Then for each δ > 0, there
exists R = R(δ) > 0, such that

lim sup
n→∞

ˆ

RN\BR(0)

[
|∇un|

2 + V (ǫx)|un|
2
]
< δ.

Proof. Let (wn), ξ
∗
n and ξn used in the proof of the previous lemma and ηR ∈

C∞(RN , [0, 1]), such that ηR(x) = 0 in BR(0), ηR(x) = 1 in B2R(0)
c and |∇ηR(x)| ≤

C/R in RN , where C > 0 is a constant independent on R.
By Lemma 3.3, (un) is bounded in H1(RN) and

〈
wn, ηRun

〉
= on(1). From (13),

we obtain

M(0)

ˆ

RN

ηR
[
|∇un|

2 + V (ǫx)|un|
2
]
≤

ˆ

RN

ξnηRun−M0(‖un‖
2)

ˆ

RN

un∇ηR∇un+on(1).

Fixed R > 0, such that Ωǫ ⊂ BR
2

(0). Since ξn ∈ [g(ǫx, un), g(ǫx, un)], by (g4),

ˆ

RN

ξnηRun ≤
1

k

ˆ

RN

ηRV (ǫx)|un|
2,

combining this with (8), we find
(
M(0)−

1

k

)
ˆ

RN

ηR
[
|∇un|

2 + V (ǫx)|un|
2
]
≤ M(0)

θ

2

C

R
|un|L2 |∇un|L2 + on(1).

Since k > 1
M(0)

, see (10), we conclude the proof. �

Let S be the best constant for Sobolev’s embedding D1,2(RN) →֒ L2∗(RN).

Proposition 3.5. The functional Jǫ verifies the (PS)c condition in H1(RN) for

c <
(M(0)

2
− M(t0)

θ

)(
M(0)S

N
N−2

)N−2

2 .

Proof. By Lemma 3.3, (un) is bounded in H1(RN). Taking a subsequence, we
may assume that un ⇀ u in H1(RN), un(x) → u(x) a.e. in RN ,

|∇un|
2 ⇀ |∇u|2 + µ and |un|

2∗ ⇀ |u|2
∗

+ ν (weak∗-sense of measure).

Using the concentration compactness-principle by Lions [26, Lemma 2.1], we obtain
at most countable index set Σ, sequences (xi) ⊂ RN , (µi), (νi) ⊂ [0,∞), such that

(16) ν =
∑

i∈Σ

νiδxi, µ ≥
∑

i∈Σ

µiδxi and Sν
2

2∗

i ≤ µi,

for all i ∈ Σ, where δxi is the Dirac mass at xi.
Now we claim that Σ = ∅. Arguing by contradiction, assume that Σ 6= ∅ and fix

i ∈ Σ. Let wn, ξ
∗
n and ξn used in the proof of the Lemma 3.3.
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Consider ϕ ∈ C∞
0 (RN , [0, 1]), such that, ϕ ≡ 1 in B1(0), ϕ ≡ 0 in RN \ B2(0)

and |∇ϕ|L∞ ≤ 2. Defining ϕ̺(x) = ϕ
(
x−xi

̺

)
, where ̺ > 0, we have that (ϕ̺un) is

bounded in H1(RN), that implies

M0(‖un‖
2)

ˆ

RN

(∇un∇(ϕ̺un) + V (ǫx)ϕ̺u
2
n) =

ˆ

Ωǫ

ξnϕ̺un +

ˆ

Ωc
ǫ

ξnϕ̺un + on(1).

Using (M1), (g3) and (g4), we obtain

M(0)

ˆ

RN

ϕ̺|∇un|
2 ≤ −M0(‖un‖

2)

ˆ

RN

(
un∇un∇ϕ̺ + V (ǫx)ϕ̺u

2
n

)

+ C

ˆ

RN

|un|
qϕ̺ +

ˆ

RN

|un|
2∗ϕ̺ + C

ˆ

RN

|un|
2ϕ̺.

(17)

Since (un) is bounded in H1(RN), the support of ϕ̺ is contained in B2̺(xi),

lim
̺→0

lim
n→∞

M0(‖un‖
2)

ˆ

RN

(
un∇un∇ϕ̺ + V (ǫx)ϕ̺u

2
n

)
= 0,

lim
̺→0

lim
n→∞

ˆ

RN

|un|
2ϕ̺ = 0 and lim

̺→0
lim
n→∞

ˆ

RN

|un|
qϕ̺un = 0.

Thus, by (17)

M(0)

ˆ

RN

ϕ̺ dµ ≤

ˆ

RN

ϕ̺ dν + o̺(1).

Letting ̺ → 0 and using standard theory of Radon measures, we conclude that

M(0)µi ≤ νi. From (16), µi ≥ (M(0)S
N

N−2 )
N−2

2 .
Once that (un) is a sequence (PS)c, arguing as in the proof of Lemma 3.3,

c = Jǫ(un)−
1

θ

〈
wn, un

〉
+on(1)

≥

(
M(0)

2
−

M(t0)

θ

)
ˆ

RN

|∇un|
2ϕ̺ + C0

ˆ

RN

V (ǫx)|un|
2ϕ̺ + on(1).

Thus, we conclude that c ≥
(

M(0)
2

− M(t0)
θ

)(
M(0)S

N
N−2

)N−2

2 , which is a contradiction.

Therefore, Σ is empty and it follows that

(18) un → u in L2∗

loc(R
N).

Recalling that

M0(‖un‖
2)‖un‖

2 =

ˆ

RN

ξnun + on(1)(19)

and since ξn ∈ [g(ǫx, un), g(ǫx, un)], by (12) and the boundedness of (un) in H1(RN),

we obtain that (ξn) is bounded in L
2
∗

2∗−1 (RN). Thus, up to a subsequence,

(20) ‖un‖ → σ in R, ξn ⇀ ξ in L
2
∗

2∗−1 (RN) and un ⇀ u in H1(RN).

From (13),

(21) M0(σ
2)‖u‖2 =

ˆ

RN

ξu.

Since∣∣∣∣
ˆ

BR(0)

ξnun −

ˆ

BR(0)

ξu

∣∣∣∣ ≤ |un − u|L2∗(BR(0))|ξn|
L

2∗

2∗−1 (RN )
+

∣∣∣∣
ˆ

BR(0)

(ξn − ξ)u

∣∣∣∣ ,
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using (18), (20) and the Riesz representation theorem, we have

(22)

ˆ

BR(0)

ξnun →

ˆ

BR(0)

ξu.

The Lemma 3.4 implies that

(23) lim sup
n→∞

∣∣∣∣∣

ˆ

Bc
R
(0)

ξnun

∣∣∣∣∣ = oR(1).

Noting that
∣∣∣∣
ˆ

RN

ξnun −

ˆ

RN

ξu

∣∣∣∣ ≤
∣∣∣∣
ˆ

BR(0)

ξnun −

ˆ

BR(0)

ξu

∣∣∣∣+
∣∣∣∣∣

ˆ

Bc
R
(0)

ξnun

∣∣∣∣∣+ oR(1),

using (22) and (23), we conclude that

(24)

ˆ

RN

ξnun →

ˆ

RN

ξu.

Combining (19), (21) and (24), we obtain M(‖un‖
2)‖un‖

2 = M(σ2)‖u‖2 + on(1).
Therefore, un → u in H1(RN). �

Lemma 3.6. Let (un) be a (PS)c sequence for Jǫ,β with c < 1
2

(M(0)
2

− M(t0)
θ

)
t20.

Then, there exists n0 > 0, such that

‖un‖ ≤ t0, for all n ≥ n0,

where t0 is given by (7).

Proof. Suppose, that the lemma is false, then we obtain a subsequence of (un),
that we are still denoting by (un), that satisfies ‖un‖ > t0, for all n ∈ N. Using
wn ∈ ∂J(un), we get

c+ on(1) = Jǫ(un)−
1

θ

〈
wn, un

〉
≥

1

2

(
M(0)

2
−

M(t0)

θ

)
‖un‖

2.

Since M(t0) <
θ
2
M(0), we have

c ≥
1

2

(
M(0)

2
−

M(t0)

θ

)
t20,

which is a contradiction. �

The number

(25) c∗ := min
{
t20,

(
M(0)S

N
N−2

)N−2

2

} 1

2

(
M(0)

2
−

M(t0)

θ

)

is important in order to prove that the functional satisfies the (PS)c condition and
that a solution of the auxiliary problem (Pǫ)a is a solution of the original problem
(6).

In the next result we choose the constant β of the condition (f3).

Lemma 3.7. Suppose that (f1), (f2), (f3), (f4), (V0), (V1) are satisfied. Fixed
ǫ∗, β > 0 small, for each ǫ ∈ (0, ǫ∗), there are γ0 > 0 and v0 ∈ H1(RN), which are
independent of ǫ∗ and β, such that

(i) maxt∈[0,γ0] Jǫ(tv0) < c∗.
(ii) There are r, ̺ > 0, such that, Jǫ(u) ≥ ̺, ∀ u ∈ H1(RN); ‖u‖ = r.
(iii) Jǫ(γ0v0) < 0 and γ0v0 ∈ Br(0)

c.
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Proof. Without any loss of generality we may assume that 0 ∈ Ω. Fixed ǫ∗ ∈
(0, 1), consider v0 ∈ C∞

0 (RN), such that,
´

RN (|∇v0|
2+V∞|v0|

2) = 1, v0 ≥ 0, supp v0 ⊂
BR(0) ⊂ Ω. Since V (ǫx) ≤ V∞, for each x ∈ BR(0) and ǫ ∈ (0, ǫ∗), we have ǫx ∈ Ω,
then, using (8) and (g2), we get

(26) Jǫ(tv0) ≤ j(t)−

ˆ

BR(0)

ˆ tv0(x)

0

H(s− β)f(s) ds dx ≤ j(t), for all t ≥ 0,

where j(t) = θ
2
M(0)t2 − t2

∗

2∗

´

BR(0)
|v0|

2∗ .

Note that, the function j is increasing in (0, t∗), for some t∗ > 0. Since limt→0 j(t)
= 0, there exists γ0 > 0, independent on ǫ∗ and β such that,

γ0 < t∗ and max
t∈[0,γ0]

Jǫ(tv0) ≤ j(γ0) < c∗,

where c∗ is given in (25), which prove (i).
Let us prove (ii). Note that Jǫ(0) = 0. By (g3), (f1), (M1) and choosing ‖u‖ =

r < γ0/2, there exists ̺ > 0 such that Jǫ(u) ≥ ̺, ∀u ∈ H1(RN); ‖u‖ = r. Moreover,
using (f3)

ˆ

BR(0)

ˆ γ0v0(x)

0

H(s− β)f(s) ds dx ≥

ˆ

BR(0)

[γ0v0 − 2β] dx.

By (26) we obtain

(27) Jǫ(γ0v0) ≤ j(γ0)−

ˆ

BR(0)

[γ0v0 + 2β] dx,

for γ0 > 0 and β > 0 small enough. �

Theorem 3.8. Suppose that (M1), (f1), (f2), (f3), (f4), (V0) and (V1) are satis-
fied. Then, there are ǫ∗, β > 0 small, such that for each ǫ ∈ (0, ǫ∗), problem (Pǫ)a has
a positive solution uǫ satisfying:

(i) uǫ is a weak solution of problem (Pǫ)a and ‖uǫ‖ ≤ t0, ∀ǫ ∈ (0, ǫ∗).
(ii) The set {x ∈ RN : uǫ(x) = β} has null measure, and so uǫ is a strong solution

of (Pǫ)a.
(iii) The set {x ∈ RN : uǫ(x) > β} has positive measure.

Proof. (i) Let β, v0 and γ0 be as in the Lemma 3.7. By Lemma 3.7, Jǫ has
the mountain pass geometry, it follows that there exist sequences (un) ⊂ H1(RN),
(wn) ⊂ ∂Jǫ(un) and (ξ∗n) ⊂ ∂Ψǫ(un), such that, wn = Q′

ǫ(un) − ξ∗n in H−1(RN),
‖wn‖∗ = on(1), Jǫ(un) = cǫ+on(1), where cǫ = infγ∈Γ maxt∈[0,1] Jǫ(γ(t)) and Γ = {γ ∈
C([0, 1], H1(RN)) : γ(0) = 0 and γ(1) = γ0v0}. Since (un) is bounded in H1(RN) and

ξn ∈ [g(ǫx, un), g(ǫx, un)], by (12) we obtain (ξn) bounded in L
2
∗

2∗−1 (RN).

Now, the Proposition 3.5, implies that un → uǫ in H1(RN) and ξn ⇀ ξǫ in

L
2
∗

2∗−1 (RN). Thus,

(28) M0(‖uǫ‖
2)

ˆ

RN

[∇uǫ∇ϕ+ V (ǫx)uǫϕ] =

ˆ

RN

ξǫϕ, for all ϕ ∈ H1(RN)

where ξǫ ∈ [g(ǫx, uǫ), g(ǫx, uǫ)]. By the Lemma 3.6, we get

‖uǫ‖ ≤ t0 and M0(‖uǫ‖) = M(‖uǫ‖), for all ǫ ∈ (0, ǫ∗).
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Once that ξǫ ∈ L
2
∗

2∗−1 (RN), from elliptic regularity theory, uǫ ∈ W 2, 2
∗

2∗−1 (RN) and

(29) L̃ǫ(uǫ)(x) ∈ [g(ǫx, uǫ(x)), g(ǫx, uǫ(x))] a.e. in RN ,

where

L̃ǫ(uǫ) := M(‖uǫ‖
2)[−∆uǫ + V (ǫx)uǫ].

Taking as test function u−
ǫ , we obtain uǫ = u+

ǫ ≥ 0. By Harnack inequality, see [22,
Teorema 8.20], we conclude that uǫ > 0. Therefore, uǫ is positive solution of (Pǫ)a
and we prove (i).

Now, suppose that the set Ωǫ,β := {x ∈ RN : uǫ(x) = β} has positive measure.
By Stampachia Theorem, see [28], we can deduce that, −∆uǫ(x) = 0 a.e. in Ωǫ,β.
From (29)

M(‖uǫ‖
2)V (ǫx)β ∈ [g(ǫx, β), g(ǫx, β)] a.e. in Ωǫ,β.(30)

Once that β < a and

|g(x, t)| ≤ V0t/k, for all x ∈ RN , t ∈ [0, a],(31)

thus by (30), M(0) ≤ 1/k, but this contradicts (10). Thus, |Ωǫ,β| = 0, which proves
(ii).

Now, suppose, by contradiction, that |{x ∈ RN : uǫ(x) > β}| = 0, then

uǫ(x) ≤ β a.e. in RN ,(32)

it follows from (28), (31) and (32), that
(
M(0) − 1/k

)
‖uǫ‖

2 ≤ 0, then uǫ = 0, but
this contradicts Jǫ(uǫ) = cǫ > 0. �

Lemma 3.9. Assume the same hypotheses of Theorem 3.8. Let uǫn be a positive
solution of (Pǫ)a, ǫn → 0+ and (xn) ⊂ RN . The sequence vn(x) := uǫn(x + xn) ∈
C(RN) and has a subsequence such that converges uniformly on compact sets to its

weak limit v ∈ W 2, q

q−1 (RN) ∩ C(RN).

Proof. First, we adapt for our problem some ideas found in Brezis–Kato [7], for
obtain vn ∈ Lp(RN), for all p > 1. For this end, fixed n ∈ N. Using the change
variable z = x+ xn, defining vn(x) := uǫn(x+ xn) and ξn(x) :=

1
M(‖uǫn‖

2)
ξǫn(x+ xn),

we have {
−∆vn(x) + V (ǫnx+ ǫnxn)vn(x) = ξn(x+ xn) a.e. in RN ,

vn ∈ H1(RN) ∩W 2, 2
∗

2∗−1 (RN),

where ξǫn(z) ∈ [g(ǫnz, uǫn(z)), g(ǫnz, uǫn(z)) a.e. in RN .

Consider s ≥ 0, L > 0, An,L = {x ∈ RN : |vn|
s < L}, Bc

n,L = An,L and the
functions

vn,L := min{vn|vn|
2s, L2vn} and wn,L := min{vn|vn|

s, Lvn}.

Using the test function vn,L, we have

(33)

ˆ

RN

∇vn∇vn,L + V (ǫnx+ ǫnxn)vnvn,L =

ˆ

RN

ξnvn,L.

With an elementary calculation we obtain

(34)

ˆ

RN

∇vn∇vn,L = (2s+ 1)

ˆ

An,L

|vn|
2s|∇vn|

2 + L2

ˆ

Bn,L

|∇vn|
2
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and

(35)

ˆ

RN

|∇wn,L|
2 = (s+ 1)2

ˆ

An,L

|vn|
2s|∇vn|

2 + L2

ˆ

Bn,L

|∇vn|
2.

Combining (33), (34) and (35), we find
ˆ

RN

|∇wn,L|
2 ≤ (2s+ 1)

ˆ

RN

ξnvn,L.

From (12) there exists a constant C > 0, independent of L, such that, |ρn| ≤
C|vn|

2∗−1. For 0 < K < L, we obtain
ˆ

RN

|∇wn,L|
2 ≤ (2s+ 1)C

ˆ

RN

|vn|
2∗−2|wn,L|

2

≤ (2s+ 1)CK2∗−2

ˆ

{vn≤K}

|vn|
2(s+1) + (2s+ 1)Cη(K)

(
ˆ

{vn>K}

|wn,L|
2∗
) 2

2∗

,

where η(K) =

(
´

{vn>K}
|vn|

2∗
) 2

∗
−2

2∗

→ 0 if K → ∞. Thus,

ˆ

RN

|∇wn,L|
2 ≤ (2s+ 1)CK2∗−2

ˆ

RN

|vn|
2(s+1) + (2s+ 1)Cη(K)S

ˆ

RN

|∇wn,L|
2,

where S0 is the best constant in inequality
(
ˆ

RN

|u|2
∗

) 2

2∗

≤ S0

ˆ

RN

|∇u|2, ∀u ∈ D1,2(RN).

Choosing K, such that, (2s+ 1)C1S0η(K) ≤ 1
2
, we have

(
ˆ

RN

|wL,n|
2∗
) 2

2∗

≤ 2(2s+ 1)CK2∗−2

ˆ

RN

|vn|
2(s+1).

Since |wn,L| = |vn|
s+1 in An,L and |wn,L| ≤ |vn|

s+1 in RN , thus, if vn ∈ L2(s+1)(RN),
by the dominated convergence theorem, with L → ∞, we obtain vn ∈ L2∗(s+1)(RN).

By iteration about s, we have vn ∈ Lp(RN), for all p > 1. From regularity
elliptic theory, for p sufficiently large, we get vn ∈ W 2,p(RN) →֒ C1,α(RN), for some
0 < α < 1. The boundedness of vn in H1(RN), see Theorem 3.8 (i), implies that
‖vn‖C1,α

loc
is bounded. From the Schauder estimates, there exists v ∈ C(RN), such

that

vn → v uniformly on K,

for each compact K ⊂ RN . �

Remark 3.10. As a consequence of the proof of the above lemma we have that

the solution uǫ of (Pǫ)a belongs to W 2, q

q−1 (RN) ∩ C1,α(RN), for some α ∈ (0, 1).

4. Proof of Teorem 1.1 in the case (V0), (V1) and (V2)

In this section we assume (V0), (V1) and (V2),

Ω := BRǫ
(0), mǫ := max

x∈∂BRǫ
ǫ

(0)
uǫ(x) > 0 and Rǫ :=

1

ǫ
,

where uǫ is a solution of the problem (Pǫ)a given by Theorem 3.8.
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Lemma 4.1. Suppose that (M1), (f1), (f2), (f3), (f4), (V0), (V1) and (V2) are
satisfied. Then, given η > 0, there exist ǫ∗ > 0 such that

mǫ < η, for all ǫ ∈ (0, ǫ∗).

Proof. Proceeding by a contradiction argument, suppose that there exists δ0 > 0,
such that, for each ηn = 1

n
, we obtain ǫn > 0 small, such that,

mǫn = max
x∈∂BRǫn

ǫn

(0)
un(x) ≥ δ0 > 0 and ǫn → 0,

where un := uǫn ∈ H1(RN)∩W 2, q

q−1 (RN). By elliptic regularity theory un ∈ C(RN),
then, there exists xn ∈ ∂BRǫn

ǫn

(0), such that, un(xn) = mǫn. Therefore, un(xn) ≥

δ0 > 0.
Now, note that for vn(x) := un(x+ xn) and ̺n(x) := ξn(x+ xn),

{
M(‖un‖

2)
(
−∆vn(x) + V (ǫnx+ ǫnxn)vn(x)

)
= ̺n(x) a.e. in RN ,

vn ∈ H1(RN) ∩W 2, q

q−1 (RN).

The Theorem 3.8 (i), implies that (un) is bounded in H1(RN). Therefore, by (12)

the sequence (ξn) ⊂ [g(ǫx, un), g(ǫx, un)] is bounded in L
2
∗

2∗−1 (RN).

Thus, up to a subsequence, vn ⇀ v in H1(RN), ̺n ⇀ ̺ in L
2
∗

2∗−1 (RN), M(‖un‖
2)

→ m1 and by (V1), V (ǫnxn) → α1. Taking the limit of n → ∞, let us deduce that v
is a weak solution solution of the problem

{
m1

(
−∆v + α1v

)
= ̺ in RN ,

v ∈ H1(RN) ∩W 2, q

q−1 (RN).

Using the same argument as in the proof of Lemma 3.9 we obtain vn, v ∈ C(RN) and
a subsequence of vn which converges uniformly on compact sets of RN for v. Then,
v(0) ≥ δ0 > 0 and v 6= 0.

Since (un) is bounded in H1(RN), M is continuous with M(t) ≥ M(0), using
similar argument as in [19, proof of the Lemma 5.1] or [1, proof of the Lemma 3.1],
we obtain a sequence (ǫnxn) ⊂ RN , such that,

∇V (ǫnxn) → 0 and V (ǫnxn) → α1,

for some α1 ≥ V0 > 0. Thus, (ǫnxn) ⊂ RN is a sequence (PS)α1
with |ǫnxn| = Rǫn =

1
ǫn

. This contradicts (V2) and so the lemma is true. �

Proof of the Theorem 1.1 for (V0), (V1) and (V2). Let the constant a of (9).
Combining the Theorem 3.8 with the Lemma 4.1, we obtain ǫ∗ > 0, such that, for each
ǫ ∈ (0, ǫ∗), the problem (Pǫ)a has a positive solution uǫ with maxx∈∂BRǫ

ǫ

(0) uǫ(x) ≤ a.

The function ũǫ(x) := 0 in BRǫ
ǫ

(0) and ũǫ(x) := (uǫ − a)+(x) in BRǫ
ǫ

(0)c, belongs in

H1(RN). Since

M(‖uǫ‖
2)

ˆ

RN

[∇uǫ∇ϕ+ V (ǫx)uǫϕ] =

ˆ

RN

ξǫϕ, for all ϕ ∈ H1(RN)

and 0 ≤ ξǫ ≤ V (ǫx)uǫ/k in BRǫ
ǫ
(0)c, using ϕ = ũǫ, we have

(
M(0)−

1

k

)ˆ

BRǫ
ǫ

(0)c
V (ǫx)uǫ(uǫ − a)+ ≤ 0,
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thus, uǫ(x) ≤ a a.e. in BRǫ
ǫ
(0)c. Therefore, uǫ is a solution of (6). Moreover, we

conclude the proof with the Theorem 3.8. �

5. Proof of Teorem 1.1 in the case (V0), (V1) and (V3)

In this section we assume (V0), (V1) and (V3),

Ω := Λ and mǫ := max
x∈∂Λǫ

uǫ(x) > 0,

where uǫ is a solution of the problem (Pǫ)a given by Theorem 3.8.

Lemma 5.1. Suppose that (M1), (f1), (f2), (f3), (f4), (V0), (V1) and (V3) are sat-
isfied. Thus, given η > 0, there exists ǫ∗ > 0, such that,

mǫ < η, for all ǫ ∈ (0, ǫ∗).

Proof. Suppose that the lemma is not true. Then, repeating the arguments of
proof do Lemma 4.1, we can find a sequence (xn) ⊂ ∂Λǫn , such that, ∇V (ǫnun) → 0.
Once that (ǫnxn) ∈ ∂Λ and V ∈ C1(RN ,R), we obtain x0 ∈ RN , such that, x0 ∈ ∂Λ
and ∇V (x0) = 0. But this contradicts (V3). �

Proof of the Theorem 1.1 for (V0), (V1) and (V3). Using Lemma 5.1 and arguing
similarly as in the proof of the case (V0), (V1) and (V2) we conclude the proof of the
theorem. �

References

[1] Alves, C.O.: Existence of standing waves solutions for a nonlinear Schrödinger equations in
R

N . - J. Elliptic Parabol. Equ. 1, 2015, 231–241.

[2] Alves, C.O., A.M. Bertone, and J.V. Gonçalves: A variational approach to discontin-
uous problems with critical Sobolev exponents. - J. Math. Anal. App. 265, 2002, 103–127.

[3] Alves, C.O., J.A. Santos, and J.V. Gonçalves: On multiple solutions for multivalued
elliptic equations under Navier boundary conditions. - J. Convex Anal. 03, 2011, 627–644.

[4] Badiale, M.: Critical exponent and discontinuous nonlinearities. - Differential Integral Equa-
tions 6, 1993, 1173–1185.

[5] Badiale, M.: Some remarks on elliptic problems with discontinuous nonlinearities. - Rend.
Sem. Mat. Univ. Politec. Torino 51, 1993, 331–342.

[6] Baraket, S., and G. Molica Bisci: Multiplicity results for elliptic Kirchhoff-type problems.
- Adv. Nonlinear Anal. 6:1, 2017, 85–93.

[7] Brezis, H., and T. Kato: Remarks on the Schrödinger operator with singular complex
potentials. - J. Math. Pures Appl. 58, 1979, 137–151.

[8] Chang, K.C.: On the multiple solutions of the elliptic differential equations with discontin-
uous nonlinear terms. - Sci. Sinica 21, 1978, 139–158.

[9] Chang, K.C.: The obstacle problem and partial differential equations with discontinuous
nonlinearities. - Comm. Pure Appl. Math. 1978, 139–158.

[10] Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to
partial differential equations. - J. Math. Anal. 80, 1981, 102–129.

[11] Chen, C.: Infinitely many solutions for N -Kirchhoff equation with critical exponential growth
in R

N . - Mediterr. J. Math. 15:1, 2018, Art. 4, 1–20.

[12] Clarke, F.H.: Optimization and nonsmooth analysis. - John Wiley & Sons, N.Y., 1983.

[13] Clarke, F.H.: Generalized gradients and applications. - Trans. Amer. Math. Soc. 265, 1975,
247–262.



1002 Giovany M. Figueiredo and Gelson G. dos Santos

[14] Corrêa, F. J. S.A., and R.G. Nascimento: Existence of solutions to nonlocal elliptic equa-
tions with discontinuous terms. - Electron. J. Differential Equations 26, 2012, 1–14.

[15] Delgado, M., G.M. Figueiredo, I. Gayte, and C. Morales-Rodrigo: An optimal
control problem for a Kirchhoff-type equation. - ESAIM Control Optim. Calc. Var. 23:3, 2017,
773–790.

[16] Del Pino, M., and P.L. Felmer: Local Mountain Pass for semilinear elliptic problems in
unbounded domains. - Calc. Var. Partial Differential Equations 4, 1996, 121–137.

[17] Dinu, T. L.: Standing wave solutions of Schrödinger systems with discontinuous nonlinearity
in anisotropic media. - Int. J. Math. Math. Sci. 2006, 2006, 1–13.

[18] Dongdong, S., and Z. Zhitao: Uniqueness, existence and concentration of positive ground
state solutions for Kirchhoff type problems in R

3. - J. Math. Anal. Appl. 461:1, 2018, 128–149.

[19] Dos Santos, G.G., and G.M. Figueiredo: Existence of solutions for an NSE with discon-
tinuous nonlinearity. - J. Fixed Point Theory, 19:1, 2017, 917–937.

[20] Figueiredo, G.M.: Existence of positive solution for a Kirchhoff problem type with critical
growth via truncation argument. - J. Math. Anal. Appl. 401, 2013, 706–713.

[21] Gazzola, F., and V. Radulescu: A nonsmooth critical point theory approach to some
nonlinear elliptic equations in R

N . - Differential Integral Equations 13, 2000, 47–60.

[22] Gilbarg, D., and N. S. Trudinger: Elliptic partial differential equations of second order. -
Springer-Verlag, Berlin, 1983.

[23] Grossinho, M.R., and S.A. Tersian: An introduction to minimax theorems and their
applications to differential equations. - Nonconvex Optim. Appl. 52, Springer US, 2001.

[24] Guo, J., S. Ma, and G. Zhang: Solutions of the autonomous Kirchhoff type equations in
R

N . - Appl. Math. Lett. 82, 2018, 14–17.

[25] He, X., and X. Wu: Multiple sign-changing solutions for Kirchhoff-type equations in R
3. -

Math. Methods Appl. Sci. 41:2, 2018, 512–524.

[26] Kirchhoff, G.: Mechanik. - Teubner, Leipzig, 1883.

[27] Lei, C., H. Suo, and C. Chu: Three solutions of a Kirchhoff type problem involving critical
growth and near resonance. - Indian J. Pure Appl. Math. 49:1, 2018, 99–112.

[28] Morrey, C. B.: Multiple integrals in calculus of variations. - Springer-Verlag, Berlin, 1966.

[29] Mu, M., and H. Lu: Existence and multiplicity of positive solutions for Schrödinger–Kirchhoff–
Poisson system with singularity. - J. Funct. Spaces 2017, Art. ID 5985962, 1–12.

[30] Radulescu, V.: Mountain pass theorems for non-differentiable functions and applications. -
Proc. Japan. Acad. Ser. A 69, 1993, 193–198.

[31] Shao, M., and A. Mao: Signed and sign-changing solutions of Kirchhoff type problems. - J.
Fixed Point Theory Appl. 20:1, 2018, Art. 2, 1–20.

[32] She, L.-B., S. Xin, and D. Yu: Multiple positive solutions for a class of Kirchhoff type
equations in R

N . - Bound. Value Probl. 2018, Paper No. 10, 1–13.

[33] Wu, K.: Existence of ground states for a Kirchhoff type problem without 4-superlinear con-
dition. - Comp. Math. Appl. 75, 2018, 755–763.

[34] Wu, X., and K. Teng: Multiple non semi-trivial solutions of systems of Kirchhoff-type equa-
tions with discontinuous nonlinearities in R

N . - Math. Methods Appl. Sci. 39:3, 2016, 378–393.

Received 22 April 2018 • Accepted 17 January 2019


