CHARACTERIZING HYPERELLIPTIC SURFACES IN TERMS OF CLOSED GEODESICS

Daniel Gallo
St. John's University, Staten Island, New York, U.S.A.; gallod@stjohns.edu

Abstract

We give a characterization of hyperelliptic surfaces in terms of simple, closed geodesics on the surfaces and graphs associated to these geodesics.

1. Introduction and statement of main results

A closed Riemann surface of genus $g \geq 2$ is hyperelliptic if it has a conformal involution with $2 g+2$ fixed points. Hyperelliptic surfaces were studied classically in the context of function theory on surfaces; a good overview of this approach may be found in [2]. In more recent times, interest has shifted to the geometric structures on the surfaces. In particular, two results, one by Schmutz-Schaller [5], the other by Maskit [4], characterize hyperelliptic surfaces in terms of simple, closed geodesics contained in the surfaces. Later, Costa and Porto [1] obtained the same results by constructing hyperbolic polygons adapted to these geodesics, which also serve to characterize hyperelliptic surfaces. The author is grateful to the referee for pointing out the results in [1].

In this paper the main result is a more general characterization of hyperelliptic surfaces in terms of simple, closed geodesics on the surfaces and graphs associated to these geodesics. As a consequence, we also recover the two results of Schmutz-Schaller and Maskit (Section 4).

In order to state the main theorem precisely, we need the following definition. Let S be a compact surface of genus $g \geq 2$, and let \mathcal{L} be a collection of $2 g-2$ distinct, simple, closed geodesics, $L_{i}, i=1, \ldots, 2 g-2$, contained in S. We say \mathcal{L} is evenly spaced if there exists a set of distinct points $X=\left\{x_{1}, \ldots, x_{2 g-1}\right\} \subset S$, called the endpoints of \mathcal{L}, such that the following three properties hold:

1) Each geodesic $L_{i} \in \mathcal{L}$ passes through precisely two points of X, and the points subdivide L_{i} into two segments of equal length. We call these the endpoints of L_{i}.
2) Each point of X lies on some geodesic $L_{i} \in \mathcal{L}$.

Let \mathcal{T} be the abstract graph obtained by taking $2 g-1$ vertices, $\hat{x}_{1}, \ldots, \hat{x}_{2 g-1}$, identifying them with $x_{1}, \ldots, x_{2 g-1}$, respectively, and joining two vertices with an edge e_{i} whenever the two corresponding points in X are the endpoints of the geodesic $L_{i} \in \mathcal{L}$. The graph \mathcal{T} and the collection of geodesics \mathcal{L} will be said to correspond to each other.
3) The graph \mathcal{T} is connected.

Note that, if \mathcal{L} is indeed evenly spaced, then \mathcal{T} is a connected graph with $2 g-1$ vertices and $2 g-2$ edges. It follows that \mathcal{T} is a tree; that is, any two vertices are joined by a unique path.

[^0]Theorem 1. Let \mathcal{T} be a tree with $2 g-1$ vertices, $g \geq 2$, and let S be a compact surface of genus g. Then S is hyperelliptic if and only if it has an evenly spaced collection of geodesics \mathcal{L} which corresponds to \mathcal{T}.

The proof of Theorem 1 will be given in Section 4. The main auxiliary result used in the proof is stated below and proved in Section 3 (see Section 2 for definitions).

Theorem 2. Let G be a Fuchsian group with \mathbf{U} / G a compact surface of genus $g \geq 2$. Suppose G has a proper subgroup H which is precisely embedded and \mathbf{U} / H has an involution J with at least $2 g-1$ fixed points. Then \mathbf{U} / G is hyperelliptic.

2. Preliminaries

In this section we establish basic concepts and definitions, and give necessary related results. If a compact surface of genus $g \geq 2$ has a conformal involution with $v>0$ fixed points, then the Riemann-Hurwitz theorem guarantees that there is an integer $0 \leq j \leq \frac{g}{2}$ with

$$
\begin{equation*}
v=2 g+2-4 j . \tag{1}
\end{equation*}
$$

Equation (1) will be referred to as the Riemann-Hurwitz relation. It is well known that, if the involution is hyperelliptic (that is, with $2 g+2$ fixed points), it is unique. Proofs may be found in [2].

Let S be a compact surface of genus $g \geq 2$. An open subsurface $R \subset S$ will be called a subsurface with geodesic boundary if there exists a non-empty collection \mathcal{S} of simple, closed, disjoint geodesics $l_{1}, \ldots, l_{d}, d>0$, contained in S, such that $\bigcup_{1}^{d} l_{i}$ is the boundary in S of R. In this case, R is a component of $S-\bigcup_{1}^{d} l_{i}$. Choose disjoint open collars $D_{i} \subset S$ about each $l_{i} \in \mathcal{S}$. The collection of cylinders $R \cap D_{i}$ will be called the ends of R. A geodesic $l_{i} \in \mathcal{S}$ is free if $D_{i} \cap R$ has one component. In this case l_{i} is also on the boundary of another component of $S-\bigcup_{1}^{d} l_{i}$. Let A_{1}, \ldots, A_{k} be the complementary components of R. Note that $A_{i}, i=1, \ldots, k$, has no boundary components other than those which also lie on the boundary of R, so that the boundary of A_{i} consists of free geodesics in \mathcal{S}. The corresponding ends of R will be called free ends. If a geodesic $l_{i} \in \mathcal{S}$ is not free, then $D_{i} \cap R$ consists of two components, l_{i} bounds two distinct ends of R, and $R \cup l_{i}$ is a surface of genus $g^{\prime}+1$, where g^{\prime} is the genus of R. We will call l_{i} a pairing geodesic and each of the the two corresponding ends of R a paired end. If R has $2 p$ distinct paired ends corresponding to p pairing geodesics l_{1}, \ldots, l_{p} in \mathcal{S}, then the genus of $\tilde{R}=R \cup l_{1} \cup \cdots \cup l_{p}$ is $g^{\prime}+p$.

Lemma 2.1. Let S be a compact surface of genus $g \geq 2$, and let R be a subsurface with geodesic boundary. Let $g-n$ be the genus of $R, 0<n \leq g$. Suppose R has r ends. Then $r \leq 2 n$.

Proof. Write $r=q+2 p$ where q is the number of free ends and $2 p$ is the number of paired ends. From the discussion above, one has that $\chi(S)=\chi(\tilde{R})+\sum_{1}^{k} \chi\left(A_{i}\right)$ where χ represents the Euler characteristic. Thus,

$$
\begin{equation*}
2-2 g=\chi(S) \leq \chi(\tilde{R})=2-2(g-n+p)-q . \tag{2}
\end{equation*}
$$

The inequality follows.
We will work with the upper half-plane model of hyperbolic space given by $\mathbf{U}=$ $\{z \in \mathbf{C}: \operatorname{Im} z>0\}$. Denote the full group of isometries of \mathbf{U} by $\operatorname{PSL}(2, \mathbf{R})$, and let $\hat{\mathbf{R}}=\mathbf{R} \cup\{\infty\}$ be the boundary of \mathbf{U}. All Fuchsian groups in this paper will be finitely generated, purely hyperbolic, discrete subgroups of $\operatorname{PSL}(2, \mathbf{R})$. Given a hyperbolic
element γ in a Fuchsian group, let l_{γ} be its axis and $\langle\gamma\rangle$ the cyclic subgroup generated by γ; it will be assumed throughout that l_{γ} is oriented from repelling to attracting fixed point of γ. We adopt the following convention: a hyperbolic element γ in a non-cyclic Fuchsian group G is called a primitive boundary hyperbolic if it generates the stabilizer of l_{γ} in G, and l_{γ} bounds an open half-plane \mathbf{U}_{γ}, lying to the left of l_{γ}, which is precisely invariant under $\langle\gamma\rangle$. That is, $g\left(\mathbf{U}_{\gamma}\right) \cap \mathbf{U}_{\gamma}=\emptyset$ for all $g \in G-\langle\gamma\rangle$. In this case, the geodesic l_{γ} is called a boundary axis, and the cylinder $\mathbf{U}_{\gamma} /\langle\gamma\rangle$ a boundary cylinder. We will say a Fuchsian group is elementary if it is either trivial or cyclic.

Let G be a Fuchsian group and let $C(G)$ be the smallest hyperbolically closed, convex subset of \mathbf{U} whose Euclidean closure contains the limit set $\Lambda(G)$ of G. If $\Lambda(G)=\hat{\mathbf{R}}$, then $C(G)=\mathbf{U}$. If $\Lambda(G) \neq \hat{\mathbf{R}}$ (G is said to be of the second kind in this case) and G is not elementary, then $C(G)$ is the hyperbolically closed, convex subset of \mathbf{U} bounded by the boundary axes of G (see [4]). In this case, denote the interior of $C(G)$ by $C^{o}(G)$; the convex core is $c(G)=C(G) / G$, and its interior is $c^{o}(G)=C^{o}(G) / G$. If G is a cyclic group, $C(G)$ is a single geodesic, invariant under G.

Let $H \subset G$ be a non-elementary subgroup of G. Then H is precisely embedded in G if $g\left(C^{o}(H)\right) \cap C^{o}(H)=\emptyset$, for all $g \in G-H$. For $x \in \mathbf{U}$, denote by $[x]_{H}$ and $[x]_{G}$ the respective orbits of x. There is a natural covering map, $p_{H}: \mathbf{U} / H \rightarrow \mathbf{U} / G$, given by $p_{H}\left([x]_{H}\right)=[x]_{G}$. The next proposition follows easily from the definitions and the fact that p_{H} is a covering map. We omit the proof.

Proposition 2.2. Let G be a Fuchsian group with \mathbf{U} / G compact, and let H be a non-elementary, proper subgroup which is precisely embedded in G. Then p_{H} maps $c^{o}(H)$ injectively into \mathbf{U} / G. Moreover, p_{H} maps the boundary of $c^{o}(H)$ onto a collection of disjoint, simple, closed geodesics which are the boundary of $p_{H}\left(c^{\circ}(H)\right)$. Consequently, $p_{H}\left(c^{o}(H)\right)$ is a subsurface with geodesic boundary in \mathbf{U} / G.

If H is cyclic, we say that it is precisely embedded in the Fuchsian group G if H is the stabilizer in G of $C(H)$ and $C(H)$ projects to a simple, closed geodesic in \mathbf{U} / G. The trivial group is precisely embedded in every group. For $j \in \operatorname{PSL}(2, \mathbf{R})$ an elliptic element of order two, a subgroup $H \subset P S L(2, \mathbf{R})$ is j-invariant if $j H j=H$. The following is proved in [4]:

Proposition 2.3. Let G be a Fuchsian group and let $j \in P S L(2, \mathbf{R})$ be an elliptic element of order two. Let H_{1}, H_{2} be nontrivial, j-invariant, precisely embedded subgroups of G. Then there is a j-invariant, precisely embedded subgroup $H \subset G$ with $H_{1} \cup H_{2} \subset H$.

3. Open surfaces with involutions

The main result of this section is Theorem 2. Before proving it, we establish basic properties of open surfaces with involutions, and recall the construction of amalgamated free products and HNN extensions of Fuchsian groups (details may be found in [3]). Note first that one sees easily that, if G is a non-elementary Fuchsian group of the second kind and J is an involution of \mathbf{U} / G, then the fixed points of J are contained in $c^{o}(G)$.

Lemma 3.1. Let G be a non-elementary Fuchsian group of the second kind with $\gamma \in G$ a primitive boundary hyperbolic. Suppose \mathbf{U} / G has an involution J which fixes the boundary cylinder $\mathbf{U}_{\gamma} /\langle\gamma\rangle$. Then J has a lift $\zeta \in \operatorname{PSL}(2, \mathbf{R})$ with $\zeta^{2}=\gamma$.

Proof. Let $h \in \operatorname{PSL}(2, \mathbf{R})$ be an arbitrary lift of J. Since J leaves $\mathbf{U}_{\gamma} /\langle\gamma\rangle$ invariant, it follows that there exists $T \in G$ with $T h\left(l_{\gamma}\right)=l_{\gamma}$. Hence, $T h$ leaves l_{γ} invariant. Since $T h$ is also a lift of J, we have that $(T h)^{2}$ lies in G, and it must be a power of γ. We assume $(T h)^{2}=\gamma^{s}$, where $s>0$ (the proof is similar if $s<0$). Necessarily, s is an odd integer, otherwise $T h$ lies in G, contradicting that $T h$ is the lift of an involution. Since $T h=\gamma^{\frac{s-1}{2}} \gamma^{\frac{1}{2}}$ and $\gamma^{\frac{s-1}{2}} \in G$, it follows that $T h$ and $\zeta=\gamma^{\frac{1}{2}}$ induce the same involution.

An open surface is of type (g, m) if, topologically, it can be obtained from a compact surface of genus g by removing m disjoint closed discs. A Fuchsian group G is of type (g, m) whenever \mathbf{U} / G is a surface of type (g, m). Let H be a Fuchsian group of type $(1,1)$. It is well known that \mathbf{U} / H has a unique involution J_{1} which fixes three points and the one boundary cylinder of \mathbf{U} / H (see [4] for details). Let $\beta \in H$ be a primitive boundary hyperbolic.

The amalgamated free product. Suppose G is a non-elementary Fuchsian group of type (g, m) with $\beta^{-1} \in G$ a primitive boundary hyperbolic. The group $H *_{\beta} G$ generated by H and G is called an amalgamated free product; it is discrete and has type $(g+1, m-1)$. Each primitive boundary hyperbolic in G that is not equivalent to β^{-1} remains a primitive boundary hyperbolic in $H *_{\beta} G$. Topologically, the surface $\mathbf{U} /\left(H *_{\beta} G\right)$ is obtained by attaching $(\mathbf{U} / G)-\left(\mathbf{U}_{\beta^{-1}} /\langle\beta\rangle\right)$ to $(\mathbf{U} / H)-\left(\mathbf{U}_{\beta} /\langle\beta\rangle\right)$ at the common closed geodesic $l_{\beta} /\langle\beta\rangle$.

The HNN extension. Let G be a non-elementary Fuchsian group of type (g, m). Suppose there exist distinct primitive boundary hyperbolics $\eta, \varphi \in G$ and $\gamma \in P S L(2, \mathbf{R})$ with $\gamma^{-1} \eta \gamma=\varphi^{-1}$. Then the group $G *_{\gamma}$ generated by G and γ is called an HNN extension of G; it is discrete and has type ($g+1, m-2$). Each primitive boundary hyperbolic in G that is not equivalent to either η or φ remains a primitive boundary hyperbolic in $G *_{\gamma}$. Topologically, the surface $\mathbf{U} / G *_{\gamma}$ is obtained by joining the two closed, oriented geodesics $l_{\eta} /\langle\eta\rangle, l_{\varphi^{-1}} /\langle\varphi\rangle$ in $(\mathbf{U} / G)-\left(\mathbf{U}_{\eta} /\langle\eta\rangle \cup \mathbf{U}_{\varphi} /\langle\varphi\rangle\right)$.

Lemmas 3.2 and 3.3, which follow, are technical statements necessary for the proof of Proposition 3.4. We have chosen to highlight them rather than include their texts in the proof.

Lemma 3.2. (Attaching a one-holed torus) Let H be a Fuchsian group of type $(1,1)$, and $\beta \in H$ a primitive boundary hyperbolic. Let J_{1} be the natural involution on \mathbf{U} / H. Suppose G is a non-elementary Fuchsian group of the second kind such that \mathbf{U} / G has an involution J_{2} with $v \geq 0$ fixed points. Further, suppose G is of type $(g, k+2 m)$ where k is the number of boundary cylinders fixed by J_{2} and $2 m$ is the number of boundary cylinders interchanged by J_{2} (in pairs). Let β^{-1} be a primitive boundary hyperbolic in G corresponding to a fixed boundary cylinder. Then $H *_{\beta} G$ has type $(g+1, k-1+2 m)$, and $\mathbf{U} /\left(H *_{\beta} G\right)$ has an involution with $v+3$ fixed points, $k-1$ fixed boundary cylinders, and $2 m$ boundary cylinders which are interchanged.

Proof. By Lemma 3.1, J_{1} and J_{2} lift to $\zeta \in P S L(2, \mathbf{R})$ where $\zeta^{2}=\beta$. Since ζ normalizes both H and G, it also normalizes $H *_{\beta} G$ and projects to an involution of $\mathbf{U} /\left(H *_{\beta} G\right)$ having $v+3$ fixed points; the remaining assertions are clear.

Lemma 3.3. (Closing a handle) Let G be a non-elementary Fuchsian group of the second kind, of type $(g, 2 m)$, where \mathbf{U} / G has an involution J which interchanges the $2 m$ boundary cylinders and has $v>0$ fixed points. Let $\eta, \varphi \in G$ be distinct, primitive boundary hyperbolics which correspond to boundary cylinders interchanged
by J. Let $\gamma \in \operatorname{PSL}(2, \mathbf{R})$ with $\gamma^{-1} \eta \gamma=\varphi^{-1}$. Then $G *_{\gamma}$ is of type $(g+1,2 m-2)$, and $\mathbf{U} / G *_{\gamma}$ has an involution which fixes $v+2$ points and interchanges the $2 m-2$ boundary cylinders.

Proof. Let j be an elliptic lift of J with fixed point $a \in C^{o}(G)$. We assume without loss of generality that $j\left(l_{\eta}\right)=l_{\varphi}$ and $j \eta j=\varphi$. Let l be the smallest closed geodesic segment perpendicular to l_{η} and l_{φ} which joins the two axes. Then the fixed point a of j is the midpoint of l. One sees easily that l_{γ} must pass through a and cross both l_{η} and l_{φ}. Thus, $j \gamma j=\gamma^{-1}$ and $j\left(G *_{\gamma}\right) j=G *_{\gamma}$, so that j projects to an involution of $\mathbf{U} / G *_{\gamma}$. Let a_{1}, a_{2} be the intersection points of l_{γ} with l_{η}, l_{φ}, respectively. Clearly, since $j\left(a_{1}\right)=a_{2}$ and $\gamma\left(a_{1}\right)=a_{2}, a_{1}$ projects to a fixed point. Letting $\varphi^{\frac{1}{2}}\left(a_{2}\right)=b$, one verifies easily that that $\varphi \gamma j(b)=b$, so that b projects to another fixed point. The remaining assertions are clear.

Proposition 3.4. Let G be a Fuchsian group with \mathbf{U} / G a compact surface of genus $g \geq 2$. Suppose G has a proper subgroup H which is precisely embedded and $R=\mathbf{U} / H$ has a involution J with at least $2 g-1$ fixed points. Then, either

1) R is of type $(g-1,1)$, and J has $2 g-1$ fixed points; or
2) R is of type $(g-1,2)$, and J has either $2 g-1$ or $2 g$ fixed points. Moreover, J interchanges the boundary cylinders of R.

Proof. One sees easily, since J has $2 g-1 \geq 3$ fixed points, that H is not elementary. Necessarily, then, \mathbf{U} / H is of type $(g-n, k+2 m), 0<n \leq g, 0 \leq k$, $0 \leq m, 0<k+2 m$, with k boundary cylinders fixed by J and $2 m$ boundary cylinders interchanged by J. Since \mathbf{U} / H has the same type as $c^{\circ}(H)$, it follows from Lemmas 2.1 and 2.2 that

$$
\begin{equation*}
0<k+2 m \leq 2 n \tag{3}
\end{equation*}
$$

Let $N \geq 2 g-1$ be the number of fixed points of J. Starting with \mathbf{U} / H, we will use amalgamated free products (attaching k one holed tori) and HNN extensions (closing m handles) to construct a compact surface S^{\prime} of genus $g-n+k+m$ having an involution with $N+3 k+2 m$ fixed points.

Let $\beta_{i}, i=1, \ldots, k$, be primitive boundary hyperbolics in H corresponding to the boundary cylinders fixed by J. We choose k one-holed torus groups H_{i} with primitive boundary hyperbolics β_{i}^{-1}, and use Lemma 3.2 and an inductive argument to
a) construct the group $B=H *_{\beta_{1}} H_{1} *_{\beta_{2}} \cdots *_{\beta_{k}} H_{k}$, and
b) show that \mathbf{U} / B is a surface of type $(g-n+k, 2 m)$ having an involution with $N+3 k$ fixed points which interchanges the $2 m$ boundary cylinders.
Let $\eta_{1}, \ldots, \eta_{m}, \varphi_{1}, \ldots, \varphi_{m}$ be primitive boundary hyperbolics in B, where $\mathbf{U}_{\eta_{i}} /\left\langle\eta_{i}\right\rangle$ and $\mathbf{U}_{\varphi_{i}} /\left\langle\varphi_{i}\right\rangle, i=1, \ldots, m$, are interchanged. Choose hyperbolic elements $\gamma_{i} \in$ $P S L(2, \mathbf{R})$ with $\gamma_{i}^{-1} \eta_{i} \gamma_{i}=\varphi_{i}^{-1}$. We use Lemma 3.3 and an inductive argument to
a) construct the group $C=B *_{\gamma_{1}} \cdots *_{\gamma_{m}}$, and
b) show that $S^{\prime}=\mathbf{U} / C$ is a compact surface of genus $g-n+k+m$ having an involution with $N+3 k+2 m$ fixed points.
By the Riemann-Hurwitz relation, the involution on $S^{\prime \prime}$ has at most $2(g-n+$ $k+m)+2$ fixed points. Thus,

$$
\begin{equation*}
2(g-n+k+m)+2 \geq N+3 k+2 m . \tag{4}
\end{equation*}
$$

If $N=2 g-1$, then the only solutions to the inequality above are either

1) $n=1, k=1$ (and from (3), $m=0$), so that \mathbf{U} / H is of type $(g-1,1)$; or
2) $n=1, k=0$ (and from (3), $m=1$), so that \mathbf{U} / H is of type $(g-1,2)$.

If $N=2 g$, then the only solution is
3) $n=1, k=0$ (and from (3), $m=1$), so that \mathbf{U} / H is of type $(g-1,2)$.

If $N>2 g$, then (4) has no solutions.
Proof of Theorem 2. In view of Proposition 3.4, we need only consider two cases.

Case 1) R is of type $(g-1,1)$, and J has $2 g-1$ fixed points. Here, $p_{H}\left(c^{o}(H)\right)$ has one complementary component $A \subset \mathbf{U} / G$, necessarily a surface of type $(1,1)$ sharing a boundary geodesic l with $p_{H}\left(c^{o}(H)\right)$. Let $\beta \in H$ be a primitive boundary hyperbolic. Choose B a component of $p_{1}^{-1}(A)$ where the closure \bar{B} contains l_{β} ($p_{1}: \mathbf{U} \rightarrow \mathbf{U} / G$ is the natural covering). Let $H_{1} \subset G$ be the stabilizer of B; it follows from [4] (Props. 4.1, 4.2) that H_{1} is precisely embedded, hence finitely generated. One sees easily that H_{1} is not elementary and that $C\left(H_{1}\right)=\bar{B}$.

Now $B=C^{o}\left(H_{1}\right)$, and \mathbf{U} / H_{1} has the same type as $B / H_{1}=A$; consequently, H_{1} is a group of type $(1,1)$. Trivially, since l_{β} is a boundary component for both $C(H)$ and $C\left(H_{1}\right), \beta^{-1}$ is a primitive boundary hyperbolic in H_{1}. Thus, $H *_{\beta} H_{1}$ is a group of type $(g, 0)$ and $H *_{\beta} H_{1}=G$. By Lemma 3.2, \mathbf{U} / G has an involution with $2 g+2$ fixed points.

Case 2) R is of type $(g-1,2)$, and J has either $2 g-1$ or $2 g$ fixed points. Let $\eta, \varphi \in H$ be primitive boundary hyperbolics which correspond to the two boundary cylinders of R which are interchanged by J. Here, $p_{H}\left(c^{o}(H)\right)$ has no complementary components, and necessarily, $p_{H}\left(l_{\eta} /\langle\eta\rangle\right)=p_{H}\left(l_{\varphi^{-1}} /\langle\varphi\rangle\right)$. It follows that there exists $T \in G$ with $T^{-1} \eta T=\varphi^{-1}$, so that $G=H *_{T}$. By Lemma 3.3, \mathbf{U} / G has an involution with either $2 g+1$ or $2 g+2$ fixed points. If it has $2 g+1$ fixed points, then by the Riemann-Hurwitz relation, it must have $2 g+2$ fixed points.

4. The characterization theorem

We prove Theorem 1 in the next two propositions.
Proposition 4.1. Let \mathcal{T} be a tree with $2 g-1$ vertices, $g \geq 2$, and let S be a compact surface of genus g with an evenly spaced collection of geodesics \mathcal{L} which corresponds to \mathcal{T}. Then S is hyperelliptic.

Proof. Let G be a Fuchsian group with $\mathbf{U} / G=S$, and fix \hat{x}_{1} an arbitrary vertex in \mathcal{T}. The idea of the proof is the following: Let P_{1}, \ldots, P_{s} be the collection of maximal paths in \mathcal{T} based at \hat{x}_{1}. We will construct for each $P_{k}, k=1, \ldots, s$, a subgroup $M_{k} \subset G$ which is precisely embedded and j-invariant for a fixed elliptic element j of order two. Applying Proposition 2.3, we then obtain a precisely embedded, j invariant subgroup H with $M_{1} \cup \cdots \cup M_{s} \subset H$. After showing that the natural involution on \mathbf{U} / H has at least $2 g-1$ fixed points, we invoke Theorem 2 and prove that \mathbf{U} / G is hyperelliptic.

Let $\hat{x}_{1}, \ldots, \hat{x}_{n}, n \geq 2$, be the ordered vertices of a maximal path P_{k} in \mathcal{T}. Let l_{i}^{\prime} be the edges of the path, where l_{i}^{\prime} joins \hat{x}_{i} to $\hat{x}_{i+1}, i=1, \ldots, n-1$. Let $x_{1}, \ldots, x_{n} \in S$ be the corresponding endpoints of \mathcal{L} and $L_{i} \subset S, i=1, \ldots, n-1$, the simple, closed geodesics in \mathcal{L} corresponding to l_{i}^{\prime}.

Let z_{1} be an arbitrary lift of x_{1} to \mathbf{U}, and choose a hyperbolic element $T_{1} \in G$ which generates the cyclic subgroup corresponding to L_{1} and has axis l_{1} passing through z_{1}. Let $z_{i}, i=2, \ldots, n$, be the midpoint of the segment between z_{i-1} and
$T_{i-1}\left(z_{i-1}\right)$ where, for $n>2$ and $i=2, \ldots, n-1, T_{i} \in G$ is a hyperbolic element which generates the cyclic subgroup corresponding to L_{i} and has axis l_{i} passing through z_{i}. Note that the $z_{i}, i=1, \ldots, n$, are lifts of the elements x_{i}.

Let j_{1} be the elliptic transformation of order two fixing z_{1}. Then

$$
\begin{equation*}
j_{i}=T_{i-1} j_{i-1}=T_{i-1} \cdots T_{1} j_{1}, \tag{5}
\end{equation*}
$$

is the elliptic transformation of order two fixing the point $z_{i}, i=2, \ldots, n$. Note that, since z_{i} lies on l_{i}, for $i=1, \ldots, n-1$, we have that

$$
\begin{equation*}
j_{i} T_{i} j_{i}=T_{i}^{-1} . \tag{6}
\end{equation*}
$$

Let G_{i} be the group generated by T_{1}, \ldots, T_{i}. We now show that there exists a precisely embedded, j_{1}-invariant subgroup K_{n-1} of G with $G_{n-1} \subset K_{n-1}$. The proof is by induction on i.

Clearly, since T_{1} corresponds to a simple, closed geodesic in $\mathbf{U} / G,\left\langle T_{1}\right\rangle=K_{1}$ is precisely embedded in G. It is j_{1}-invariant by (6). Let K_{i} be a precisely embedded, j_{1}-invariant subgroup, with $G_{i} \subset K_{i} \subset G, i<n-1$. From (5), since $T_{1}, \ldots, T_{i} \in K_{i}$, we have that j_{i+1} and j_{1} project to the same involution of \mathbf{U} / K_{i}. Hence, K_{i} is j_{i+1}-invariant. Since T_{i+1} corresponds to a simple, closed geodesic in $\mathbf{U} / G,\left\langle T_{i+1}\right\rangle$ is precisely embedded. Moreover, from (6), we also have that $\left\langle T_{i+1}\right\rangle$ is j_{i+1}-invariant. Applying Proposition 2.3 to K_{i} and T_{i+1}, there exists a precisely embedded group K_{i+1} which is j_{i+1}-invariant, with $K_{i} \cup\left\langle T_{i+1}\right\rangle \subset K_{i+1}$. From (5), since $G_{i+1} \subset K_{i+1}$, it follows that K_{i+1} is j_{1}-invariant.

Let $M_{k}=K_{n-1}$. We repeat the process for each maximal path based at \hat{x}_{1} in \mathcal{T} (lifting x_{1} to z_{1} each time). Thus, for each such path $P_{k}, k=1, \ldots, s$, there is a precisely embedded, j_{1}-invariant subgroup M_{k}. If $s>1$, we apply Proposition 2.3 $s-1$ times and obtain a precisely embedded, j_{1}-invariant subgroup H with $M_{1} \cup$ $\cdots \cup M_{s} \subset H$. If $s=1, H=M_{1}$. Let J be the induced involution of U / H.

Each endpoint x_{i} of \mathcal{L} corresponds to some vertex \hat{x}_{i} in at least one of the maximal paths, say P_{k}, of \mathcal{T}. In the construction of M_{k}, we chose a lift $z_{i} \in \mathbf{U}$ of x_{i} which projects to a fixed point of J in \mathbf{U} / H. Since these lifts of endpoints of \mathcal{L} project to $2 g-1$ distinct points of \mathbf{U} / G, they project to at least $2 g-1$ distinct points of \mathbf{U} / H. It follows that J has at least $2 g-1$ fixed points.

If H is a proper subgroup of G, then by Theorem $2, \mathbf{U} / G$ is hyperelliptic. On the other hand, if $H=G$, then J is an involuton of \mathbf{U} / G with at least $2 g-1$ fixed points. By the Riemann-Hurwitz relation, the involution must have $2 g+2$ fixed points, and \mathbf{U} / G is hyperelliptic.

Proposition 4.2. Let \mathcal{T} be a tree with $2 g-1$ vertices, $g \geq 2$, and let S be a hyperelliptic surface of genus g. Then S has an evenly spaced collection of geodesics \mathcal{L} which corresponds to \mathcal{T}.

Proof. Let $S=\mathbf{U} / G$ with G a Fuchsian group, and let J be the hyperelliptic involution. Then $S /\langle J\rangle$ is a sphere with $2 g+2$ distinguished points which are the projections, $w_{1}, \ldots, w_{2 g+2}$, of the fixed points of $J, x_{1}, \ldots, x_{2 g+2}$, respectively. The ordering of these points is arbitrary. It is well known that any tree is planar, that is, when viewed as a topological space, it can be embedded in the sphere. We choose a realization of \mathcal{T} with $w_{1}, \ldots, w_{2 g-1}$ as vertices; the edges are given by simple curves $s_{i} \subset S / J, i=1, \ldots, 2 g-2$, with no two curves intersecting, except possibly at their endpoints.

Since J is a twofold cover, branched to order two over each of the points w_{1}, \ldots, $w_{2 g-1}$, each curve s_{i} lifts to a simple, closed curve s_{i}^{\prime} in S passing through two
fixed points, which we denote $y_{i}, y_{i+1} \in\left\{x_{1}, \ldots, x_{2 g-1}\right\}$. Let $z_{i} \in \mathbf{U}$ be a lift of y_{i} and let $S_{i} \subset \mathbf{U}$ be a component of the preimage of s_{i}^{\prime} (under the natural covering $\left.p_{1}: \mathbf{U} \rightarrow \mathbf{U} / G\right)$ passing through z_{i}. Since s_{i}^{\prime} is a simple, closed curve, S_{i} is invariant under a cyclic subgroup of G generated by some element $T_{i} \in G$. Choose $z_{i+1} \in S_{i}$, a lift of y_{i+1}, and let j_{i} (resp. j_{i+1}) be the elliptic transformation of order two, necessarily a lift of J, with fixed point z_{i} (resp. z_{i+1}). Since S_{i} is invariant under both j_{i} and j_{i+1}, it follows that it is invariant under their product $R_{i}=j_{i+1} j_{i} \in G$, and $R_{i}=T_{i}^{n}$ with $n \neq 0$. Hence, s_{i}^{\prime} is homotopic to the the simple, closed geodesic L_{i} given by $L_{i}=l_{R_{i}} /\left\langle T_{i}\right\rangle$. Note that, since z_{i+1} lies halfway between z_{i} and $T_{i}^{n}\left(z_{i}\right)$, and z_{i}, z_{i+1} are inequivalent in G, n must be an odd number. Without loss of generality, we assume n is positive.

Letting $j_{i}^{\prime}=T_{i} j_{i}$, one has that z_{i}^{\prime}, the fixed point of j_{i}^{\prime}, lies halfway between z_{i} and $T_{i}\left(z_{i}\right)$. Hence, $z_{i+1}=T_{i}^{\frac{n-1}{2}}\left(z_{i}^{\prime}\right)$ and z_{i+1} is equivalent to z_{i}^{\prime}. It follows that z_{i}^{\prime} is a lift of y_{i+1}. Thus, y_{i}, y_{i+1} divide L_{i} into two segments of equal length. Noting that the L_{i} have the same points of intersection as the s_{i}^{\prime}, we have that $L_{i}, i=1, \ldots, 2 g-2$, along with the points $x_{1}, \ldots, x_{2 g-1}$, form an evenly spaced collection of geodesics corresponding to \mathcal{T}.

Let S be a compact surface of genus $g \geq 2$, and let $L_{1}, \ldots, L_{2 g-2} \subset S$ be simple, closed geodesics which intersect at a single point $p \in S$ and are otherwise disjoint. Let p_{i} be the midpoint of the geodesic L_{i}, viewed as a geodesic from p to p. Then the geodesics L_{i} with the points $p, p_{i}, i=1, \ldots, 2 g-2$, form a collection of evenly spaced geodesics whose corresponding graph is a tree. The next result now follows from Theorem 1.

Theorem 3. (Schmutz-Schaller [5]) Let S be a compact surface of genus $g \geq 2$. Then S is hyperelliptic if and only if it has at least $2 g-2$ simple, closed geodesics which intersect at one point and are otherwise disjoint.

A necklace with $2 g-2$ successive evenly spaced links on a compact surface of genus $g \geq 2$ is an evenly spaced set of $2 g-2$ geodesics \mathcal{L} whose corresponding graph \mathcal{T} is a path. The following is also obtained from Theorem 1.

Theorem 4. (Maskit [4]) Let S be a compact surface of genus $g \geq 2$. Then S is hyperelliptic if and only if it has a necklace with $2 g-2$ successive evenly spaced links.

References

[1] Costa, A., and A. Porto: On two recent geometrical characterizations of hyperellipticity. Rev. Mat. Complut. 17:1, 2004, 59-65.
[2] Farkas, H. M., and I. Kra: Riemann surfaces. - Springer-Verlag, New York, 1980.
[3] Maskit, B.: Kleinian groups. - Springer-Verlag, Berlin, 1988.
[4] Maskit, B.: A new characterization of hyperellipticity. - Michigan Math. J. 47:1, 2000, 3-14.
[5] Schmutz-Schaller, P.: Geometric characterization of hyperelliptic Riemann surfaces. - Ann. Acad. Sci. Fenn. Math. 25, 2000, 85-90.

[^0]: https://doi.org/10.5186/aasfm.2019.4450
 2010 Mathematics Subject Classification: Primary 30F45; Secondary 30F10.
 Key words: Fuchsian group, involution, geodesics.

