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CHARACTERIZING HYPERELLIPTIC SURFACES

IN TERMS OF CLOSED GEODESICS

Daniel Gallo
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Abstract. We give a characterization of hyperelliptic surfaces in terms of simple, closed

geodesics on the surfaces and graphs associated to these geodesics.

1. Introduction and statement of main results

A closed Riemann surface of genus g ≥ 2 is hyperelliptic if it has a conformal
involution with 2g+ 2 fixed points. Hyperelliptic surfaces were studied classically in
the context of function theory on surfaces; a good overview of this approach may be
found in [2]. In more recent times, interest has shifted to the geometric structures
on the surfaces. In particular, two results, one by Schmutz-Schaller [5], the other
by Maskit [4], characterize hyperelliptic surfaces in terms of simple, closed geodesics
contained in the surfaces. Later, Costa and Porto [1] obtained the same results by
constructing hyperbolic polygons adapted to these geodesics, which also serve to
characterize hyperelliptic surfaces. The author is grateful to the referee for pointing
out the results in [1].

In this paper the main result is a more general characterization of hyperelliptic
surfaces in terms of simple, closed geodesics on the surfaces and graphs associated to
these geodesics. As a consequence, we also recover the two results of Schmutz-Schaller
and Maskit (Section 4).

In order to state the main theorem precisely, we need the following definition.
Let S be a compact surface of genus g ≥ 2, and let L be a collection of 2g−2 distinct,
simple, closed geodesics, Li, i = 1, . . . , 2g − 2, contained in S. We say L is evenly

spaced if there exists a set of distinct points X = {x1, . . . , x2g−1} ⊂ S, called the
endpoints of L, such that the following three properties hold:

1) Each geodesic Li ∈ L passes through precisely two points of X, and the points
subdivide Li into two segments of equal length. We call these the endpoints

of Li.
2) Each point of X lies on some geodesic Li ∈ L.

Let T be the abstract graph obtained by taking 2g − 1 vertices, x̂1, . . . , x̂2g−1,
identifying them with x1, . . . , x2g−1, respectively, and joining two vertices with an
edge ei whenever the two corresponding points in X are the endpoints of the geodesic
Li ∈ L. The graph T and the collection of geodesics L will be said to correspond to
each other.

3) The graph T is connected.

Note that, if L is indeed evenly spaced, then T is a connected graph with 2g− 1
vertices and 2g − 2 edges. It follows that T is a tree; that is, any two vertices are
joined by a unique path.
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Theorem 1. Let T be a tree with 2g−1 vertices, g ≥ 2, and let S be a compact
surface of genus g. Then S is hyperelliptic if and only if it has an evenly spaced
collection of geodesics L which corresponds to T .

The proof of Theorem 1 will be given in Section 4. The main auxiliary result used
in the proof is stated below and proved in Section 3 (see Section 2 for definitions).

Theorem 2. Let G be a Fuchsian group with U/G a compact surface of genus
g ≥ 2. Suppose G has a proper subgroup H which is precisely embedded and U/H
has an involution J with at least 2g − 1 fixed points. Then U/G is hyperelliptic.

2. Preliminaries

In this section we establish basic concepts and definitions, and give necessary
related results. If a compact surface of genus g ≥ 2 has a conformal involution with
v > 0 fixed points, then the Riemann–Hurwitz theorem guarantees that there is an
integer 0 ≤ j ≤ g

2
with

(1) v = 2g + 2− 4j.

Equation (1) will be referred to as the Riemann–Hurwitz relation. It is well known
that, if the involution is hyperelliptic (that is, with 2g+2 fixed points), it is unique.
Proofs may be found in [2].

Let S be a compact surface of genus g ≥ 2. An open subsurface R ⊂ S will be
called a subsurface with geodesic boundary if there exists a non-empty collection S
of simple, closed, disjoint geodesics l1, . . . , ld, d > 0, contained in S, such that

⋃d

1
li

is the boundary in S of R. In this case, R is a component of S −
⋃d

1
li. Choose

disjoint open collars Di ⊂ S about each li ∈ S. The collection of cylinders R ∩ Di

will be called the ends of R. A geodesic li ∈ S is free if Di ∩ R has one component.
In this case li is also on the boundary of another component of S −

⋃d

1
li. Let

A1, . . . , Ak be the complementary components of R. Note that Ai, i = 1, . . . , k, has
no boundary components other than those which also lie on the boundary of R, so
that the boundary of Ai consists of free geodesics in S. The corresponding ends of R
will be called free ends. If a geodesic li ∈ S is not free, then Di ∩ R consists of two
components, li bounds two distinct ends of R, and R∪ li is a surface of genus g′ +1,
where g′ is the genus of R. We will call li a pairing geodesic and each of the the two
corresponding ends of R a paired end. If R has 2p distinct paired ends corresponding
to p pairing geodesics l1, . . . , lp in S, then the genus of R̃ = R∪ l1 ∪ · · · ∪ lp is g′ + p.

Lemma 2.1. Let S be a compact surface of genus g ≥ 2, and let R be a sub-
surface with geodesic boundary. Let g− n be the genus of R, 0 < n ≤ g. Suppose R
has r ends. Then r ≤ 2n.

Proof. Write r = q+2p where q is the number of free ends and 2p is the number
of paired ends. From the discussion above, one has that χ(S) = χ(R̃) +

∑k

1
χ(Ai)

where χ represents the Euler characteristic. Thus,

(2) 2− 2g = χ(S) ≤ χ(R̃) = 2− 2(g − n + p)− q.

The inequality follows. �

We will work with the upper half-plane model of hyperbolic space given by U =
{z ∈ C : Im z > 0}. Denote the full group of isometries of U by PSL(2,R), and let

R̂ = R∪{∞} be the boundary of U. All Fuchsian groups in this paper will be finitely
generated, purely hyperbolic, discrete subgroups of PSL(2,R). Given a hyperbolic
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element γ in a Fuchsian group, let lγ be its axis and 〈γ〉 the cyclic subgroup generated
by γ; it will be assumed throughout that lγ is oriented from repelling to attracting
fixed point of γ. We adopt the following convention: a hyperbolic element γ in a
non-cyclic Fuchsian group G is called a primitive boundary hyperbolic if it generates
the stabilizer of lγ in G, and lγ bounds an open half-plane Uγ , lying to the left of lγ ,
which is precisely invariant under 〈γ〉. That is, g(Uγ) ∩Uγ = ∅ for all g ∈ G− 〈γ〉.
In this case, the geodesic lγ is called a boundary axis, and the cylinder Uγ/〈γ〉 a
boundary cylinder. We will say a Fuchsian group is elementary if it is either trivial
or cyclic.

Let G be a Fuchsian group and let C(G) be the smallest hyperbolically closed,
convex subset of U whose Euclidean closure contains the limit set Λ(G) of G. If

Λ(G) = R̂, then C(G) = U. If Λ(G) 6= R̂ (G is said to be of the second kind in
this case) and G is not elementary, then C(G) is the hyperbolically closed, convex
subset of U bounded by the boundary axes of G (see [4]). In this case, denote the
interior of C(G) by Co(G); the convex core is c(G) = C(G)/G, and its interior is
co(G) = Co(G)/G. If G is a cyclic group, C(G) is a single geodesic, invariant under
G.

Let H ⊂ G be a non-elementary subgroup of G. Then H is precisely embedded

in G if g(Co(H)) ∩ Co(H) = ∅, for all g ∈ G − H . For x ∈ U, denote by [x]H and
[x]G the respective orbits of x. There is a natural covering map, pH : U/H → U/G,
given by pH([x]H) = [x]G. The next proposition follows easily from the definitions
and the fact that pH is a covering map. We omit the proof.

Proposition 2.2. Let G be a Fuchsian group with U/G compact, and let H
be a non-elementary, proper subgroup which is precisely embedded in G. Then pH
maps co(H) injectively into U/G. Moreover, pH maps the boundary of co(H) onto a
collection of disjoint, simple, closed geodesics which are the boundary of pH(c

o(H)).
Consequently, pH(c

o(H)) is a subsurface with geodesic boundary in U/G.

If H is cyclic, we say that it is precisely embedded in the Fuchsian group G if
H is the stabilizer in G of C(H) and C(H) projects to a simple, closed geodesic in
U/G. The trivial group is precisely embedded in every group. For j ∈ PSL(2,R) an
elliptic element of order two, a subgroup H ⊂ PSL(2,R) is j-invariant if jHj = H .
The following is proved in [4]:

Proposition 2.3. Let G be a Fuchsian group and let j ∈ PSL(2,R) be an ellip-
tic element of order two. Let H1, H2 be nontrivial, j-invariant, precisely embedded
subgroups of G. Then there is a j-invariant, precisely embedded subgroup H ⊂ G
with H1 ∪H2 ⊂ H .

3. Open surfaces with involutions

The main result of this section is Theorem 2. Before proving it, we establish
basic properties of open surfaces with involutions, and recall the construction of
amalgamated free products and HNN extensions of Fuchsian groups (details may be
found in [3]). Note first that one sees easily that, if G is a non-elementary Fuchsian
group of the second kind and J is an involution of U/G, then the fixed points of J
are contained in co(G).

Lemma 3.1. Let G be a non-elementary Fuchsian group of the second kind with
γ ∈ G a primitive boundary hyperbolic. Suppose U/G has an involution J which
fixes the boundary cylinder Uγ/〈γ〉. Then J has a lift ζ ∈ PSL(2,R) with ζ2 = γ.
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Proof. Let h ∈ PSL(2,R) be an arbitrary lift of J . Since J leaves Uγ/〈γ〉
invariant, it follows that there exists T ∈ G with Th(lγ) = lγ . Hence, Th leaves lγ
invariant. Since Th is also a lift of J , we have that (Th)2 lies in G, and it must be
a power of γ. We assume (Th)2 = γs, where s > 0 (the proof is similar if s < 0).
Necessarily, s is an odd integer, otherwise Th lies in G, contradicting that Th is the

lift of an involution. Since Th = γ
s−1

2 γ
1

2 and γ
s−1

2 ∈ G, it follows that Th and ζ = γ
1

2

induce the same involution. �

An open surface is of type (g,m) if, topologically, it can be obtained from a
compact surface of genus g by removing m disjoint closed discs. A Fuchsian group
G is of type (g,m) whenever U/G is a surface of type (g,m). Let H be a Fuchsian
group of type (1, 1). It is well known that U/H has a unique involution J1 which
fixes three points and the one boundary cylinder of U/H (see [4] for details). Let
β ∈ H be a primitive boundary hyperbolic.

The amalgamated free product. Suppose G is a non-elementary Fuchsian
group of type (g,m) with β−1 ∈ G a primitive boundary hyperbolic. The group H∗βG
generated by H and G is called an amalgamated free product; it is discrete and has
type (g + 1, m− 1). Each primitive boundary hyperbolic in G that is not equivalent
to β−1 remains a primitive boundary hyperbolic in H ∗βG. Topologically, the surface
U/(H ∗β G) is obtained by attaching (U/G)− (Uβ−1/〈β〉) to (U/H)− (Uβ/〈β〉) at
the common closed geodesic lβ/〈β〉.

The HNN extension. Let G be a non-elementary Fuchsian group of type
(g,m). Suppose there exist distinct primitive boundary hyperbolics η, ϕ ∈ G and
γ ∈ PSL(2,R) with γ−1ηγ = ϕ−1. Then the group G∗γ generated by G and γ is
called an HNN extension of G; it is discrete and has type (g+1, m−2). Each primitive
boundary hyperbolic in G that is not equivalent to either η or ϕ remains a primitive
boundary hyperbolic in G∗γ. Topologically, the surface U/G∗γ is obtained by joining
the two closed, oriented geodesics lη/〈η〉, lϕ−1/〈ϕ〉 in (U/G)− (Uη/〈η〉 ∪Uϕ/〈ϕ〉).

Lemmas 3.2 and 3.3, which follow, are technical statements necessary for the
proof of Proposition 3.4. We have chosen to highlight them rather than include their
texts in the proof.

Lemma 3.2. (Attaching a one-holed torus) Let H be a Fuchsian group of type
(1, 1), and β ∈ H a primitive boundary hyperbolic. Let J1 be the natural involution
on U/H . Suppose G is a non-elementary Fuchsian group of the second kind such
that U/G has an involution J2 with v ≥ 0 fixed points. Further, suppose G is of type
(g, k + 2m) where k is the number of boundary cylinders fixed by J2 and 2m is the
number of boundary cylinders interchanged by J2 (in pairs). Let β−1 be a primitive
boundary hyperbolic in G corresponding to a fixed boundary cylinder. Then H ∗β G
has type (g+1, k−1+2m), and U/(H ∗βG) has an involution with v+3 fixed points,
k−1 fixed boundary cylinders, and 2m boundary cylinders which are interchanged.

Proof. By Lemma 3.1, J1 and J2 lift to ζ ∈ PSL(2,R) where ζ2 = β. Since ζ
normalizes both H and G, it also normalizes H ∗β G and projects to an involution of
U/(H ∗β G) having v + 3 fixed points; the remaining assertions are clear. �

Lemma 3.3. (Closing a handle) Let G be a non-elementary Fuchsian group of
the second kind, of type (g, 2m), where U/G has an involution J which interchanges
the 2m boundary cylinders and has v > 0 fixed points. Let η, ϕ ∈ G be distinct,
primitive boundary hyperbolics which correspond to boundary cylinders interchanged
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by J . Let γ ∈ PSL(2,R) with γ−1ηγ = ϕ−1. Then G∗γ is of type (g + 1, 2m − 2),
and U/G∗γ has an involution which fixes v + 2 points and interchanges the 2m− 2
boundary cylinders.

Proof. Let j be an elliptic lift of J with fixed point a ∈ Co(G). We assume
without loss of generality that j(lη) = lϕ and jηj = ϕ. Let l be the smallest closed
geodesic segment perpendicular to lη and lϕ which joins the two axes. Then the
fixed point a of j is the midpoint of l. One sees easily that lγ must pass through a
and cross both lη and lϕ. Thus, jγj = γ−1 and j(G∗γ)j = G∗γ, so that j projects
to an involution of U/G∗γ. Let a1, a2 be the intersection points of lγ with lη, lϕ,
respectively. Clearly, since j(a1) = a2 and γ(a1) = a2, a1 projects to a fixed point.

Letting ϕ
1

2 (a2) = b, one verifies easily that that ϕγj(b) = b, so that b projects to
another fixed point. The remaining assertions are clear. �

Proposition 3.4. Let G be a Fuchsian group with U/G a compact surface of
genus g ≥ 2. Suppose G has a proper subgroup H which is precisely embedded and
R = U/H has a involution J with at least 2g − 1 fixed points. Then, either

1) R is of type (g − 1, 1), and J has 2g − 1 fixed points; or
2) R is of type (g − 1, 2), and J has either 2g − 1 or 2g fixed points. Moreover,

J interchanges the boundary cylinders of R.

Proof. One sees easily, since J has 2g − 1 ≥ 3 fixed points, that H is not
elementary. Necessarily, then, U/H is of type (g − n, k + 2m), 0 < n ≤ g, 0 ≤ k,
0 ≤ m, 0 < k+2m, with k boundary cylinders fixed by J and 2m boundary cylinders
interchanged by J . Since U/H has the same type as co(H), it follows from Lemmas
2.1 and 2.2 that

(3) 0 < k + 2m ≤ 2n.

Let N ≥ 2g − 1 be the number of fixed points of J . Starting with U/H , we
will use amalgamated free products (attaching k one holed tori) and HNN extensions
(closing m handles) to construct a compact surface S ′ of genus g− n+ k+m having
an involution with N + 3k + 2m fixed points.

Let βi, i = 1, . . . , k, be primitive boundary hyperbolics in H corresponding to
the boundary cylinders fixed by J . We choose k one-holed torus groups Hi with
primitive boundary hyperbolics β−1

i , and use Lemma 3.2 and an inductive argument
to

a) construct the group B = H ∗β1
H1 ∗β2

· · · ∗βk
Hk, and

b) show that U/B is a surface of type (g−n+ k, 2m) having an involution with
N + 3k fixed points which interchanges the 2m boundary cylinders.

Let η1, . . . , ηm, ϕ1, . . . , ϕm be primitive boundary hyperbolics in B, where Uηi/〈ηi〉
and Uϕi

/〈ϕi〉, i = 1, . . . , m, are interchanged. Choose hyperbolic elements γi ∈
PSL(2,R) with γ−1

i ηiγi = ϕ−1

i . We use Lemma 3.3 and an inductive argument to

a) construct the group C = B ∗γ1 · · · ∗γm , and
b) show that S ′ = U/C is a compact surface of genus g − n + k +m having an

involution with N + 3k + 2m fixed points.

By the Riemann–Hurwitz relation, the involution on S ′ has at most 2(g − n +
k +m) + 2 fixed points. Thus,

(4) 2(g − n + k +m) + 2 ≥ N + 3k + 2m.

If N = 2g − 1, then the only solutions to the inequality above are either
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1) n = 1, k = 1 (and from (3), m = 0), so that U/H is of type (g − 1, 1); or
2) n = 1, k = 0 (and from (3), m = 1), so that U/H is of type (g − 1, 2).

If N = 2g, then the only solution is

3) n = 1, k = 0 (and from (3), m = 1), so that U/H is of type (g − 1, 2).

If N > 2g, then (4) has no solutions. �

Proof of Theorem 2. In view of Proposition 3.4, we need only consider two
cases.

Case 1) R is of type (g − 1, 1), and J has 2g − 1 fixed points. Here, pH(c
o(H))

has one complementary component A ⊂ U/G, necessarily a surface of type (1, 1)
sharing a boundary geodesic l with pH(c

o(H)). Let β ∈ H be a primitive bound-
ary hyperbolic. Choose B a component of p−1

1 (A) where the closure B contains lβ
(p1 : U → U/G is the natural covering). Let H1 ⊂ G be the stabilizer of B; it follows
from [4] (Props. 4.1, 4.2) that H1 is precisely embedded, hence finitely generated.
One sees easily that H1 is not elementary and that C(H1) = B.

Now B = Co(H1), and U/H1 has the same type as B/H1 = A; consequently, H1

is a group of type (1, 1). Trivially, since lβ is a boundary component for both C(H)
and C(H1), β

−1 is a primitive boundary hyperbolic in H1. Thus, H ∗β H1 is a group
of type (g, 0) and H ∗β H1 = G. By Lemma 3.2, U/G has an involution with 2g + 2
fixed points.

Case 2) R is of type (g − 1, 2), and J has either 2g − 1 or 2g fixed points. Let
η, ϕ ∈ H be primitive boundary hyperbolics which correspond to the two boundary
cylinders of R which are interchanged by J . Here, pH(c

o(H)) has no complementary
components, and necessarily, pH(lη/〈η〉) = pH(lϕ−1/〈ϕ〉). It follows that there exists
T ∈ G with T−1ηT = ϕ−1, so that G = H∗T . By Lemma 3.3, U/G has an involution
with either 2g + 1 or 2g + 2 fixed points. If it has 2g + 1 fixed points, then by the
Riemann–Hurwitz relation, it must have 2g + 2 fixed points. �

4. The characterization theorem

We prove Theorem 1 in the next two propositions.

Proposition 4.1. Let T be a tree with 2g − 1 vertices, g ≥ 2, and let S be a
compact surface of genus g with an evenly spaced collection of geodesics L which
corresponds to T . Then S is hyperelliptic.

Proof. Let G be a Fuchsian group with U/G = S, and fix x̂1 an arbitrary vertex in
T . The idea of the proof is the following: Let P1, . . . , Ps be the collection of maximal
paths in T based at x̂1. We will construct for each Pk, k = 1, . . . , s, a subgroup
Mk ⊂ G which is precisely embedded and j-invariant for a fixed elliptic element j
of order two. Applying Proposition 2.3, we then obtain a precisely embedded, j-
invariant subgroup H with M1 ∪ · · · ∪ Ms ⊂ H . After showing that the natural
involution on U/H has at least 2g − 1 fixed points, we invoke Theorem 2 and prove
that U/G is hyperelliptic.

Let x̂1, . . . , x̂n, n ≥ 2, be the ordered vertices of a maximal path Pk in T . Let l′i
be the edges of the path, where l′i joins x̂i to x̂i+1, i = 1, . . . , n−1. Let x1, . . . , xn ∈ S
be the corresponding endpoints of L and Li ⊂ S, i = 1, . . . , n− 1, the simple, closed
geodesics in L corresponding to l′i.

Let z1 be an arbitrary lift of x1 to U, and choose a hyperbolic element T1 ∈ G
which generates the cyclic subgroup corresponding to L1 and has axis l1 passing
through z1. Let zi, i = 2, . . . , n, be the midpoint of the segment between zi−1 and
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Ti−1(zi−1) where, for n > 2 and i = 2, . . . , n−1, Ti ∈ G is a hyperbolic element which
generates the cyclic subgroup corresponding to Li and has axis li passing through zi.
Note that the zi, i = 1, . . . , n, are lifts of the elements xi.

Let j1 be the elliptic transformation of order two fixing z1. Then

(5) ji = Ti−1ji−1 = Ti−1 · · ·T1j1,

is the elliptic transformation of order two fixing the point zi, i = 2, . . . , n. Note that,
since zi lies on li, for i = 1, . . . , n− 1, we have that

(6) jiTiji = T−1

i .

Let Gi be the group generated by T1, . . . , Ti. We now show that there exists a
precisely embedded, j1-invariant subgroup Kn−1 of G with Gn−1 ⊂ Kn−1. The proof
is by induction on i.

Clearly, since T1 corresponds to a simple, closed geodesic in U/G, 〈T1〉 = K1 is
precisely embedded in G. It is j1-invariant by (6). Let Ki be a precisely embedded,
j1-invariant subgroup, with Gi ⊂ Ki ⊂ G, i < n−1. From (5), since T1, . . . , Ti ∈ Ki,
we have that ji+1 and j1 project to the same involution of U/Ki. Hence, Ki is
ji+1-invariant. Since Ti+1 corresponds to a simple, closed geodesic in U/G, 〈Ti+1〉 is
precisely embedded. Moreover, from (6), we also have that 〈Ti+1〉 is ji+1-invariant.
Applying Proposition 2.3 to Ki and Ti+1, there exists a precisely embedded group
Ki+1 which is ji+1-invariant, with Ki ∪ 〈Ti+1〉 ⊂ Ki+1. From (5), since Gi+1 ⊂ Ki+1,
it follows that Ki+1 is j1-invariant.

Let Mk = Kn−1. We repeat the process for each maximal path based at x̂1 in
T (lifting x1 to z1 each time). Thus, for each such path Pk, k = 1, . . . , s, there is a
precisely embedded, j1-invariant subgroup Mk. If s > 1, we apply Proposition 2.3
s − 1 times and obtain a precisely embedded, j1-invariant subgroup H with M1 ∪
· · · ∪Ms ⊂ H . If s = 1, H = M1. Let J be the induced involution of U/H .

Each endpoint xi of L corresponds to some vertex x̂i in at least one of the maximal
paths, say Pk, of T . In the construction of Mk, we chose a lift zi ∈ U of xi which
projects to a fixed point of J in U/H . Since these lifts of endpoints of L project to
2g−1 distinct points of U/G, they project to at least 2g−1 distinct points of U/H .
It follows that J has at least 2g − 1 fixed points.

If H is a proper subgroup of G, then by Theorem 2, U/G is hyperelliptic. On
the other hand, if H = G, then J is an involuton of U/G with at least 2g − 1 fixed
points. By the Riemann–Hurwitz relation, the involution must have 2g + 2 fixed
points, and U/G is hyperelliptic. �

Proposition 4.2. Let T be a tree with 2g − 1 vertices, g ≥ 2, and let S be a
hyperelliptic surface of genus g. Then S has an evenly spaced collection of geodesics
L which corresponds to T .

Proof. Let S = U/G with G a Fuchsian group, and let J be the hyperelliptic
involution. Then S/〈J〉 is a sphere with 2g + 2 distinguished points which are the
projections, w1, . . . , w2g+2, of the fixed points of J , x1, . . . , x2g+2, respectively. The
ordering of these points is arbitrary. It is well known that any tree is planar, that is,
when viewed as a topological space, it can be embedded in the sphere. We choose a
realization of T with w1, . . . , w2g−1 as vertices; the edges are given by simple curves
si ⊂ S/J , i = 1, . . . , 2g − 2, with no two curves intersecting, except possibly at their
endpoints.

Since J is a twofold cover, branched to order two over each of the points w1, . . . ,
w2g−1, each curve si lifts to a simple, closed curve s′i in S passing through two



972 Daniel Gallo

fixed points, which we denote yi, yi+1 ∈ {x1, . . . , x2g−1}. Let zi ∈ U be a lift of yi
and let Si ⊂ U be a component of the preimage of s′i (under the natural covering
p1 : U → U/G) passing through zi. Since s′i is a simple, closed curve, Si is invariant
under a cyclic subgroup of G generated by some element Ti ∈ G. Choose zi+1 ∈ Si,
a lift of yi+1 , and let ji (resp. ji+1) be the elliptic transformation of order two,
necessarily a lift of J , with fixed point zi (resp. zi+1). Since Si is invariant under
both ji and ji+1, it follows that it is invariant under their product Ri = ji+1ji ∈ G,
and Ri = T n

i with n 6= 0. Hence, s′i is homotopic to the the simple, closed geodesic Li

given by Li = lRi
/〈Ti〉. Note that, since zi+1 lies halfway between zi and T n

i (zi), and
zi, zi+1 are inequivalent in G, n must be an odd number. Without loss of generality,
we assume n is positive.

Letting j′i = Tiji, one has that z′i, the fixed point of j′i, lies halfway between zi and

Ti(zi). Hence, zi+1 = T
n−1

2

i (z′i) and zi+1 is equivalent to z′i. It follows that z′i is a lift
of yi+1. Thus, yi, yi+1 divide Li into two segments of equal length. Noting that the
Li have the same points of intersection as the s′i, we have that Li, i = 1, . . . , 2g − 2,
along with the points x1, . . . , x2g−1, form an evenly spaced collection of geodesics
corresponding to T . �

Let S be a compact surface of genus g ≥ 2, and let L1, . . . , L2g−2 ⊂ S be simple,
closed geodesics which intersect at a single point p ∈ S and are otherwise disjoint.
Let pi be the midpoint of the geodesic Li, viewed as a geodesic from p to p. Then
the geodesics Li with the points p, pi, i = 1, . . . , 2g − 2, form a collection of evenly
spaced geodesics whose corresponding graph is a tree. The next result now follows
from Theorem 1.

Theorem 3. (Schmutz-Schaller [5]) Let S be a compact surface of genus g ≥ 2.
Then S is hyperelliptic if and only if it has at least 2g − 2 simple, closed geodesics
which intersect at one point and are otherwise disjoint.

A necklace with 2g − 2 successive evenly spaced links on a compact surface of
genus g ≥ 2 is an evenly spaced set of 2g− 2 geodesics L whose corresponding graph
T is a path. The following is also obtained from Theorem 1.

Theorem 4. (Maskit [4]) Let S be a compact surface of genus g ≥ 2. Then S
is hyperelliptic if and only if it has a necklace with 2g − 2 successive evenly spaced
links.
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