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Abstract. The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe

spaces Lρ, which generalize the Lebesgue spaces Lp, the Orlicz spaces and many other functional

spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving

integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we

call “natural operators” and study here.

1. Introduction

We study the linear and continuous operators defined on Köthe–Bochner spaces.
The scalar Köthe spaces Lρ (name suggested by Dieudonné) generalize the Lebesgue
spaces Lp and a lot of other spaces, e.g. Orlicz spaces, Lorentz spaces, Marcinkiewicz
spaces a.s.o. Primarily they appeared in [13], followed by [12] (as sequence spaces).
The general presentation (as spaces of classes of measurable functions) appeared in
[15], followed by [16], [24], [17], [25] and [3]. The “vector valued” Köthe spaces are
called Köthe–Bochner spaces, being a natural generalization of the spaces Lρ. In the
present paper we operate with a more general definition of the Köthe–Bochner spaces
than that one used in the autoritative monograph [14], precluding some unnecessary
conditions (see the final considerations of the paragraph “Preliminary facts” and our
previous paper [4]).

The present paper is concerned with the study of linear and continuous operators
on Köthe–Bochner spaces. Of course, various situations can occur. For instance, in
[10], operators having as range a Köthe–Bochner space are studied. In [2], one studies
operators having both the domain and the range the same Köthe–Bochner space, in
connection with the property of being multiplicative. The reader can find interesting
and very technical facts concerning operators having the domain or the range Köthe
spaces, variable Lebesgue spaces Lp or Köthe–Bochner spaces in (the selection is, of
course, subjective) the following papers: [1] (smoothness problems), [5] (boundedness
on variable Lebesgue spaces Lp), [18] (integral operators on Köthe spaces, invariance
and commutativity), [19] (narrow operators), [20] (maximal Hardy–Littlewood opera-
tor on variable Lebesgue spaces Lp), [21] (geometric properties of operators on Köthe
spaces), [22], [23] (generation of chaos by operators defined on a Köthe sequence
space).

https://doi.org/10.5186/aasfm.2019.4454
2010 Mathematics Subject Classification: Primary 46E30, 46E40, 47B38, 47G10; Secondary

28A20, 54A20, 54C35, 54E25.
Key words: Köthe space, Köthe–Bochner space, linear and continuous operator, variation of a

measure, semivariation of a measure.
∗Corresponding author.



946 Ion Chiţescu and Răzvan-Cornel Sfetcu

We recognize the decisive influence of [7], where linear and continuous operators
on Lp(X, µ) are studied using q-variation and q-semivariation. Working for Köthe–
Bochner spaces we generalize these ideas and add new ideas and facts. The present
paper continues our previous paper [4].

2. Preliminary facts

Throughout the paper: N = {1, 2, . . .}, R+ = [0,∞), R+ = [0,∞] = R+ ∪ {∞},
K = R or C. All sequences (xn)n∈N or (xn)n will be indexed with N. The double
sequences (xpn)p,n will be indexed with N ×N. For any non empty set T , we shall
denote by P(T ) the set of all subsets of T . If A ⊂ T , ϕA : T → K is the characteristic
(indicator) function of A. For f : T → K (or f : T → R+, or f : T → X, X normed

space), we define supp(f)
def
= {t ∈ T | f(t) 6= 0}.

Let X be a normed space with norm ‖ ‖ and let T be a non empty set. If
f : T → X, we define the function |f | : T → R+ given via |f |(t) = ‖f(t)‖ for any
t ∈ T . If ϕ : T → K is another function, we define ϕf : T → X via (ϕf)(t) = ϕ(t)f(t)
for any t ∈ T . In particular: if ϕ is constant, ϕ ≡ α ∈ K, we have the function αf ;
if f is constant, f ≡ x ∈ X, we have the function ϕx.

Let (X, p) be a seminormed space and (Y, ‖ ‖) a normed space. The vector space

L(X, Y )
def
= {V : X → Y | V is linear and continuous} becomes a normed space (even

a Banach space in case Y is Banach) with the (operator) norm ‖V ‖o
def
= sup{‖V (x)‖ |

x ∈ X, p(x) ≤ 1}. If Y = K, L(X,K) = X ′.

Define Ker(p)
def
= {x ∈ X | p(x) = 0} and X̃

def
= X/Ker(p) and obtain the associated

normed space (X̃, |‖ |‖), where, for any x̃ ∈ X̃, |‖x̃|‖ def
= p(x) for all x ∈ x̃ (coherent

definition). Then X̃ is Banach if and only if (X, p) is a complete semimetric space.

The normed spaces L(X, Y ) and L(X̃, Y ) are linearly and isometrically isomorphic

via the isomorphism Ω: L(X, Y ) → L(X̃, Y ), acting as follows: Ω(V ) = Ṽ (the

associated operator of V ), where Ṽ (x̃)
def
= V (x) for any x̃ ∈ X̃ and any x ∈ x̃

(coherent definition). So, in order to study L(X̃, Y ), one can study L(X, Y ). This
procedure will be used in this paper, namely we shall study linear and continuous
operators V : Lρ(E)→ F instead of linear and continuous operators V : Lρ(E)→ F .

If X,E, F are Banach spaces, we say that X is embedded in L(E, F ) (and write
X →֒ L(E, F )) in case there exists a linear and isometric map H : X → L(E, F )
(so ‖x‖ = ‖H(x)‖o for any x ∈ X). Two conventions are in use: a) Generally, one
omits to explicitely mention the map H ; b) There is total identification x ≡ H(x)
for any x ∈ X (e.g. one writes either ‖x‖ or ‖x‖o to designate the norm of x). For
any normed space one can find E, F such that X →֒ L(E, F ). The most popular
embeddings are the following two canonical embeddings: a) X →֒ L(K,X) ≡ X,
with H(x) = Tx, Tx(α) = αx for any x ∈ X, α ∈ K; b) X →֒ L(X ′, K) = X ′′, with
H(x) = Vx, Vx(x

′) = x′(x) for any x ∈ X, x′ ∈ X ′.
For supplementary functional analysis facts, one can consult [8]. For vector

measures and integration, the standard texts are [6] and [7].
In the sequel we shall present the Köthe–Bochner spaces. We shall work with a

σ-finite and complete measure space (T, T , µ), i.e. T is a non empty set, T ⊂ P(T ) is
a σ-algebra of sets and µ : T → R+ is a measure which is σ-finite and complete. For
general measure theory, see [11]. In particular, we shall also deal with the countable
discrete measure space (N,P(N), card) or with the finite discrete measure space
(T,P(T ), card), where φ 6= T is finite and card(A) = the number of elements in A, if
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A is finite and card(A) = ∞, if A is infinite. For Köthe spaces see [3] and [24]. For
Köthe–Bochner spaces see [4] and [14].

The set of all µ-measurable positive functions u : T → R+ will be denoted by
M+(µ). A µ-function norm (or, simply, a function norm) is a function ρ : M+(µ)→
R+ having the following properties (for any u, v in M+(µ) and any α ∈ R+):
1) ρ(u) = 0 if and only if u(t) = 0 µ-a.e.; 2) ρ(u) ≤ ρ(v), whenever u ≤ v;
3) ρ(u + v) ≤ ρ(u) + ρ(v); 4) ρ(αu) = αρ(u), with the convention 0 · ∞ = 0.
For instance, we can consider the particular example of the Lebesgue function norms
‖ ‖p, 1 ≤ p ≤ ∞.

For any A ∈ T , we write ρ(A)
def
= ρ(ϕA). We shall write Tρ = {A ∈ T | ρ(A) <

∞}. It is seen that Tρ is a δ-ring (semitribe).
We say that the function norm ρ has the Riesz–Fischer property if ρ (

∑∞
n=1 un) ≤∑∞

n=1 ρ(un) for any sequence (un)n ⊂ M+(µ). In particular, all the function norms
‖ ‖p, 1 ≤ p ≤ ∞ have this property.

For any function norm ρ one can construct the associated function (semi)norm ρ′

of ρ. Namely ρ′ : M+(µ)→ R+ acts via ρ′(u) = sup{
´

uv dµ | v ∈M+(µ), ρ(v) ≤ 1}.
We feel obliged to remind the fact that in some pathological cases, it is possible to
have ρ′(u) = 0, even in case the assertion u(t) = 0 µ-a.e. is not true. If ρ = ‖ ‖p,
1 ≤ p ≤ ∞, we have ρ′ = ‖ ‖q, where q is the conjugate of p, i.e. 1

p
+ 1

q
= 1 with the

conventions 1
∞ = 0 and 1

0
=∞.

We say that the function norm ρ is of absolutely continuous type if it has the
following property: for any u ∈ M+(µ) with ρ(u) < ∞ and for any decreasing
sequence (un)n ⊂ M+(µ) such that un ≤ u µ-a.e. for any n and such that limn un(t) =
0 µ-a.e. (we write un ↓ 0), we have ρ(un) −→

n
0 (we write ρ(un) ↓ 0). All ‖ ‖p,

1 ≤ p < ∞, are of absolutely continuous type. Notice that, when working with the
finite discrete measure space, any finite function norm is of absolutely continuous
type (because all norms on a finite dimensional vector space are equivalent and the
convergence is normic).

Now, let us consider a Banach space X. We shall denote by MX(µ) the vector
space of all µ-measurable functions f : T → X. Let also NX(µ) the vector space of
all (of course µ-measurable) functions f : T → X having the property that f(t) = 0

µ-a.e. For any f ∈MX(µ), write ρ|f | def= ρ(|f |). Define the vector space

Lρ(X) = {f ∈MX(µ) | ρ|f | <∞}

which is a seminormed space with the seminorm f 7−→ p(f)
def
= ρ|f |. Then Ker(p) =

NX(µ) and we obtain the associated normed space

Lρ(X)
def
= Lρ(X)/NX(µ),

normed with the norm f̃ 7−→
∥∥∥f̃
∥∥∥ = ρ|f | for any f ∈ f̃ .

We call Lρ(X) and Lρ(X) Köthe–Bochner spaces. In case X = K, we write only
Lρ (instead of Lρ(K)) and Lρ (instead of Lρ(K)) and call Lρ and Lρ Köthe spaces.
So Lρ(X) = {f ∈MX(µ)| |f | ∈ Lρ}. It is known that Lρ(X) (respectively Lρ(X)) is
complete if and only if ρ has the Riesz–Fischer property (see [4]).

In case ρ = ‖ ‖p, 1 ≤ p ≤ ∞, we have, instead of Lρ(X) and Lρ(X), the Lebesgue

spaces Lp(X, µ) and Lp(X, µ) (respectively Lp(µ) and Lp(µ), if X = K).
If (T, T , µ) is the countable (respectively finite) discrete measure space (N,P(N),

card) (respectively (T = {1, 2, . . . , n},P(T ), card)), the only negligible set is φ,
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all functions (sequences or n-tuples) are measurable and Lρ(X) ≡ Lρ(X). For
the countable case, we write lρ(X) instead of Lρ(X), lρ instead of Lρ, lp(X) in-
stead of Lp(X, card), lp instead of Lp(card). For the finite case, we have Lρ(X) =
Lp(X, card) ≡ Xn and Lρ = Lp(card) ≡ Kn (assuming also that ρ takes only finite
values).

Returning to a general measure space (T, T , µ) we introduce some special nota-
tions which will be used further. Let E be a Banach space. A function f : T → E
will be called ρ-simple if it has the form f =

∑n
i=1 ϕAi

xi, where Ai ∈ Tρ are mutually
disjoint sets and all xi ∈ E. The set of all ρ-simple functions will be denoted with
SE(ρ). Clearly SE(ρ) ⊂ Lρ(E). If E = K we write only S(ρ). For any A ⊂ T , write
SE(ρ, A) = {f ∈ SE(ρ) | supp(f) ⊂ A} (if E = K, write only S(ρ, A)). Write also
SE(ρ, 1) = {f ∈ SE(ρ) | ρ|f | ≤ 1} (if E = K, write only S(ρ, 1)). We can consider
also SE(ρ, A, 1) = {f ∈ SE(ρ, A) | ρ|f | ≤ 1} (if E = K, write only S(ρ, A, 1)).

The following basic result will be fundamental for our further study. We give it
here with proof, in order to make our paper to be self-contained.

Density Lemma. If ρ is of absolutely continuous type, SE(ρ) is dense in Lρ(E).

Proof. We consider an arbitrary f ∈ Lρ(E) and show how to construct a sequence
(fn)n ⊂ SE(ρ) such that fn −→

n
f in Lρ(E).

Indeed, for the µ-measurable f , one can find a sequence (fn)n ⊂ SE(ρ) such that
(fn)n converges to f µ-a.e. and |fn| ≤ |f | µ-a.e. for any n (see [7]). Define, for any n,
the function un : T → R+ via un(t) = supm ‖fn+m(t)− f(t)‖ ≤ 2|f |(t). Then un ↓ 0
µ-a.e. Because ρ is of absolutely continuous type, it follows that ρ(un) ↓ 0. Clearly,
|fn+1 − f | ≤ un, hence ρ|fn − f | −→

n
0 and fn −→

n
f in Lρ(E). �

Remarks. 1. The present paper differs from the paper [9] which is concerned
with the same subject: many conditions imposed in [9] do not appear here and the
results (obtained with other methods) are expressed in a different manner. To be
more specific: A. The exposition in [9] relies heavily upon the conditional expectation
generated by a partition (actually, this name does not specifically appear in [9]) and
upon admissible sequences. In our paper, we do not speak about these types of facts.
B. The function norm ρ is assumed to possess the weak Fatou property, stronger than
the Riesz–Fischer property (which implies the completeness of the Köthe–Bochner
spaces Lρ(X)) and the so-called property (J) (related to the conditional expectation
generated by a partition). These two properties are not assumed in the present paper.

2. In the authoritative monograph [14], the space Lρ is defined adding the fol-
lowing supplementary conditions: a) K = R; b) The functions in Lρ must be locally
µ-integrable; c) For any A ∈ T with µ(A) < ∞ one has ϕA ∈ Lρ; d) Lρ is Banach.
We do not impose these conditions in our paper (see also our previous paper [4]). We
lay stress upon the fact that the lastly imposed condition d) is extreme, excluding
from the study a lot of Lρ spaces. Linear and continuous operators on Köthe–Bochner
spaces are not studied in [14]. �

3. Generalization of variation and semivariation

Let (T, T , µ) be a σ-finite and complete measure space and ρ : M+(µ) → R+

a function norm. We shall consider three Banach spaces X,E, F such that X →֒
L(E, F ). Let m : Tρ → X be a function with the property m(φ) = 0 (in particular,
m can be additive).

Definition 3.1. (Generalization of classic notions) Let A ⊂ T .
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1. The (ρ, (E, F ))-variation of m on A is the element mρ,(E,F )(A) ∈ R+ defined
via

mρ,(E,F )(A) = sup

{
∑n

i=1 ‖m(Ai)(xi)‖
∣∣∣∣∣
∑n

i=1 ϕAi
xi ∈ SE(ρ, A, 1)

}
.

2. The (ρ, (E, F ))-semivariation of m on A is the element m̃ρ,(E,F )(A) ∈ R+

defined via

m̃ρ,(E,F )(A) = sup

{
‖
∑n

i=1m(Ai)(xi)‖
∣∣∣∣∣
∑n

i=1 ϕAi
xi ∈ SE(ρ, A, 1)

}
.

Remark. Clearly, for any embedding X →֒ L(E, F ) and any A ⊂ T , one has
m̃ρ,(E,F )(A) ≤ mρ,(E,F )(A). �

We shall see that mρ,(E,F )(A) does not depend upon the embedding X →֒ L(E, F ),
being the same for all embeddings.

Theorem 3.2. (Invariance of the variation with respect to the embedding) For
any embedding X →֒ L(E, F ) and any A ⊂ T one has mρ,(E,F )(A) = mρ,(K,X)(A) =
sup {

∑n

i=1 |αi| ‖m(Ai)‖ |
∑n

i=1 ϕAi
αi ∈ S(ρ, A, 1)} (mρ,(K,X)(A) is computed for the

canonical embedding (isomorphism) X ≡ L(K,X)).

Proof. 1. Take arbitrarily
∑n

i=1 ϕAi
xi ∈ SE(ρ, A, 1). Hence

∑n

i=1 ϕAi
‖xi‖ ∈

S(ρ, A, 1) and
∑n

i=1 ‖m(Ai)(xi)‖≤
∑n

i=1 ‖m(Ai)‖o ‖xi‖, i.e. mρ,(E,F )(A)≤mρ,(K,X)(A)
because m(A)(α) = αm(A) for any α ∈ K and X ≡ L(K,X).

2. In order to prove the converse inequality, take
∑n

i=1 ϕAi
αi ∈ S(ρ, A, 1). Let ε >

0. For any i = 1, 2, . . . , n, one has |αi| ‖m(Ai)‖o = ‖αim(Ai)‖o = sup{‖m(Ai)(αiy)‖ |
y ∈ E, ‖y‖ = 1}, hence one can find yi ∈ E, ‖yi‖ = 1 such that |αi| ‖m(Ai)‖o − ε

n
≤

‖m(Ai)(αiyi)‖, hence

(3.1)

n∑

i=1

|αi| ‖m(Ai)‖o − ε ≤
n∑

i=1

‖m(Ai)(xi)‖ ,

with xi
def
= αiyi. Define f =

∑n
i=1 ϕAi

xi. We have |f | =
∑n

i=1 ϕAi
|αi| ⇒ f ∈

SE(ρ, A, 1)⇒
∑n

i=1 ‖m(Ai)(xi)‖ ≤ mρ,(E,F )(A) and (3.1) implies
∑n

i=1 |αi| ‖m(Ai)‖o
− ε ≤ mρ,(E,F )(A). Passing to supremum in the left-hand side of the last inequality,
we get mρ,(K,X)(A)− ε ≤ mρ,(E,F )(A), hence mρ,(K,X)(A) ≤ mρ,(E,F )(A), because ε is
arbitrary, a.s.o. �

Notation. According to the preceding result, we shall write mρ(A)
def
= mρ,(E,F )(A)

for any embedding X →֒ L(E, F ) and we shall call mρ(A) the ρ-variation of m on
A.

Definition 3.3. In view of the aforementioned facts, we see that, for any func-
tion norm ρ and any embedding X →֒ L(E, F ), we have defined the functions
m̃ρ,(E,F ) : P(T ) → R+ (respectively mρ : P(T ) → R+) via A 7−→ m̃ρ,(E,F )(A) (re-
spectively A 7−→ mρ(A)).

Example 3.4. We shall exhibit situations when the general inequality m̃ρ,(E,F )(A)
≤ mρ(A) is either strict, or an equality. The examples will be given for T = [0, 1],
T = the Lebesgue measurable sets of [0, 1] and µ = the Lebesgue measure on [0, 1].
The function norm will be ρ = ‖ ‖p, 1 ≤ p ≤ ∞. We shall work for X = Lρ, i.e.

X = Lp(µ) and for the canonical embedding (isomorphism) X ≡ L(K,X). Finally
m : Tρ → X is given via m(A) = ϕ̃A (σ-additive for p <∞ and additive for p =∞).
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1. For p = 1 (i.e. ρ = ‖ ‖1), one has mρ(T ) = m̃ρ,(K,X)(T ) = m̃ρ,(E,F )(T ) = 1 for
any X →֒ L(E, F ) (see also Theorem 3.5).

2. For 1 < p ≤ ∞ (i.e. ρ = ‖ ‖p), one has m̃ρ,(K,X)(T ) = 1 < mρ(T ) =∞.

Sketch of the proof. 1. We have mρ(T ) = 1, because ρ(1) = 1 and, for ϕ ∈
S(‖ ‖1 , 1), ϕ =

∑n

i=1 αiϕAi
, one has

∑n

i=1 |αi| ‖m(Ai)‖1 = ρ|ϕ| ≤ 1.
We have m̃ρ,(K,X)(T ) = 1, because ρ(1) = 1 and, for ϕ ∈ S(‖ ‖1 , 1), ϕ =∑n

i=1 αiϕAi
, one has ‖∑n

i=1m(Ai)(αi)‖1 = ρ|ϕ| ≤ 1.
2. The idea is to express, for any n ∈ N, the constant function ϕ ≡ 1, ϕ ∈

S(ρ, 1), as follows: ϕ =
∑n

i=1 ϕAn
i
αn
i , where all αn

i = 1 and An
i =

[
i−1
n
, i
n

)
, for

i = 1, 2, . . . , n− 1 and An
n =

[
n−1
n
, 1
]
.

We have m̃ρ,(K,X)(T ) = 1 in all cases (same proof as at point 1.).
We have mρ(T ) =∞ in all cases, considering the above mentioned expression of

ϕ ≡ 1. Namely, for 1 < p < ∞,
∑n

i=1 ‖αn
i m(An

i )‖p =
∑n

i=1 ‖m(An
i )‖p = n ·

(
1
n

) 1

p =

n1− 1

p −→
n
∞. For p =∞,

∑n

i=1 ‖αn
i m(An

i )‖∞ =
∑n

i=1 ‖m(An
i )‖∞ = n −→

n
∞. �

Considering the values of m̃ρ,(E,F ) for different embeddings X →֒ L(E, F ), we
obtain, for any m : Tρ → X with m(φ) = 0

Theorem 3.5. 1. m̃ρ,(K,X) ≤ m̃ρ,(E,F ).
2. In case F = K, i.e. X →֒ E ′ = L(E,K): m̃ρ,(E,K) = mρ.
3. Consequently: m̃ρ,(K,X) ≤ m̃ρ,(E,F ) ≤ m̃ρ,(X′,K) = mρ.

Proof. Let A ⊂ T .
1. Considering ϕ =

∑n
i=1 αiϕAi

∈ S(ρ, A, 1), we have ‖∑n
i=1 αim(Ai)‖o =

sup‖x‖≤1 ‖
∑n

i=1 αim(Ai)(x)‖ = sup‖x‖≤1 ‖
∑n

i=1m(Ai)(αix)‖ ≤ m̃ρ,(E,F )(A), because∑n
i=1 ϕAi

αix ∈ SE(ρ, A, 1), if x ∈ E, ‖x‖ ≤ 1. We pass to supremum with respect to
ϕ.

2. Use the equalities

mρ(A) = mρ,(K,X)(A) = sup

{
n∑

i=1

|αi| ‖m(Ai)‖o

∣∣∣∣∣

n∑

i=1

ϕAi
αi ∈ S(ρ, A, 1)

}
.

Then, for any ϕ =
∑n

i=1 ϕAi
αi ∈ S(ρ, A, 1), any i = 1, 2, . . . , n and any ε > 0, we

find xi ∈ E with ‖xi‖ = 1 such that

|αi| ‖m(Ai)‖o = ‖αim(Ai)‖o < |(αim(Ai))(xi)|+
ε

n
= m(Ai)(αixi) +

ε

n
.

It is seen that |
∑n

i=1 ϕAi
αixi| = |ϕ|, hence

∑n

i=1 ϕAi
αixi ∈ SE(ρ, A, 1). Con-

sequently,
∑n

i=1 |αi| ‖m(Ai)‖o <
∑n

i=1m(Ai)(αixi) + ε = |
∑n

i=1m(Ai)(αixi)| + ε ≤
m̃ρ,(E,K)(A)+ε. Because ϕ ∈ S(ρ, A, 1) is arbitrary, we get mρ(A) ≤ m̃ρ,(E,K)(A)+ε.
But ε > 0 is arbitrary, hence mρ(A) ≤ m̃ρ,(E,K)(A) a.s.o. �

The following four properties will be used further, especially to prove Proposi-
tion 3.6, Proposition 3.7 and Theorem 3.8.

Property 1. m̃ρ,(E,F )(φ) = mρ(φ) = 0.

Property 2. For A ⊂ B ⊂ T , m̃ρ,(E,F )(A) ≤ m̃ρ,(E,F )(B) and mρ(A) ≤ mρ(B).

Property 3. If A ⊂ T : (mρ(A) = 0)⇔ (m̃ρ,(E,F )(A) = 0)⇔ (For any Tρ ∋ B ⊂
A, one has m(B) = 0). In particular, if A ∈ Tρ: (mρ(A) = 0)⇒ (m(A) = 0).

Property 4. Let A ∈ Tρ.
a) (µ(A) = 0 and m(A) 6= 0)⇒ (µ(A) = 0 and m̃ρ,(E,F )(A) = mρ(A) =∞).
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b) Assume µ(A) = 0. Then: i) (m̃ρ,(E,F )(A) < ∞) ⇔ (m̃ρ,(E,F )(A) = 0);
ii) (mρ(A) <∞)⇔ (mρ(A) = 0).

Proposition 3.6. Let A ⊂ T and f =
∑n

i=1 ϕAi
xi ∈ SE(ρ, A). Assume that

either ρ|f | 6= 0, or m̃ρ,(E,F )(A) < ∞. Then: a) ‖
∑n

i=1m(Ai)(xi)‖ ≤ m̃ρ,(E,F )(A)ρ|f |;
b)
∑n

i=1 ‖m(Ai)‖o ‖xi‖ ≤ mρ(A)ρ|f |.
Proof. We prove a), the proof of b) being similar. Assume first ρ|f | 6= 0, hence

∑n

i=1

ϕAi

ρ|f |xi ∈ SE(ρ, A, 1)⇒
∥∥∥ 1
ρ|f |
∑n

i=1m(Ai) (xi)
∥∥∥ ≤ m̃ρ,(E,F )(A).

In case ρ|f | = 0, we have m̃ρ,(E,F )(A) < ∞ and, for any i, ρ|ϕAi
xi| = ‖xi‖ ρ(Ai)

≤ ρ|f | = 0, hence either xi = 0, or ρ(Ai) = 0. We shall see that one has m(Ai)(xi) = 0
for any n. Indeed, if xi 6= 0, we have ρ(Ai) = 0, hence µ(Ai) = 0. We also have
m̃ρ,(E,F )(Ai) ≤ m̃ρ,(E,F )(A) < ∞ (Property 2) and this implies m̃ρ,(E,F )(Ai) = 0
(Property 4). Using Property 3 we get m(Ai) = 0, hence m(Ai)(xi)=0. It follows
that

∑n

i=1m(Ai)(xi) = 0 a.s.o. �

Proposition 3.7. Let A ∈ Tρ. Consider the propositions: P1: Either µ(A) 6= 0,
or m(A) = 0; P2: Either µ(A) 6= 0, or m̃ρ,(E,F )(A) < ∞. Then Pi ⇒ (‖m(A)‖o ≤
m̃ρ,(E,F )(A)ρ(A) ≤ mρ(A)ρ(A)) (i = 1, 2).

Proof. First, we prove that P1 ⇒ (‖m(A)‖o ≤ m̃ρ,(E,F )(A)ρ(A)), in the non
trivial case µ(A) 6= 0 (if µ(A) = 0, we have m(A) = 0). Take 0 6= x ∈ E. Then
f = ϕAx ∈ SE(ρ, A) with ρ|f | = ρ(A) ‖x‖ 6= 0. Proposition 3.6 implies ‖m(A)(x)‖ ≤
m̃ρ,(E,F )(A)ρ|f | = m̃ρ,(E,F )(A)ρ(A) ‖x‖, hence ‖m(A)‖o ≤ m̃ρ,(E,F )(A)ρ(A). It re-
mains to prove P2 ⇒ (‖m(A)‖o ≤ m̃ρ,(E,F )(A)ρ(A)), in case µ(A) = 0. Because
m̃ρ,(E,F )(A) < ∞, we have (Property 4. b)) that m̃ρ,(E,F )(A) = 0 and this implies
m(A) = 0 (Property 3.). �

Theorem 3.8. Assume that ρ is of absolutely continuous type, m : Tρ → X →֒
L(E, F ) is additive and m̃ρ,(E,F )(A) <∞ for any A ∈ Tρ. Then m is σ-additive and m
is locally absolutely continuous with respect to µ, i.e. for any A ∈ Tρ and any ε > 0,
there exists δA > 0 such that (For any A ⊃ B ∈ Tρ and µ(B) < δA)⇒ (‖m(B)‖ < ε).

Proof. Take a decresing sequence (An)n ⊂ Tρ such that An ↓ φ (i.e.
⋂∞

n=1An =
φ). Then ϕAn

↓ 0 and this implies ρ(An) ↓ 0, because ρ is of absolutely contin-
uous type. Proposition 3.7 and Property 2. say that ‖m(An)‖o = ‖m(An)‖ ≤
m̃ρ,(E,F )(An)ρ(An) ≤ m̃ρ,(E,F )(A1)ρ(An) −→

n
0, hence m(An) −→

n
0. This proves the

σ-additivity of m. Now, let A ∈ Tρ with µ(A) = 0. With Property 4. b), we have
m̃ρ,(E,F )(A) = 0, hence m(A) = 0 (use Property 3.). This fact, together with the
facts that m is σ-additive and Tρ is a δ-ring imply the local absolute continuity in
the enunciation. �

Comment. (Connection with the standard variation and semivariation) Let us
consider a non empty set T and a σ-algebra T ⊂ P(T ). Also let X,E, F be Banach
spaces such that X →֒ L(E, F ) and m : T → X such that m(φ) = 0. Then, for any
A ⊂ T , one can construct (see [7]): m(A) = sup {

∑n

i=1 ‖m(Ai)‖ | T ∋ Ai ⊂ A} = the
(standard) variation of m on A and m̃(E,F )(A) = sup{‖

∑n
i=1m(Ai)(xi)‖ | T ∋ Ai ⊂

A, xi ∈ E, ‖xi‖ ≤ 1} = the (standard) (E, F )-semivariation of m on A.

Theorem 3.9. The standard constructions from above are particular cases of
the constructions exhibited in this section.
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Proof. One considers the measure space (T, T , λ), where λ : T → R+, λ(A) =
card(A), if A is finite and λ(A) =∞, if A is infinite. Also, one considers the function
norm ρ : M+(λ) → R+, given via ρ(u) = sup{u(t) | t ∈ T} for any u ∈ M+(λ)
(actually, ρ = ‖ ‖∞ for this λ). Then Tρ = T and one has, for any A ⊂ T : m(A) =
mρ(A) and m̃(E,F )(A) = m̃ρ,(E,F )(A). �

4. Linear and continuous operators on Lρ(E). Integral representations

Throughout this section, we shall consider a σ-finite and complete measure space
(T, T , µ), a function norm ρ : M+(µ)→ R+ and an additive measure m : Tρ → X →֒
L(E, F ), where X,E, F are Banach spaces.

1. For any f =
∑n

i=1 ϕAi
xi ∈ SE(ρ), we define the elementary integral of f with

respect to m via
´

f dm
def
=
∑n

i=1m(Ai)(xi) ∈ F . One can see that the definition of the
elementary integral

´

f dm is coherent, i.e. it does not depend upon the representation
of f .

We can define the elementary operator U : SE(ρ)→ F , via U(f) =
´

f dm.
Clearly U is linear and there is a bijection between the additive measures m : Tρ →

X →֒ L(E, F ) and the linear operators U : SE(ρ) → F , given via m 7−→ U , where

U(f)
def
=
´

f dm. The inverse of this bijection is given via U 7−→ m, where, for any

A ∈ Tρ and any x ∈ E, m(A)(x)
def
= U(ϕAx).

A special situation is the following. We can consider, for a given Banach space
X, the canonical embedding (isomorphism) X ≡ L(K,X) and an embedding X →֒
L(E, F ). Then, for any ϕ =

∑n

i=1 αiϕAi
∈ S(ρ), we consider X ≡ L(K,X) and

´

ϕdm =
∑n

i=1 αim(Ai) ∈ L(E, F ). This fact implies that, for any x ∈ E and any
ϕ ∈ S(ρ), one has

(´
ϕdm

)
(x) =

´

ϕx dm.

2. Let us rewrite the definitions. Namely, one has, for any A ⊂ T :

(4.2) m̃ρ,(E,F )(A) = sup

{∥∥∥∥
ˆ

f dm

∥∥∥∥
∣∣∣∣ f ∈ SE(ρ, A, 1)

}
.

Theorem 4.1. Let A ⊂ T and f ∈ SE(ρ, A) (respectively ϕ ∈ S(ρ, A)). As-
sume that either ρ|f | 6= 0, or m̃ρ,(E,F )(A) < ∞ (respectively either ρ|ϕ| 6= 0,

or m̃ρ,(E,F )(A) < ∞). Then we have
∥∥´ f dm

∥∥ ≤ m̃ρ,(E,F )(A)ρ|f | (respectively∥∥´ ϕdm
∥∥
o
≤ m̃ρ,(K,X)(A)ρ|ϕ| ≤ m̃ρ,(E,F )(A)ρ|ϕ|).

Proof. It follows from Proposition 3.6 and Theorem 3.5. �

Theorem 4.2. Assume that m̃ρ,(E,F )(T ) <∞.
1. If (fn)n is a Cauchy sequence in SE(ρ) ⊂ Lρ(E) (respectively in S(ρ) ⊂ Lρ),

then
(´

fndm
)
n

is a convergent sequence in F (respectively in L(E, F )).
2. Assume that (fn)n and (gn)n are sequences in SE(ρ) (respectively in S(ρ)) with

the property that there exists f ∈ Lρ(E) (respectively f ∈ Lρ) such that fn −→
n

f

and gn −→
n

f in Lρ(E) (respectively in Lρ). Then lim
n

´

fn dm = lim
n

´

gn dm.

Proof. 1. Using Theorem 4.1, we get, for any i, j,
∥∥´ fi dm−

´

fj dm
∥∥ =∥∥´ (fi − fj) dm

∥∥ ≤ m̃ρ,(E,F )(T )ρ|fi−fj | (respectively
∥∥´ fi dm−

´

fj dm
∥∥
o
=
∥∥ ´ (fi−

fj) dm
∥∥
o
≤ m̃ρ,(E,F )(T )ρ|fi − fj |) and this shows that the sequence

(´
fi dm

)
i

is
Cauchy, i.e. convergent.
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2.
∥∥´ fn dm−

´

gn dm
∥∥ =

∥∥´ (fn − gn) dm
∥∥ ≤ m̃ρ,(E,F )(T )ρ|fn−gn| −→

n
0 (respec-

tively
∥∥´ fn dm−

´

gn dm
∥∥
o
=
∥∥´ (fn − gn) dm

∥∥
o
≤ m̃ρ,(E,F )(T )ρ|fn − gn| −→

n
0). �

Fundamental assumption. From now on, in the remainder of the paper, we
shall assume that ρ is of absolutely continuous type. This assumption implies (see
Preliminary facts, Density Lemma) that SE(ρ) is dense in Lρ(E). Hence, for an
arbitrary f ∈ Lρ(E), there exists a sequence (fn)n ⊂ SE(ρ) such that fn −→

n
f in

Lρ(E). Then, Theorem 4.2 says that the sequence
(´

fndm
)
n

is Cauchy (in F or

in L(E, F )) and the limit limn

´

fndm does not depend upon the sequence (fn)n (it
depends only upon f). We arrive at the natural

Definition 4.3. Assume that m̃ρ,(E,F )(T ) <∞. For any f ∈ Lρ(E) (respectively

f ∈ Lρ), the integral of f with respect to m is the element
´

fdm
def
= limn

´

fndm ∈ F
(respectively

´

f dm = limn

´

fn dm ∈ L(E, F )), where (fn)n ⊂ SE(ρ) (respectively
(fn)n ⊂ S(ρ)) is a sequence with the property that fn −→

n
f in Lρ(E) (respectively in

Lρ).

Remark. The integral just defined extends the elementary integral. �

Previous facts lead to

Theorem 4.4. Assume that m̃ρ,(E,F )(T ) <∞. We have the linear and continu-
ous operators U : Lρ(E)→ F , given via U(f) =

´

f dm and V : Lρ → L(E, F ), given
via V (ϕ) =

´

ϕdm. Then:

1. For any ϕ ∈ Lρ and any x ∈ E, one has V (ϕ)(x) = U(ϕx).
2. a) ‖U‖o = m̃ρ,(E,F )(T ); b) ‖V ‖o = m̃ρ,(K,X)(T ) ≤ m̃ρ,(E,F )(T ).

Proof. 1. Let ϕ ∈ Lρ and (ϕn)n ⊂ Lρ such that ϕn −→
n

ϕ in Lρ. Then

ϕnx −→
n

ϕx in Lρ(E). Hence, for any n, one has V (ϕn)(x) = U(ϕnx) and V (ϕ)(x) =

limn V (ϕn)(x) = limn U(ϕnx) = U(ϕx).
We used the continuity of U and V , which results from Theorem 4.1.
2. For U one has ‖U‖o ≤ m̃ρ,(E,F )(T ) with Theorem 4.1. The equality in the

enunciation follows from equality (4.2): ‖U‖o = sup{‖U(f)‖ | f ∈ Lρ(E), ρ|f | ≤
1} ≥ sup{‖U(f)‖ | f ∈ SE(ρ), ρ|f | ≤ 1} = m̃ρ,(E,F )(T ).

As concerns V , we remark again its continuity. Using this fact, the density
of S(ρ) in Lρ (because ρ is of absolutely continuous type) and equality (4.2), we
have: ‖V ‖o = sup{‖V (ϕ)‖o | ϕ ∈ Lρ, ρ|ϕ| ≤ 1} = sup{‖V (ϕ)‖o | ϕ ∈ S(ρ),
ρ|ϕ| ≤ 1} = m̃ρ,(K,X)(T ). Finally, we use Theorem 3.5. �

Remark. The measure m occuring in Definition 4.3 and Theorem 4.4 is σ-
additive and locally absolutely continuous with respect to µ (Theorem 3.8). �

The results in this subsection show that, starting with the integral, one obtains
linear and continuous operators.

3. In this subsection we do the converse study, starting with linear and continuous
operators and representing them as integrals. We start by considering a linear, not
necessarily continuous operator U : Lρ(E)→ F . Let us define the elements ‖U‖ρ and

|‖U |‖ρ of R+ as follows:

‖U‖ρ = sup

{∥∥∥∥∥

n∑

i=1

U(ϕAi
xi)

∥∥∥∥∥

∣∣∣∣∣

n∑

i=1

ϕAi
xi ∈ SE(ρ, 1)

}
,
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|‖U |‖ρ = sup

{
n∑

i=1

‖U(ϕAi
xi)‖

∣∣∣∣∣

n∑

i=1

ϕAi
xi ∈ SE(ρ, 1)

}
.

Clearly, one has the following properties:
0 ≤ ‖U‖ρ ≤ |‖U |‖ρ ≤ ∞; ‖U + V ‖ρ ≤ ‖U‖ρ + ‖V ‖ρ; |‖U + V |‖ρ ≤ |‖U |‖ρ +

|‖V |‖ρ; ‖αU‖ρ = |α| ‖U‖ρ; |‖αU |‖ρ = |α| |‖U |‖ρ (for any linear U, V : Lρ(E) → F

and for any α ∈ K, with the convention 0 · ∞ = 0).

Proposition 4.5. Let f =
∑k

i=1 ϕAi
xi ∈ SE(ρ, 1). Assuming that either ‖U‖ρ <

∞, or ρ|f | 6= 0 (respectively either |‖U |‖ρ < ∞, or ρ|f | 6= 0), one has ‖U(f)‖ =∥∥∥
∑k

i=1 U(ϕAi
xi)
∥∥∥ ≤ ‖U‖ρ ρ|f | (respectively

∑k

i=1 ‖U(ϕAi
xi)‖ ≤ |‖U |‖ρ ρ|f |).

Proof. First, we work for ‖U‖ρ. Assume that either ‖U‖ρ < ∞, or ρ|f | 6= 0.

The case ‖U‖ρ = ∞ (hence ρ|f | > 0) is trivial, so let us assume that ‖U‖ρ < ∞. If

ρ|f | 6= 0, we have 1
ρ|f |f ∈ SE(ρ, 1), hence

∥∥∥U
(

1
ρ|f |f

)∥∥∥ ≤ ‖U‖ρ. Now, assume that

ρ|f | = 0 and prove that U(f) = 0. Indeed, if U(f) 6= 0, because ρ|nf | = 0, we have
n ‖U(f)‖ = ‖U(nf)‖ ≤ ‖U‖ρ for any n ∈ N, leading to ‖U‖ρ =∞, absurd.

What concerns |‖U |‖ρ, we work on the non trivial case |‖U |‖ρ < ∞. If ρ|f | 6=
0, use again 1

ρ|f |f =
∑k

i=1 ϕAi

1
ρ|f |xi ∈ SE(ρ, 1) to obtain

∑k

i=1

∥∥∥U
(
ϕAi

1
ρ|f |xi

)∥∥∥ =

1
ρ|f |
∑k

i=1 ‖U (ϕAi
xi)‖ ≤ |‖U |‖ρ. Finally, if ρ|f | = 0, we have nf =

∑k
i=1 ϕAi

nxi ∈
SE(ρ, 1), hence

∑k
i=1 ‖U(ϕAi

nxi)‖ = n
∑k

i=1 ‖U(ϕAi
xi)‖ ≤ |‖U |‖ρ for any n ∈ N.

This implies
∑k

i=1 ‖U(ϕAi
xi)‖ = 0 a.s.o. �

Sometimes, the inequality ‖U‖ρ ≤ |‖U |‖ρ is actually an equality, as in

Theorem 4.6. If F = K or if ρ = ‖ ‖1, we have ‖U‖ρ = |‖U |‖ρ.
Proof. 1. Assume that F = K (hence U ∈ (Lρ(E))′). We must prove that

|‖U |‖ρ ≤ ‖U‖ρ. Take an arbitrary f =
∑n

i=1 ϕAi
xi ∈ SE(ρ, 1). For any i = 1, 2, . . . , n

find θi ∈ K with |θi| = 1 such that |U(ϕAi
xi)| = θiU(ϕAi

xi) = U(ϕAi
θixi). Clearly

g =
∑n

i=1 ϕAi
θixi ∈ SE(ρ, 1), hence |

∑n
i=1 U(ϕAi

θixi)| ≤ ‖U‖ρ. But
∑n

i=1 |U(ϕAi
xi)|

=
∑n

i=1 U(ϕAi
θixi) = |

∑n

i=1 U(ϕAi
θixi)| ≤ ‖U‖ρ. Because f is arbitrary, we can pass

to supremum with respect to f and get |‖U |‖ρ ≤ ‖U‖ρ.
2. Now, assume that ρ = ‖ ‖1. We work in the non trivial case ‖U‖ρ <∞. Take

an arbitrary f =
∑n

i=1 ϕAi
xi ∈ SE(ρ, 1). Then ρ|f | = ‖f‖1 =

∑n

i=1 µ(Ai) ‖xi‖ =∑n
i=1 ‖ϕAi

xi‖1. Because ‖U‖ρ <∞, we can apply Proposition 4.5. We get

n∑

i=1

‖U(ϕAi
xi)‖ ≤

n∑

i=1

‖U‖ρ ρ|ϕAi
xi| = ‖U‖ρ

n∑

i=1

‖ϕAi
xi‖1 = ‖U‖ρ ρ|f | ≤ ‖U‖ρ .

Passing to supremum with respect to arbitrary f , we get |‖U |‖ρ ≤ ‖U‖ρ. �

From now on, we shall deal in this subsection with linear and continuous operators
U : Lρ(E)→ F . For such an operator U , we have

(4.3) ‖U‖ρ = ‖U‖o .

Indeed, because SE(ρ) is dense in Lρ(E) (due to the fact that ρ is of absolutely
continuous type), it follows that SE(ρ, 1) is dense in {f ∈ Lρ(E) | ρ|f | ≤ 1}. Hence,
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due to the continuity of U , we have ‖U‖o = sup{‖U(f)‖ | f ∈ Lρ(E), ρ|f | ≤ 1} =
sup{‖U(f)‖ | f ∈ SE(ρ, 1)} = ‖U‖ρ.

The following fundamental result makes more precise Theorem 4.4 and expresses
the main idea (integral representation) of this paragraph. We shall deal directly
with measures m : Tρ → L(E, F ), omitting the explicit reference to the embedding
X →֒ L(E, F ).

Theorem 4.7. (Integral representation of linear and continuous operators on
Lρ(E)) There exists a linear isomorphism U ←→ m between the vector space of all
linear and continuous operators U : Lρ(E)→ F and the vector space of all σ-additive
measures m : Tρ → L(E, F ) with m̃ρ,(E,F )(T ) < ∞ which are locally absolutely con-
tinuous with respect to µ. This isomorphism is given as follows: If U and m are in
the correspondence described above, then

(4.4) U(f) =

ˆ

f dm

for any f ∈ Lρ(E). Supplementarily, we have ‖U‖ρ = ‖U‖o = m̃ρ,(E,F )(T ) and

|‖U |‖ρ = mρ(T ).

Proof. A. Theorem 4.4 furnishes the first part of the proof. Namely, starting
with a measure m like in the enunciation, we obtain the linear and continuous op-
erator U : Lρ(E) → F acting as in (4.4). As we have seen (equality (4.3)), we have
‖U‖o = ‖U‖ρ. But ‖U‖ρ = sup{‖∑n

i=1 U(ϕAi
xi)‖ |

∑n
i=1 ϕAi

xi ∈ SE(ρ, 1)}. Because

U(ϕAi
xi) =

´

ϕAi
xi dm = m(Ai)(xi) it follows that ‖U‖ρ = sup{‖

∑n

i=1m(Ai)(xi)‖ |∑n
i=1 ϕAi

xi ∈ SE(ρ, 1)} = m̃ρ,(E,F )(T ). The equality |‖U |‖ρ = mρ(T ) is obtained
likewise.

B. Conversely, take an operator U : Lρ(E) → F which is linear and continuous.

Hence ‖U‖o = ‖U‖ρ <∞. Using U we define m : Tρ → L(E, F ), m(A)(x)
def
= U(ϕAx)

for any A ∈ Tρ and any x ∈ E. The linearity and the continuity of all m(A) : E → F
follow from the linearity and the continuity of U as well as the additivity of m. For
any f =

∑n

i=1 ϕAi
xi ∈ SE(ρ, 1), one has: ‖

∑n

i=1m(Ai)(xi)‖ = ‖
∑n

i=1 U(ϕAi
xi)‖ =

‖U(f)‖. Passing to supremum with respect to f ∈ SE(ρ, 1), we obtain the equality
m̃ρ,(E,F )(T ) = ‖U‖o, hence m̃ρ,(E,F )(T ) < ∞. Theorem 3.8 asserts that m is σ-
additive and locally absolutely continuous with respect to µ. In the same way, we
obtain the equality mρ(T ) = |‖U |‖ρ.

C. The final part of the proof consists in proving that the correspondences ex-
hibited at points A and B, i.e. m 7−→ U and U 7−→ m are mutually inverse.

a) Start with the measure m : Tρ → L(E, F ) as in the enunciation. Construct
the operator U : Lρ(E)→ F , via U(f) =

´

f dm for any f ∈ Lρ(E). Then define the
measure n : Tρ → L(E, F ), via n(A)(x) = U(ϕAx) for any A ∈ Tρ and any x ∈ E.
We see that n(A)(x) =

´

ϕAx dm = m(A)(x), hence n = m.
b) Start with the linear and continuous operator U : Lρ(E) → F . Construct

the measure m : Tρ → L(E, F ), given via m(A)(x) = U(ϕAx) for any A ∈ Tρ and
any x ∈ E. Now, define the linear and continuous operator V : Lρ(E) → F , via
V (f) =

´

f dm for any f ∈ Lρ(E). For any A ∈ Tρ and any x ∈ E, V (ϕAx) =
´

ϕAx dm = m(A)(x) = U(ϕAx). Hence V (f) = U(f) for any f ∈ SE(ρ). Because
SE(ρ) is dense in Lρ(E) and V, U are continuous, it follows that V = U . �

Corollary 4.8. There exists a linear and isometric isomorphism U ←→ m
between the Banach space LL(Lρ(E), F ) of all linear and continuous operators
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U : Lρ(E) → F with the property that |‖U |‖ρ < ∞, equipped with the norm
U 7−→ |‖U |‖ρ and the Banach space cabv(Tρ, (E, F ), µ) of all σ-additive measures

m : Tρ → L(E, F ) which are locally absolutely continuous with respect to µ, with the
property that mρ(T ) < ∞, equipped with the norm m 7−→ mρ(T ). The correspon-
dence U ←→ m is that one given by Theorem 4.7.

Proof. The linear isomorphism in the enunciation is clear. On LL(Lρ(E), F )
one has the norm U 7−→ |‖U |‖ρ ≥ ‖U‖ρ = ‖U‖o and this leads to the fact that

on cabv(Tρ, (E, F ), µ) one has the corresponding norm m 7−→ mρ(T ) = |‖U |‖ρ (if

U ←→ m). So, the isomorphism is an isometry too.
It remains to be proved that LL(Lρ(E), F ) is a Banach space for the norm

U 7−→ |‖U |‖ρ. To this end, take a Cauchy sequence (Un)n in this space. Because

|‖U |‖ρ ≥ ‖U‖ρ, it follows that (Un)n is Cauchy in the Banach space L(Lρ(E), F )

(equipped with the norm U 7−→ ‖U‖o = ‖U‖ρ). Let U ∈ Lρ(E) be the limit (in

L(Lρ(E), F )) of (Un)n. First, we show that U ∈ LL(Lρ(E), F ). Indeed, the sequence
(Un)n is bounded in LL(Lρ(E), F ), being Cauchy. Let M > 0 be a number such that

|‖Un|‖ρ < M for any n. Take an arbitrary f =
∑k

i=1 ϕAi
xi ∈ SE(ρ, 1). Then, for

any n ∈ N, one has
∑k

i=1 ‖Un(ϕAi
xi)‖ ≤ |‖Un|‖ρ < M . Because ‖Un − U‖ρ −→

n
0, it

follows that Un −→
n

U pointwise, hence Un(ϕAi
xi) −→

n
U(ϕAi

xi) for any i. This leads

to
∑k

i=1 ‖U(ϕAi
xi)‖ ≤ M and f being arbitrary, we have |‖U |‖ρ ≤ M < ∞, i.e.

U ∈ LL(Lρ(E), F ).
The final step consists in proving that |‖Un − U |‖ρ −→n 0. Indeed, take an arbitrary

ε > 0 and an arbitrary f =
∑k

i=1 ϕAi
xi ∈ SE(ρ, 1). We consider p0 ∈ N such that, if

p ≥ p0 and q ≥ p0, one has |‖Up − Uq|‖ρ < ε
2
. Then

∑k
i=1 ‖Up(ϕAi

xi)− Uq(ϕAi
xi)‖ ≤

|‖Up − Uq|‖ρ < ε
2
. Passing to q-limit, we get

∑k
i=1 ‖Up(ϕAi

xi)− U(ϕAi
xi)‖ < ε

2
.

Because f is arbitrary, this leads to |‖Up − U |‖
ρ
≤ ε

2
< ε a.s.o. �

The following example illustrates the concrete application of the theory.

Example 4.9. We refer to the construction of the operator V in Theorem 4.4.
Namely, we take ρ = ‖ ‖p, 1 ≤ p < ∞, hence Lρ = Lp(µ). Also, we take X =

Lp(µ), E = K, F = X, hence X ≡ L(K,X). The measure m : Tρ → Lp(µ) is
given via m(A) = ϕ̃A. For the non trivial case µ 6≡ 0, we have m̃ρ,(K,X)(T ) =
sup{‖

∑n

i=1 αiϕ̃Ai
‖
p
|
∑n

i=1 αiϕAi
∈ S(ρ, 1)} = 1 and we can construct V : Lρ →

Lρ = Lp(µ) = X, via V (ϕ) =
´

ϕdm. For any ϕ =
∑n

i=1 αiϕAi
∈ S(ρ), we have

V (ϕ) =
´

ϕdm =
∑n

i=1 αiϕ̃Ai
= ϕ̃. Due to the continuity of V and to the fact that

S(ρ) is dense in Lρ, it follows that V (ϕ) = ϕ̃ for any ϕ ∈ Lρ. Also, it follows that the

associated operator Ṽ : Lρ → Lρ acts via Ṽ (ϕ̃) = V (ϕ) = ϕ̃, hence Ṽ is the identity
operator of Lρ. �

5. Natural operators

Again, in this section, we shall consider a σ-finite and complete measure space
(T, T , µ), a function norm ρ : M+(µ)→ R+ and an additive measure m : Tρ → X →֒
L(E, F ), where X,E, F are Banach spaces. We add the fact that ρ will be assumed
to be of absolutely continuous type. The basic result of this section is

Theorem 5.1. There exists a linear, injective and continuous map Ω:L(Lρ(E),F )
→ L(Lρ,L(E, F )) acting via Ω(U) = U∗ for any U ∈ L(Lρ(E), F ), where U∗ is defi-
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ned as follows: for any ϕ ∈ Lρ and any x ∈ E, U∗(ϕ)(x) = U(ϕx). We have
‖U∗‖o = ‖U∗‖ρ ≤ ‖U‖ρ = ‖U‖o, hence ‖Ω‖o ≤ 1.

Proof. The definition in the enunciation is “good”. Indeed, for any ϕ ∈ Lρ and
any x ∈ E, one has ‖U(ϕx)‖ ≤ ‖U‖o ρ|ϕ| ‖x‖. This shows that: a) The linear map
x 7−→ U(ϕx) is continuous; call it U∗(ϕ) : E → F and we have ‖U∗(ϕ)‖o ≤ ‖U‖o ρ|ϕ|;
b) The linear map ϕ 7−→ U∗(ϕ) is continuous; call it U∗ : Lρ → L(E, F ) and we have
‖U∗‖o ≤ ‖U‖o. Hence ‖U∗‖ρ = ‖U∗‖o ≤ ‖U‖o = ‖U‖ρ. Clearly we defined the

linear map Ω : L(Lρ(E), F )→ L(Lρ,L(E, F )) via Ω(U) = U∗ and ‖Ω(U)‖o ≤ ‖U‖o,
hence Ω is continuous with ‖Ω‖o ≤ 1. Finally, we prove that Ω is injective, showing
that for an arbitrary U ∈ Ker(Ω), one has U = 0. Indeed, for such U one has
U∗ = 0, hence U∗(ϕ) = 0 for any ϕ ∈ Lρ, i.e. U∗(ϕ)(x) = 0 for any ϕ ∈ Lρ and any
x ∈ E. Take an arbitrary f =

∑n

i=1 ϕAi
xi ∈ SE(ρ). Then U(f) =

∑n

i=1 U(ϕAi
xi) =∑n

i=1 U
∗(ϕAi

)(xi) = 0. We proved that the continuous map U vanishes on the set
SE(ρ) which is dense in Lρ(E), hence one must have U = 0. �

The operators U and U∗ described in the preceding result are generated by the
same measure, as it is shown in

Theorem 5.2. Use the same notations in Theorem 5.1. For U ∈ L(Lρ(E), F ),
let m : Tρ → L(E, F ) be the σ-additive measure defining U (Theorem 4.7), i.e.
U(f) =

´

f dm for any f ∈ Lρ(E) and m̃ρ,(E,F )(T ) <∞. Then m defines U∗ too, i.e.
U∗(ϕ) =

´

ϕdm for any ϕ ∈ Lρ. We also have ‖U∗‖ρ ≤ ‖U‖ρ and |‖U∗|‖ρ = |‖U |‖ρ.
Proof. According to Theorem 4.4 we can define the linear and continuous op-

erator U1 : Lρ → L(E, F ) via U1(ϕ) =
´

ϕdm. We must prove that U1 = U∗,
i.e. we must prove that U1(ϕ)(x) = U(ϕx) for any ϕ ∈ Lρ and any x ∈ E. This
will be proved first for an arbitrary ϕ =

∑n
i=1 ϕAi

αi ∈ S(ρ). Indeed, U1(ϕ)(x) =(´
(
∑n

i=1 ϕAi
αi) dm

)
(x) = (

∑n
i=1 αim(Ai)) (x) =

∑n
i=1 αim(Ai)(x). On the other

hand, U(ϕx) =
´

(
∑n

i=1 ϕAi
αix) dm =

∑n

i=1m(Ai)(αix) =
∑n

i=1 αim(Ai)(x). Now,
let ϕ ∈ Lρ be arbitrary and let (ϕn)n ⊂ S(ρ) such that ϕn −→

n
ϕ in Lρ. Then, for

any x ∈ E, ϕnx −→
n

ϕx in Lρ(E), hence U1(ϕn)(x) −→
n

U1(ϕ)(x) and U(ϕnx) −→
n

U(ϕx)

(continuity of U and U1) and these facts imply U1(ϕ)(x) = U(ϕx).
As we have seen in the previous result, we have ‖U∗‖ρ ≤ ‖U‖ρ and we must prove

that |‖U∗|‖ρ = |‖U |‖ρ. To this end take A ∈ Tρ and α ∈ K. We have

‖U∗(ϕAα)‖o = sup
‖x‖≤1

‖U∗(ϕAα)(x)‖ = sup
‖x‖≤1

|α| ‖U∗(ϕA)(x)‖

= sup
‖x‖≤1

|α| ‖U(ϕAx)‖ = sup
‖x‖≤1

|α| ‖m(A)(x)‖ = |α| ‖m(A)‖o .

Consequently, if S(ρ) ∋ ϕ =
∑n

i=1 ϕAi
αi, ρ|ϕ| ≤ 1, one has

∑n
i=1 ‖U∗(ϕAi

αi)‖o =∑n

i=1 |αi| ‖m(Ai)‖o and passing to supremum over all possible ϕ ∈ S(ρ), ρ|ϕ| ≤ 1,
we obtain |‖U∗|‖ρ = mρ(T ) = |‖U |‖ρ. �

It is time to define the natural operators (special elements in the image of the
embedding Ω).

Definition 5.3. A linear and continuous operator V : Lρ → L(E, F ) will be
called (ρ, E, F )-natural (many times simply natural) in case there exists U ∈ L(Lρ(E), F )
such that V = Ω(U) (i.e. one has V ∈ Ω(L(Lρ(E), F ))). We shall denote

Nat(ρ, E, F )
def
= Ω(L(Lρ(E), F )).
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It is seen that L(Lρ(E), F ) and Nat(ρ, E, F ) are isomorphic linear spaces, the
isomorphism Ωr : L(Lρ(E), F )→Nat(ρ, E, F ) being given by Ωr(U) = Ω(U) for any
U ∈ L(Lρ(E), F ).

Now, we shall restrict and corestrict the isomorphism Ωr. Namely, let

LL(Lρ(E), F )
def
= {U ∈ L(Lρ(E), F ) | |‖U |‖ρ <∞},

LL(Lρ,L(E, F )) = {V ∈ L(Lρ,L(E, F )) | |‖V |‖ρ <∞}.

Previous facts say that we have the linear injection I : LL(Lρ(E),F )→LL(Lρ,L(E,F )),
I(U) = Ωr(U) = Ω(U) for any U ∈ LL(Lρ(E), F ). Actually I is a bijection.

Theorem 5.4. The linear map I is a bijection (linear isomorphism). In par-
ticular, if ρ = ‖ ‖1, we have LL(Lρ(E), F ) = L(Lρ(E), F ), LL(Lρ,L(E, F )) =
L(Lρ,L(E, F )), hence I = Ω and Nat(ρ, E, F )= L(Lρ,L(E, F )).

Proof. Let U1 ∈ LL(Lρ,L(E, F )). We shall find U ∈ LL(Lρ(E), F ) such that
U1 = I(U) = Ω(U), thus proving that I is surjective.

Writing L(E, F ) = X we actually have U1 ∈ LL(Lρ, X) = LL(Lρ(K), X) ⊂
L(Lρ(K), X). Because |‖U1|‖ρ < ∞, we apply Corollary 4.8 and find a σ-additive

measure m : Tρ → L(K,X) ≡ X = L(E, F ) such that mρ(T ) = |‖U1|‖ρ < ∞ and

U1(ϕ) =
´

ϕdm for any ϕ ∈ Lρ. Using an isomorphic copy we can consider that
m : Tρ → L(E, F ). Because m̃ρ,(E,F )(T ) ≤ mρ(T ) < ∞ we apply Theorem 4.4 to
define U ∈ L(Lρ(E), F ) such that U(f) =

´

f dm for any f ∈ Lρ(E) and having the
property |‖U |‖ρ = mρ(T ) < ∞. Hence U ∈ LL(Lρ(E), F ). We finally prove that

U1 = I(U), i.e. we prove that U1(ϕ)(x) = U(ϕx) for any ϕ ∈ Lρ and any x ∈ E.
This is done like in the proof of Theorem 5.2.

The particular case ρ = ‖ ‖1 follows from Theorem 4.6. �

Complementary considerations concerning natural operators.

1. Assume that V : Lρ → L(E, F ) is linear. Define the linear operator U1(V ) :

SE(ρ)→ F via U1(V ) (ϕ =
∑n

i=1 ϕAi
xi)

def
=
∑n

i=1 V (ϕAi
)(xi). The definition of U1(V )

is coherent (not depending upon the representation of ϕ) because U1(V )(ϕ) =
´

ϕdm,
where m : Tρ → L(E, F ) is the additive measure defined by m(A)(x) = V (ϕA)(x) for
any A ∈ Tρ and any x ∈ E.

2. Now, let V ∈ L(Lρ,L(E, F )) and assume that V is (ρ, E, F )-natural. Then,

there exists an unique linear and continuous U(V )
def
= U : Lρ(E) → F such that

V = Ω(U), i.e. U(ϕx) = V (ϕ)(x) for any ϕ ∈ Lρ and any x ∈ E. So, for any
ϕ =

∑n
i=1 ϕAi

xi ∈ SE(ρ) one has the formula for the computation of U on SE(ρ):

U(ϕ) =

n∑

i=1

U(ϕAi
xi) =

n∑

i=1

V (ϕAi
)(xi) = U1(V )(ϕ).

Because U is continuous, there exists 0 < M < ∞ such that ‖U(ϕ)‖ ≤ Mρ|ϕ| for
any ϕ ∈ Lρ(E), i.e.

(5.5)

∥∥∥∥∥

n∑

i=1

V (ϕAi
)(xi)

∥∥∥∥∥ ≤Mρ

∣∣∣∣∣

n∑

i=1

ϕAi
xi

∣∣∣∣∣ .

Actually, condition (5.5) is also sufficient for the existence of U . Indeed, if (5.5)
is fulfilled, it follows that the linear operator U1(V ) : SE(ρ) → F is uniformly con-
tinuous, hence it can be extended to an uniformly continuous (and, of course linear)
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operator U : SE(ρ) = Lρ(E)→ F . We have Ω(U) = V , because Ω(U) and V coincide
on all ϕA, A ∈ Tρ, hence on the set S(ρ) which is dense in Lρ.

We proved the following fact: A linear and continuous operator V : Lρ → L(E, F )
is (ρ, E, F )-natural if and only if it fulfills condition (5.5).

The reader can check condition (5.5) in case ρ = ‖ ‖1, with M = ‖V ‖o. �

Before going further, let us discuss three particular cases. In the first two, the
embedding Ω is actually a bijection (a linear isomorphism), hence all linear and
continuous operators V ∈ L(Lρ,L(E, F )) are (ρ, E, F )-natural. The third particular
case is more interesting and will be studied in more detail.

Case 1. (Finite dimensional case) We shall work with the finite discrete measure
space (T, T , µ) = (T,P(T ), card), where T = {1, 2, . . . , n}, n ∈ N. The function
norm will be assumed to take only finite values, hence ρ is of absolutely continuous
type. We shall take E = Kp, p ∈ N and F will be any Banach space.

Within this framework, we have Lρ ≡ Kn (namely ϕ ≡ (ϕ(1), ϕ(2), . . . , ϕ(n))
for any ϕ ∈ Lρ) and Lρ(E) = Lρ(K

p) ≡ (Kp)n (namely f ≡ (f(1), f(2), . . . , f(n))
for any f ∈ Lρ(E) = Lρ(K

p); writing f(j) = (x1j , x2j, . . . , xpj) ∈ Kp for any j =
1, 2, . . . , n, we have f ≡ (xuv)1≤u≤p,1≤v≤n ∈ Kpn). Define, for any j = 1, 2, . . . , n,

ej
def
= ϕ{j} ∈ Lρ ≡ Kn (i.e. ej = (0, . . . , 0, 1, 0, . . . , 0), 1 on the j − th place) and, for

any i = 1, 2, . . . , p, the vector Xi = (0, . . . , 0, 1, 0, . . . , 0) (1 on the i−th place). Then,
for a given V ∈ L(Lρ,L(Kp, F )), one has, for any ϕ ≡ (ϕ(1), ϕ(2), . . . , ϕ(n)) ∈ Lρ

and any x = (x1, x2, . . . , xp) ∈ Kp, the equality V (ϕ)(x) =
∑p

i=1

∑n
j=1 xiϕ(j)Vij,

where Vij = V (ej)(Xi) ∈ F for any 1 ≤ i ≤ p, 1 ≤ j ≤ n.
One can prove that, for a given V , one has V = Ω(U), where U ∈ L(Lρ(K

p), F )
is given via U(f) =

∑p

i=1

∑n

j=1 xijVij for any f ≡ (xij)1≤i≤p,1≤j≤n in Lρ, hence V is

(ρ,Kp, F )-natural.
Case 2. (E = K) All operators are natural: Nat(ρ,K, F ) = L(Lρ,L(K,F )).
In our opinion, the most interesting particular case is the next one.
Case 3. (F = K) Starting with U ∈ L(Lρ(E), K) = Lρ(E)′, we obtain Ω(U) =

U∗ ∈ L(Lρ,L(E,K)) = L(Lρ, E
′). According to Theorem 4.6, we have ‖U‖ρ =

|‖U |‖ρ < ∞, hence LL(Lρ(E), K) = Lρ(E)′. Consequently, we have the linear

and continuous isomorphism I : Lρ(E)′ → LL(Lρ, E
′) = Ω(Lρ(E)′), which gives the

equality Nat(ρ, E,K)=LL(Lρ, E
′). This equality leads to the following

Theorem 5.5. A linear and continuous operator V : Lρ → E ′ is (ρ, E,K)-
natural if and only if |‖V |‖ρ <∞.

From now on, we shall work only with the countable discrete measure space
(T, T , µ) = (N,P(N), card). We shall accept the following

Assumption A. Tρ = {A ⊂ N | A is finite}.

Assumption A is fulfilled e.g. in case ρ = ‖ ‖p, 1 ≤ p <∞.

For further purposes, we shall consider, for any m ∈ N the function em
def
=

ϕ{m} : N→ K, hence em ∈ lρ.
It is to be seen that, for any f ∈ lρ(E) we have the pointwise equality

(5.6) f =
∞∑

m=1

emf(m).

Equality (5.6) is valid also in lρ(E). Indeed, defining pointwise for any m ∈ N the
function um =

∑∞
i=m+1 eif(i), we have |f | ≥ |um| ↓ 0. Because ρ is of absolutely
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continuous type, it follows that ρ(um) ↓ 0. Consequently, for vm =
∑m

i=1 eif(i) =
f −um, we have vm −→

m
f in lρ(E), i.e. we have (5.6) in lρ(E). So, if U ∈ L(lρ(E), F ),

we have, for f ∈ lρ(E), U(f) =
∑∞

m=1 U(emf(m)), hence

(5.7) ‖U‖ρ = sup

{∥∥∥∥∥

∞∑

m=1

U(emf(m))

∥∥∥∥∥

∣∣∣∣∣ f ∈ lρ(E), ρ|f | ≤ 1

}
.

Formula (5.7) should be compared with the formula in the next theorem.

Theorem 5.6. For any U ∈ L(lρ(E), F ) one has

|‖U |‖ρ = sup

{ ∞∑

m=1

‖U(emf(m))‖
∣∣∣∣∣ f ∈ lρ(E), ρ|f | ≤ 1

}
.

Proof. For any φ 6= A ∈ Tρ and any x ∈ E: ‖U(ϕAx)‖ =
∥∥U
(∑

n∈A enx
)∥∥ =∥∥∑

n∈A U(enx)
∥∥ ≤

∑
n∈A ‖U(enx)‖ and this implies, for f =

∑n

i=1 ϕAi
xi ∈ SE(ρ, A):∑n

i=1 ‖U(ϕAi
xi)‖ ≤

∑n
i=1

∑
m∈Ai

‖U(emxi)‖ =
∑n

i=1

∑
m∈Ai

‖U(emf(m))‖. We pro-

ved that
∑n

i=1 ‖U(ϕAi
xi)‖ ≤

∑
m∈supp(f) ‖U(emf(m))‖ and this implies that |‖U‖|ρ =

sup{∑m∈supp(f) ‖U(emf(m))‖ | f ∈ SE(ρ, 1)} = sup{∑m∈supp(f) ‖U(emf(m))‖ |
f : N → E, supp(f) is finite and ρ|f | ≤ 1} ≤ M

def
= sup{

∑∞
m=1 ‖U(emf(m))‖

| f : N→ E, ρ|f | ≤ 1}.
It remains to prove that |‖U |‖ρ ≥M .

Case 1. (M = ∞) In the situation when there exists f : N → E such that
ρ|f | ≤ 1 and

∑∞
m=1 ‖U(emf(m))‖ = ∞, take an arbitrary A > 0. Find p ∈ N

such that
∑p

m=1 ‖U(emf(m))‖ > A, hence
∑

m∈supp(ϕ) ‖U(emϕ(m))‖ > A, where

ϕ =
∑p

m=1 emf(m). Because supp(ϕ) ⊂ {1, 2, . . . , p} and ρ|ϕ| ≤ 1, we proved that
|‖U |‖ρ > A, hence |‖U |‖ρ = ∞, because A is arbitrary. In the situation when∑∞

m=1 ‖U(emf(m))‖ < ∞ for any f : N→ E with ρ|f | ≤ 1, take again an arbitrary
A > 0 and find f : N → E with ρ|f | ≤ 1 and

∑∞
m=1 ‖U(emf(m))‖ > A + 1. Find

p ∈ N such that
∑p

m=1 ‖U(emf(m))‖ > A, hence |‖U |‖ρ > A and, again, it follows

that |‖U |‖ρ =∞.

Case 2. (M <∞) Take an arbitrary ε > 0 and find f : N→ E such that ρ|f | ≤ 1
and

∑∞
m=1 ‖U(emf(m))‖ > M− ε

2
. The series

∑∞
m=1 ‖U(emf(m))‖ being convergent,

find a large enough p ∈ N such that
∑p

m=1 ‖U(emf(m))‖ > M− ε
2
− ε

2
= M−ε. Using

again the function ϕ =
∑p

m=1 emf(m), we notice that
∑

m∈supp(ϕ) ‖U(emϕ(m))‖ >

M − ε, hence |‖U |‖ρ > M − ε. Because ε is arbitrary, we have |‖U |‖ρ ≥M . �

Let us consider in Theorem 5.6 the particular situation when E = K, hence
lρ(E) = lρ and we have a linear and continuous operator U : lρ → F . Theorem 5.6
gives |‖U |‖ρ = sup{∑∞

m=1 |f(m)| ‖U(em)‖ | f ∈ lρ, ρ|f | ≤ 1}. To say that |‖U |‖ρ <

∞ means sup{
∑∞

m=1 am ‖U(em)‖ | a = (am)m ∈ lρ, all am ≥ 0, ρ(a) ≤ 1} < ∞. In
case ρ has the Riesz–Fischer property, this means that the sequence (‖U(em)‖)m is
in lρ′ (see [3], [24]). We proved

Corollary 5.7. Assume that ρ has the Riesz–Fischer property. Then, for any
linear and continuous U : lρ → F , one has the equivalence: (|‖U |‖ρ < ∞) ⇔
((U(em))m ∈ lρ′(F )).

We shall apply Corollary 5.7 to the case when ρ = ‖ ‖p, 1 ≤ p <∞ and F = E ′,

E ′ being the dual of the Banach space E. Then, adapting the proof in [6] for the
case of the countable discrete measure space, we have (lp(E))′ ≡ lq(E ′), q being the
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conjugate of p. Namely, the duality is defined as follows: for any x = (xn)n ∈ lp(E)
and any x′ = (x′

n)n ∈ lq(E ′) ≡ (lp(E))′, one has x′(x) =
∑∞

n=1 x
′
n(xn). It is not

necessary for E ′ to have the Radon–Nikodỳm Property.
Taking into account that for V : lp → E ′ to be (ρ, E,K)-natural means |‖V |‖ρ <

∞ (here ρ = ‖ ‖p) according to Theorem 5.5 and, using Corollary 5.7, we have

Corollary 5.8. Let 1 ≤ p < ∞ and E a Banach space. Then, a linear and
continuous operator V : lp → E ′ is (‖ ‖p , E,K)-natural if and only if (V (em))m ∈
lq(E ′), where q is the conjugate of p.

The framework for the remainder of the paper is the following:

a) We continue to work with the countable discrete measure space, accepting
Assumption A.

b) Supplementarily, from now on, we shall take E = l2, hence E ′ ≡ l2. At the
same time, we shall work for ρ = ‖ ‖2, hence ρ′ = ρ = ‖ ‖2.

The following identifications are obvious: Lρ(E) = lρ(E) = l2(l2), L(Lρ(E), K) =
(Lρ(E))′ = (l2(l2))′ ≡ l2(l2). This means that, for U ∈ (Lρ(E))′, one has U ≡ (an)n
with an ∈ l2 for any n. If an = (apn)p it follows that U ≡ (apn)p,n with

(5.8)
∞∑

n=1

‖an‖22 =
∞∑

n=1

∞∑

p=1

|apn|2 <∞.

The action of U upon t = (tn)n ∈ Lρ(E) = l2(l2) is (writing tn = (tpn)p):

(5.9) U(t)
def
=

∞∑

n=1

an(tn)
def
=

∞∑

n=1

∞∑

p=1

apntpn.

As a matter of fact, we have

(5.10) U(t) =
∞∑

p=1

∞∑

n=1

apntpn,

because the double series occuring in (5.9) is absolutely convergent:

∞∑

n=1

∞∑

p=1

|apntpn| ≤
∞∑

n=1

‖an‖2 ‖tn‖2 ≤
( ∞∑

n=1

‖an‖22

) 1

2

·
( ∞∑

n=1

‖tn‖22

) 1

2

<∞.

Continuing with the identifications, we have Lρ = l2, L(E,K) = E ′ ≡ l2,
hence L(Lρ,L(E,K)) ≡ L(l2, l2). Then, considering some V ∈ L(Lρ,L(E,K)) ≡
L(l2, (l2)′) ≡ L(l2, l2), we apply the general theory and consider the matricial form
of V ≡ (vpn)p,n, where the numbers vpn are such that, for any ϕ = (ϕn)n ∈ Lρ = l2,
one has V (ϕ) ≡ y = (yp)p ∈ l2. Namely, for any p, one has

(5.11) yp =

∞∑

n=1

vpnϕn.

In particular, taking ϕ = en in (5.11), we get V (en) ≡ (v1n, v2n, . . . , vpn, . . .) =
(vpn)p ∈ l2 for any n. Applying Corollary 5.8 we see that V is natural if and only if
(V (en))n ∈ l2(E ′) ≡ l2(l2), i.e. if and only if

(5.12)

∞∑

n=1

∞∑

p=1

|vpn|2 <∞.
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Remark. Relation (5.12) says that V is a Hilbert–Schmidt operator when it is
viewed as acting in the standard separable Hilbert space l2. We proved that, with
this identification, the (‖ ‖2 , l2, K)-natural operators are exactly the Hilbert–Schmidt
operators in L(l2, l2). �

Now, we can describe in a concrete manner the embedding Ω: L(Lρ(E), K) →
L(Lρ,L(E,K)) in this case, i.e., via identification, Ω: l2(l2)→ L(l2, l2).

Theorem 5.9. With the previous notations, let U ≡ (apn)p,n ∈ l2(l2) and V ≡
(vpn)p,n ∈ L(l2, l2) be in correspondence, i.e. V = U∗ = Ω(U). Then, one must have
vpn = apn for any p and n.

Proof. We start with an element V in Ω(l2(l2)) ≡ Nat(‖ ‖2 , l2, K), hence V ≡
(vpn)p,n ∈ L(l2, l2), with (5.12) valid. We shall prove that the unique element U ≡
(apn)p,n ∈ l2(l2) such that V = Ω(U) is that one given by the fact that apn = vpn for
any p and n.

First, we shall see that the postulated construction of U is possible. Indeed,
for any n, one has V (en) = (vpn)p ∈ l2 and we also have

∑∞
n=1 ‖V (en)‖22 < ∞ (see

(5.12)), hence one can take an = V (en) and (5.8) is true for these an. So, one can
take U ≡ (an)n = (V (en))n ∈ l2(l2). Clearly, U ≡ (vpn)p,n.

It remains to prove that Ω(U) = V , i.e. it remains to prove that, for any ϕ =
(ϕ1, ϕ2, . . . , ϕn, . . .) ∈ Lρ = l2 and any x = (x1, x2, . . . , xp, . . .) ∈ E = l2, one has
U(ϕx) = V (ϕ)(x).

Clearly, ϕx ∈ Lρ(E) = l2(l2), with ϕx ≡ (tn)n, hence ϕx ≡ (tpn)p,n = (ϕnxp)p,n.
From (5.10) we obtain for this U : U(ϕx) =

∑∞
p=1

∑∞
n=1 vpnϕnxp. On the other hand,

using (5.11), we get V (ϕ)(x) =
∑∞

p=1 ypxp =
∑∞

p=1 (
∑∞

n=1 vpnϕn)xp and everything
is proved. To be very precise, we conclude that, concerning the linear isomorphism
Ωr : L(Lρ(E), K) →Nat(ρ, E,K) considered in this particular case, we proved that,
for any V ≡ (vpn)p,n ∈Nat(ρ, E,K), one has Ω−1

r (V ) = U ≡ (vpn)p,n. This implies
that, for any U ≡ (apn)p,n ∈ L(Lρ(E), K), one has Ωr(U) = Ω(U) = V ≡ (apn)p,n,
thus perfectly describing Ω. �

In view of the preceding facts, we shall give some concrete examples.

Example 5.10. (A linear and continuous operator V : l2 → (l2)′ ≡ l2 which is
not (‖ ‖2 , l2, K)-natural) Take V ≡ (vpn)p,n (matricial diagonal representation with
vpn = 0, if p 6= n and vpp = 1√

p
for any p). Then

∑∞
n=1

∑∞
p=1 |vpn|2 =

∑∞
p=1

1
p
= ∞

and V is not natural, in view of (5.12). �

Example 5.11. (Linear and continuous operators V : l2 → (l2)′ ≡ l2 which
are (‖ ‖2 , l2, K)-natural such that either ‖V ‖‖ ‖

2

< |‖V |‖‖ ‖
2

< ∞, or ‖V ‖‖ ‖
2

=

|‖V |‖‖ ‖
2

<∞) In order to construct such examples, recall that, in case K = R, for

a linear operator W : R2 → R2, W ≡ (aij)1≤i≤2,1≤j≤2 and the euclidean norm on R2,
one has

‖W‖‖ ‖
2

= ‖W‖o =
1

2

(√
(a11 + a22)2 + (a12 − a21)2 +

√
(a11 − a22)2 + (a12 + a21)2

)
.

The idea is to consider “two-dimensional” operators V : l2 → (l2)′ ≡ l2, namely
V ≡ (vpn)p,n with vpn = 0 if p ≥ 3 or n ≥ 3 (here, we work with K = R, so all
vpn ∈ R). Hence, one has V ≡ W , where W : R2 → R2, W ≡ (vij)1≤i≤2,1≤j≤2, which
means that, for ϕ = (ϕ1, ϕ2, . . . , ϕn, . . .) ∈ l2, one has

V (ϕ) ≡ (v11ϕ1 + v12ϕ2, v21ϕ1 + v22ϕ2, 0, 0, . . .)

(i.e. V (e1) ≡ (v11, v12, 0, . . .), V (e2) ≡ (v21, v22, 0, . . .), V (en) ≡ (0, 0, . . .) for n ≥ 3).
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It follows that one can compute ‖V ‖‖ ‖
2

using only values ‖V (ϕ)‖o for ϕ ∈ l2,

ϕ = (ϕ1, ϕ2, . . . , ϕn, . . .) with ϕn = 0, if n ≥ 3:

‖V (ϕ)‖2o = |v11ϕ1 + v12ϕ2 + v21ϕ1 + v22ϕ2|2 .
Consequently ‖V ‖‖ ‖

2

= ‖W‖o.
At the same time, one can see that |‖V |‖‖ ‖

2

= sup{∑∞
n=1 |xn| ‖V (en)‖o | x =

(xn)n ∈ l2, xn = 0 for n ≥ 3 and ‖x‖2 = (|x1|2 + |x2|2)
1

2 ≤ 1} = sup{|x1| ‖V (e1)‖o +
|x2| ‖V (e2)‖o | x1, x2 ∈ R, x2

1 + x2
2 = 1} = sup{cos θ ‖V (e1)‖o + sin θ ‖V (e2)‖o | θ ∈

[0, π
2
]} =

√
‖V (e1)‖2o + ‖V (e2)‖2o =

√
v211 + v212 + v221 + v222. Taking v11 = 1, v22 = 2,

v12 = 3, v21 = 4, we get ‖V ‖‖ ‖
2

= 1
2

(√
10 +

√
50
)
<
√
30 = |‖V |‖‖ ‖

2

.

For the equality construction, we use the following equivalences:

‖V ‖‖ ‖
2

= |‖V |‖‖ ‖
2

⇔
√
v211 + v222 + v212 + v221

=
1

2

(√
(v11 + v22)2 + (v12 − v21)2 +

√
(v11 − v22)2 + (v12 + v21)2

)

⇔ v11v22 − v12v21 = 0.

The last equivalence can be proved by direct elementary computations. �

Example 5.12. (showing that, in general, the subspace LL(Lρ(E), F ) is not
closed in L(Lρ(E), F )) Here ρ = ‖ ‖2, E = K, F = l2 and we shall exhibit an
element V ∈ L(l2, l2) which is in the closure of LL(l2, l2), but is not in LL(l2, l2).

To this end, we consider a sequence (tn)n ⊂ K such that tn −→
n

0, but (tn)n /∈ l2,

e.g. one can take tn = 1√
n

for any n. Let M = supn |tn| < ∞. The linear and

continuous V : l2 → l2 has diagonal matricial representation V ≡ (vpn)p,n given as
follows: vpn = 0, if p 6= n and vnn = tn for any n. The action of V : V (x =
(xn)n) = (tnxn)n, hence ‖V ‖o ≤M . Using the considerations following Theorem 5.6,
one has |‖V |‖ρ = sup{

∑∞
m=1 |f(m)| ‖V (em)‖2 | f ∈ l2, ‖f‖2 ≤ 1} and this gives

|‖V |‖ρ = ρ′(u) = ‖u‖2, where u = (‖V (em)‖2)m. Because V (em) = tmem, we have

‖V (em)‖2 = |tm|, hence u /∈ l2, consequently |‖V |‖ρ =∞ and V /∈ LL(l2, l2).
Finally, we construct a sequence (Vm)m ⊂ LL(l2, l2) such that Vm −→

m
V in

L(l2, l2). Namely Vm : l2 → l2 will have diagonal matricial representation, for any
m, as follows: Vm ≡ (vmpn)p,n, where vmpn = 0, if p 6= n, vmnn = tn, if n ≤ m and
vmnn = 0, if n ≥ m + 1. Because Vm(en) = tnen, if n ≤ m and Vm(en) = 0, if
n ≥ m + 1, it follows that (‖Vm(en)‖2)n ∈ l2 and all Vm ∈ LL(l2, l2). We have
Vm −→

m
V in L(l2, l2), because the diagonal matricial representation of V − Vm gives

‖V − Vm‖o ≤ supn≥m+1 |tn| −→
m

0. �

Remark. Theorem 5.5 and this example show that, in general, the subspace of
(ρ, E,K)-natural operators is not closed in L(Lρ, E

′). �
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