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Abstract. Circle packings have deep and well-established connections to conformal maps.
Some methods for using circle packings to approximate quasiconformal maps have been studied,
but they are not directly tied to the circle geometry. We present here a means to construct quasi-
conformal maps using Brooks’s parameterization of quadrilateral regions bounded by circles. The
Brooks parameter acts as a sort of circle packing module, allowing us to directly affect the complex
dilatation of our quasiconformal maps.

1. Introduction

Quasiconformal maps play an important role in the geometric theory of functions
of a complex variable and a central role in the study of deformations of Riemann
surfaces [10, 17]. The “quasi-ness” of a quasiconformal map is determined by its
complex dilatation µ. Maps with complex dilatation zero are the classical conformal
maps.

The Measureable Riemann Mapping Theorem states that given a measurable
function µ with ‖µ‖∞ < 1 on a simply connected domain Ω ( C, there exists a
unique (suitably normalized) quasiconformal map Fµ from Ω onto the unit disc D
having µ as its complex dilatation. This generalization of the classical Riemann
Mapping Theorem plays a key role in Teichmüller theory.

Various numerical schemes for approximating Fµ have been introduced includ-
ing He’s use of circle packings to produce the mapping onto D once Ω has been
quasiconformally deformed [11] and Williams’s use of conformal welding on circle
packings [24], providing a discrete analog of Lehto and Virtanen’s classical conformal
welding proof of the Measurable Riemann Mapping Theorem [17].

However, as both conformal and quasiconformal maps are deeply geometric phe-
nomena, one might expect that a direct method of constructing quasiconformal maps
using the geometric properties of circle packings would be possible. Our goal in this
paper is to present such a construction.

The key to this construction is Brooks’s parameterization of quadrilateral regions
bounded by circles [6, 7, 8]. Brooks’s parameter counts the number and type of circles
which are required to fill the quadrilateral. It thus uses the circles themselves to act
as combinatorial analog of the conformal module.

After a brief introduction to quasiconformal maps in Section 2 and circle pack-
ings in Section 3, we describe how to use subdivision and the Brooks parameter to
construct quasiconformal maps of C with constant complex dilatation in Section 4.
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Finally we extend these results to nonconstant dilatations with values in a certain
range in Section 5.

2. Quasiconformal Maps

2.1. Definitions.

Definition 2.1. A homeomorphism f : Ω→ Ω′ is quasiconformal if the complex
partial derivatives fz and fz̄ exist and f satisfies the Beltrami equation

fz = µfz

for some measurable Beltrami differential µ with ‖µ‖∞ < 1.

This Beltrami differential µ is called the complex dilatation of the quasiconformal
map f . Notice that if µ ≡ 0, then the Beltrami equation reduces to the Cauchy-
Riemann equations. Thus ‖µ‖∞ provides a measure of how “quasi” a quasi-conformal
map is.

2.2. Constant dilatation. If µ is constant on C with modulus less than 1, it
is easy to show there is unique solution to the Beltrami equation on C normalized to
fix 1 and 0, namely

Fµ(z) =
µz + z

µ+ 1
.

If we write µ = a+ib, we can after a straightforward, if somewhat tedious calculation,
express Fµ in matrix form as

Fµ(x+ iy) =

(
1 b(1−a2)

(1+a)2+b2

0 1−a2−b2
(1+a)2+b2

)(
x
y

)
.

In the language of linear algebra, this is the change of basis on R2 that changes the
basis {< 1, 0 >,< 0, 1 >} to a new basis {< 1, 0 >,< c, d >} with

c =
b(1− a2)

(1 + a)2 + b2
, d =

1− a2 − b2

(1 + a)2 + b2
=

1− |µ|2

(1 + a)2 + b2
> 0.

In the language of complex variables, the map is a quasiconformal automorphism
of C which leaves the upper half-plane H invariant. Moreover, we can easily recover
the dilatation µ from the image of the point i, as

µ =
(Fµ)z̄
(Fµ)z

=
1− d+ ic

1 + d− ic
=
i− (c+ id)

i+ (c+ id)
=
i− Fµ(i)

i+ Fµ(i)
.

We will return to this example and this notation in Section 4.

2.3. Measurable Riemann Mapping Theorem. Given a Beltrami differen-
tial µ on a simply connected region Ω ( C, it is natural to ask whether there exists
a quasiconformal map Fµ : Ω → D having µ as its complex dilatation. This is of
course a generalization of the Riemann Mapping Theorem which settles the question
for the case µ ≡ 0.

Measurable Riemann Mapping Theorem. Given a measurable µ with ‖µ‖∞
< 1 on Ω, there exists a quasiconformal map Fµ : Ω → D whose complex dilatation
is given by µ. This map Fµ is unique up to conformal automorphisms of D. In
particular, if a, b are distinct points in Ω and Fµ is normalized so that Fµ(a) = 0 and
Fµ(b) > 0, then Fµ is unique.
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The Measurable Riemann Mapping Theorem guarantees the existence of the
quasiconformal map Fµ but does not provide directions for constructing it. We will
describe how to approximate Fµ by distorting the combinatorial structures of circle
packings.

3. Circle packings

3.1. Definitions and examples. Thurston first conjectured the connection
between circle packings and analytic functions [22, 21]. Since that time, packings
have been widely studied and numerous deep connections between the combinatorics
of packings and the geometry of analytic functions have been uncovered [4, 5, 12, 20,
18, 25].

Definition 3.1. A circle packing is a locally finite configuration of circles with
a specified pattern of tangencies. In particular, if K is a triangulation of a simply
connected region, then a circle packing P for K is a configuration of circles such that

(1) P contains a circle Cv for each vertex v in K,
(2) Cv is externally tangent to Cu if [v, u] is an edge of K,
(3) 〈Cv, Cu, Cw〉 forms a positively oriented mutually tangent triple of circles if
〈v, u, w〉 is a positively oriented face of K

(4) P is locally finite; that is, any compact subset of the ambient space intersects
at most finitely many circles of P .

A packing is called univalent if none of its circles overlap, that is, if no pair of circles
intersect in more than one point.

A univalent circle packing produces an embedding in C of its underlying trian-
gulation. Vertices can embedded as centers of their corresponding circles, and edges
can be added as line segments joining centers of circles. The resulting collection of
triangles is called the carrier of the packing, written carrP . See Figure 1.

Figure 1. A circle packing with its carrier.
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3.2. Existence and uniqueness. The basic existence and uniqueness results
were proven independently (and in slightly different forms) by Koebe, Andreev, and
Thurston [1, 16, 21] and extended in various directions by many other authors [20].
We will state their results only in the case of simply connected triangulations of a
topological disc and in a form best suited to our purposes here.

Theorem 3.2. Given a finite simply connected triangulation of a closed topo-
logical disc K, there exists a packing P for K filling the unit disc D, that is, having
the boundary circles of P internally tangent to the unit circle. This packing is unique
up to disc automorphisms.

In constructing circle packing solutions to the Beltrami equation, we will employ
Theorem 3.2 to produce packings in D which will form the range of our quasicon-
formal maps. As these packings are unique up to disc automorphisms, we can, for
example, choose two circles Ca and Cb and center Ca at 0 and Cb on the positive real
axis, thus mirroring the normalization in our statement of the Measureable Riemann
Mapping Theorem.

A key step in creating the packings that will form the domains of our quasicon-
formal maps and in showing that the circle packing maps actually converge to the
required map, will rely on the existence and uniqueness of infinite packings.

Theorem 3.3. Given an infinite simply connected triangulation of an open topo-
logical disc K, there exists a packing P for K filling either the unit disc or the complex
plane. This packing is unique up to automorphisms of the underlying space.

There are numerous results connecting the combinatorial properties of K with
the choice of the underlying space C or D in which the packing P lives, but the most
directly useful for our purposes is due to He and Schramm [14]. They showed that if
the simple random walk on K is recurrent, then P will fill the plane.

3.3. Circle packings and conformal maps. This rigidity of the infinite
packings was what led Thurston to conjecture [22] that circle packings could be
used to approximate conformal maps. Conformality is often described as “sending
infinitesimal circles to infinitesimal circles” so it was not unreasonable to suggest that
circle packings would also reflect this behavior as the size of the circles goes to zero.

Thurston’s reasoning (and the eventual proof by Rodin and Sullivan) went some-
what deeper, however. At small scale, conformal maps act like planar automorphisms,
that is, maps of the form reiθ+c, with r > 0. Thurston showed that as a consequence
of the Mostow Rigidity Theorem, infinite univalent hex packings (packings filling C
in which each circle has exactly 6 neighbors) are unique up to planar automorphisms.

On the other hand, large finite univalent hex packings need not show any such
rigidity. Theorem 3.2 states that a finite packing that completely fills D is unique
up to disc automorphisms, but the condition that the packing fills D is crucial.
There could be uncountably many other finite packings; for example, if Ω is a proper
simply connected subset of C, we could create a finite hex packing PΩ inside Ω by
simply throwing away all the circles in an infinite hex packing which lie outside Ω.
Theorem 3.2 then guarantees the existence of another suitably normalized packing
PD filling D with the same underlying triangulation as PΩ.

Now consider a triple of tangent circles deep inside PΩ, surrounded by N gener-
ations of circles with 6 neighbors, and the corresponding triple deep inside PD. The
uniqueness of the infinite hex packing implies these two triples of circles will be ap-
proximately the image of one another under a planar automorphism. More precisely,
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as N → ∞, the map formed by sending the centers of circles in one triple to the
centers of circles in the corresponding triple and extending linearly, will converge to
a planar automorphism.

Repeating this process on each triple in PΩ, we construct a map from carrPΩ to
carrPD. Repeating the entire construction using smaller and smaller circles to cover
Ω produces a sequence of maps which converges uniformly on compact subsets of Ω
to the Riemann map f : Ω→ D.

Thus the rigidity of infinite packings and the consequent convergence of maps
between packings sharing the same underlying triangulation was soon extended to
non-hex packings [13, 19, 20]. In settings ranging from random walks to Teichmüller
theory, it has repeatedly been established that maps between circle packings sharing
the same underlying triangulation act exactly as one would expect conformal maps
to behave [15, 14, 23, 2, 9].

As a result, in our quest to create circle packing versions of quasiconformal maps,
we must find a natural way to distort the underlying triangulation to reflect the
distortion we wish to create in our maps. The key to this process is the Brooks
parameter.

3.4. The Brooks parameter. Consider a chain of 4 circles tangent to one
another in such a way that they surround a quadrilateral interstice. See figure ??. In
his work on Schottky groups, Brooks provided an extremely useful parameterization
of these quadrilateral interstices [6, 7, 8].

Label two of the non-tangent circles as the “top” and “bottom” sides and the
other two circles as the “left” and “right” sides. If we add a small circle in the corner
formed by the top side and the left side, we can increase its radius until it hits either
the bottom side or the right side. Label it a “horizontal” circle if it hits the top and
bottom sides and a “vertical” circle if it hits the left and right sides. Notice that
in general a quadrilateral interstice will remain after adding this new circle and the
original labeling of top, left, etc, will extend in an obvious way to the new interstice.
We can repeat this procedure, growing a new circle out of the new top left corner.

Let h1 be the number of horizontal circles which can be added in this way to the
original interstice before a vertical circle must be added. Let v1 denote the number of
vertical circles which can then be added before a horizontal circle is produced. Repeat
this procedure to define h2, h3, . . . and v2, v3, . . . . Notice that if it is ever possible to
add a circle which hits all four remaining sides, then only triangular interstices will
remain and both hn and vn will be zero after that stage. See Figure 2.

Figure 2. A quadrilateral interstice (left) and the first two steps of determining its Brooks
parameter (right). This interstice has h1 = 2 horizontal circles followed by v1 = 2 vertical circles
and h2 = 1 horizontal circles.
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Definition 3.4. Given a quadrilateral interstice formed by four circles, its Brooks
parameter is given by the the continued fraction

(3.1) β = h1 +
1

v1 + 1
h2+ 1

v2+...

.

Brooks proved that the parameter depends continuously on the original four
circles which form the quadrilateral interstice [7, 8]. Since Möbius transformations
preserve circles, the Brooks parameter is Möbius invariant. The Brooks parameter
thus provides a kind of combinatorial analog of the conformal module.

Recall that our definition of a circle packing required the underlying combinato-
rial structure of a packing be formed from triangles, not quadrilaterals. Moreover,
the collection of circles in a packing must be locally finite. If a quadrilateral has an
irrational Brooks parameter, that is, if the Brooks procedure described above results
in infinitely many non-zero terms vj and hj and thus infinitely many circles accumu-
lating toward bottom right corner of the quadrilateral, then the resulting collection
of circles will not form a packing.

However, if the Brooks parameter is rational, that is, if there are only finitely
many non-zero vj and hj terms, then the quadrilateral will be filled with a circle
packing. Bowers and Stephenson took advantage of this to prove that surfaces which
support a circle packing are dense in Teichmüller space [3, 4]. Given a surface, they
first covered it with circles, leaving only quadrilateral interstices still to be packed.
By making arbitrarily small adjustments to the conformal structure of the surface,
they could ensure that all the remaining quadrilateral interstices had rational Brooks
parameters and could thus be filled in to produce a circle packing.

Conversely, given β > 0 we can write it uniquely as a continued fraction of the
form (3.1). If β ∈ Q+, this fraction encodes a (locally finite) triangulation Kβ of a
rectangle which can be realized by a circle packing Pβ.

3.5. Brooks packings of the plane. Consider the infinite simply connected
graph S corresponding to a tiling of the plane by squares. For future normalization
purposes we will identify one vertex, labeling it v0, and chose one of its neighbors,
labeling it v1. If we think of the direction from v0 to v1 as being a step toward
the right, then we have an orientation on B in which the Brooks notions of “top,”
“bottom”, “right”, and “left” are also well defined. Thus we will think of B as a sort
of base graph from which we can construct triangulations by filling in the squares in
various ways as encoded by Brooks parameters.

For example, if inside every square of S we add one vertex with edges connecting
the new vertex to the four existing vertices of its square, then we will have created
a triangulation S1 of the plane. Moreover, the triangulation inside each square is
exactly the triangulation encoded by a Brooks parameter of 1. A packing for this
triangulation is illustrated on the left in Figure 3. This packing is well-known and
is often called the “ball bearing” packing since the vertices added inside each square
correspond to circles much smaller than the circles at the corners of the squares and
thus have the appearance of little ball bearings inside larger wheels.

We could repeat this process for any positive rational Brooks parameter β ∈ Q+

to create a new triangulation Sβ. Theorem 3.3 guarantees the existence of a circle
packing Pβ for Sβ filling either C or D. Clearly however, Pβ must fill the plane as
can be seen by either sliding the large circles of the ball bearing packing to create
quadrilateral interstices of Brooks parameter β and then filling in the interstices to
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directly create Pβ or by noting that the simple random walk on S, and hence on Sβ,
is recurrent.

Figure 3. Two infinite Brooks packings in which every interstice has parameter 1 (left) and 2

(right).

The uniqueness of packings for a given triangulation implies that the symmetries
of the triangulation Sβ are reflected in the packing Pβ. For example, all the circles
corresponding to vertices of the original squares of S must have the same radius.

To ease the next steps in our construction, we will normalize Pβ so that the circles
corresponding to v0 and v1 are centered at 0 and 1, respectively.

4. Construction of quasiconformal maps with constant dilatation

4.1. Manipulation of the Brooks parameter. We next consider how to
construct maps of the entire plane with constant complex dilatation. If we normalize
our maps so that 0 and 1 are fixed, these are precisely the linear maps of Section 2.2.

The key step in constructing quasiconformal circle packing maps will be to in-
troduce distortion by subdividing Sβ and by manipulating the β parameter.

Consider for a moment the effect of increasing β. As the number h1 of initial
horizontal circles increases, the size of those horizontal circles inside each quadrilateral
must decrease toward 0. This will cause Pβ to “lean” to the right as the top and
bottom circles move closer together.

The limiting situation as β → ∞ would have the top and bottom circles in
actual contact, producing the well-known infinite hex packing. The large circles
corresponding to the original vertices of S would now lean at an angle of π/6 from
their original positions in the P1 ball bearing packing.

Similarly, as β → 0, the packing Pβ will “lean” to the left at an angle of π/6.
Thus by manipulating β, we can slide the circles of Pβ through a full range of π/3
radians, thereby creating our first level of quasiconformal distortion.

Because we normalized our packings so that the circles corresponding to v0 and
v1 are centered at 0 and 1, respectively, the vertex vi directly “above” v0 in S will
correspond to a circle centered at i. As we distort P1 to a new packing Pβ, the circle
for vi will now correspond to a new circle in Pβ. If f(i) is the center of this circle,
then we have control over arg f(i) simply by manipulating β. As β → ∞, then
arg f(i)→ π/3, and as β → 0, then arg f(i)→ 2π/3.

4.2. Scaling by subdivision. Our second level of distortion arises from sub-
dividing Sβ to control |f(i)|. Suppose we subdivide each square of S into m × n
smaller squares before assigning the Brooks parameter β to each of these squares.
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The new triangulation Sβ,m
n
is of course combinatorially equivalent to Sβ, except that

our intially distinguished vertices vi and v1 are no longer neighbors of v0 but are now
separated from v0 by m and n new vertices, respectively.

The unique packing Pβ,m
n
for Sβ,m

n
normalized so that the circle corresponding to

v0 and v1 are again centered at 0 and 1, respectively, is of course just a copy of the
packing Pβ scaled by a factor of 1

n
.

But observe now the effect this subdivision and subsequent scaling has had on
the f(i), the center of the circle in Pβ,m

n
corresponding to vi. This circle is separated

in Pβ from 0 by m other circles before the scaling by 1
n
. Consequently,

|f(i)| = m

n
.

4.3. The induced map on the plane. Our use of the function notation f(i) to
denote the the center of the circle corresponding to vi was of course not coincidental.
Let us take a step back and observe what our subdivisions and Brooks parameter
manipulations have wrought.

The carrier of our base packing P1 covers the entire plane and will act as the
domain of our circle packing quasiconformal map. We can then create the map fβ,m

n

by sending the centers of circles in P1 to the centers of the corresponding circles in
Pβ,m

n
and extending linearly to the rest of the plane.

Recall that the symmetry of S and the uniqueness of the packings will force the
same symmetries in the map fβ,m

n
. Since fβ,m

n
is linear on each square, it will be

globally linear. In fact, since fβ,m
n
fixes both 0 and 1, we can write an explicit form

of fβ,m
n
in terms of the image of i. If fβ,m

n
(i) = ω, then

fβ,m
n

(x+ iy) =

(
1 Reω
0 Imω

)(
x
y

)
.

Of course, not every linear map can be created directly using one circle packing.
Only countably many distinct packings Pβ,m

n
can be produced by manipulating the

rational parameters β and m
n
, and thus only countably many linear maps can be

directly produced from the packings Pβ,m
n
.

Figure 4. The wedge W in the upper half-plane formed by two rays meeting at the origin at
angle π/3.

Moreover, because manipulating the Brooks parameter β limits arg fβ,m
n

(i) to the
range

π

3
< arg fβ,m

n
(i) <

2π

3
,
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not every linear map can be created in this way. We are limited to directly building
(normalized) maps in which the image w of i lies in the wedge-shaped region W of
Figure 4. Moreover our construction also requires |w| to be rational.

On the other hand, the real power of packings has always been in their ability
to create maps which converge correctly in the limit. Since the circles corresponding
to vertices in S vary continuously with β [8], we can use a sequence of packings to
create a sequence of maps which converge locally uniformly to any given linear map
normalized to fix 0 and 1 and sending i to a point ω ∈ W . See Figure 4.

A straightforward calculation shows the dilatation of such a map is given by

µ =
ω − i
ω + i

.

The image of the wedge W under z−i
z+i

is the region G ⊂ D formed by the intersection
of two discs which meet at the points −1 and 1 with angle π/3. See Figure 5.

Figure 5. The region G. By manipulating the Brooks parameter, our circle packings can create
a quasiconformal map with complex dilatation µ ∈ G.

Thus we have the following theorem.

Theorem 4.1. Given a constant complex dilatation µ contained in the region
G, the construction described above produces a sequence of maps of C onto itself
converging to quasiconformal map Fµ of Section 2.2.

4.4. Implications for finite packings. The real power of our construction
thus far lies not in its ability to create approximations to perfectly good linear maps
for which an explicit expression is already known. Rather, the uniqueness of these
infinite packings approximating Fµ implies that any large finite piece sharing the
same combinatorics must be almost identical (up to planar automorphisms) to a
corresponding piece of the infinite packing. Thus such a finite piece must induce a
circle packing map whose dilatation on that piece nearly matches µ.

Lemma 4.2. Suppose K is a compact subset of C and for each positive integer
N , PN is a finite packing whose underlying triangulation is combinatorially equiv-
alent to a subcomplex of Sβ,m

n
and so that K is surrounded by N generations of

squares in the packing PN . Create a map fN from carrPN to the corresponding
subset of carrPβ,m

n
by sending centers of circles to the centers of corresponding cir-

cles and extending linearly. Then as N → ∞, fN converges uniformly to a planar
automorphism.
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Proof. Suppose not. Then as N → ∞ we would have in the limit an infinite
packing for Sβ,m

n
which is not the image of Pβ,m

n
under a planar automorphism, thus

violating the uniqueness Theorem 3.3. �

Lemma 4.3. Suppose K is a compact subset of C and for each positive integer
N , PN is a finite packing whose underlying triangulation is combinatorially equivalent
to a subcomplex of the ball bearing packing S1 and so that K is surrounded by N
generations of squares in the packing PN . Let β and m

n
be the parameters which

produce a circle packing map from the ball bearing packing to Pβ,m
n

with constant
complex dilatation µ ∈ G. Modify the triangulation for PN by subdividing and
changing the Brooks parameter to obtain a subcomplex of Sβ,m

n
. Let P̂N be a packing

for this subcomplex and fN : carrPN → carr P̂N be the associated circle packing map.
Then as N →∞, the dilatation of fN converges to µ.

Proof. Since composition by planar automorphisms does not affect the complex
dilatation, the result follows form Lemma 4.2. �

Recall that in general, we cannot directly create a single packing which will
produce a quasiconformal map of the plane with a given complex dilatation µ ∈ G.
Theorem 4.1 provides a sequence of packings Pj and associated maps fj : C → C
converging uniformly to the normalized map Fµ : C→ C with dilatation µ ∈ G.

A standard diagonalization argument allows us to extend Lemma 4.3 to handle
the case when a sequence of maps is required to produce a map with dilatation µ.

Lemma 4.4. Let µ ∈ G and fj : carrPj → carr P̂j be the sequence of circle
packing maps constructed in Theorem 4.1 to converge to Fµ. Suppose K ⊂ C is
compact and ε > 0. Then there exists Nj ∈ N so that if PNj is a finite simply
connected portion of the packing Pj with triangulation SNj and with K surrounded
by Nj generations of squares in PNj and if P̂Nj is any other packing for SNj , then the
difference between µ and the complex dilatation of the induced circle packing map
from carrPNj to carr P̂Nj and µ is less than ε.

This lemma will play the same role for us that Rodin and Sullivan’s Hex Packing
Lemma played in their proof of Thurston’s Conjecture [18].

5. Construction of quasiconformal maps of
proper simply connected subsets of C

Having shown how circle packings can be used to create maps of C with constant
complex dilatation, we will now develop our own version of the Measurable Riemann
Mapping Theorem and create quasiconformal maps with any complex dilatation µ
whose values lie in G.

Consider a simply connected region Ω ( C and a measurable Beltrami differential
µ : Ω→ G, where G is the subsetD depicted in Figure 5. For normalization purposes,
choose distinct points a, b ∈ Ω.

Let P n
1 be the infinite ball bearing packing scaled so that the radius of the large

circles is 1
n
. Remove circles from P n

1 which lie outside Ω to create a finite simply
connected packing PΩ,n whose underlying triangulation Sn1 is a subcomplex of the
ball bearing triangulation.

On each square s in carrPΩ,n, let µs denote the average of µ over s. Consider
the compact subset Ks ⊂ s formed by shrinking s by a factor of (1 − 1

n
) about its

center. Apply Lemma 4.4 to subdivide s into as many smaller squares as necessary
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and apply the subdivision and Brooks parameter manipulations of Section 4 so that
the dilatation of the induced circle packing map on the compact subset Ks is within
1
n
of µs.
This new finite triangulation Kn will have a packing PD,n filling D by Theo-

rem 3.2. It will be unique if we normalize PD,n by centering at 0 and on the positive
real axis the circles in PD,n which correspond to the circles in PΩ,n closest to a and
b, respectively.

Now construct a circle packing map fn : carrPΩ,n → carrPD,n by mapping the
centers of corresponding circles and extending linearly on each square.

Theorem 5.1. As n→∞, fn converges locally uniformly to the quasiconformal
map Fµ : Ω→ D normalized by Fµ(a) = 0 and Fµ(b) > 0.

Proof. First note that as n→∞, the domain of fn fills out all of Ω. Similarly, it
is an easy application of Rodin and Sullivan’s Length-Area Lemma [18, 20] to show
that the range of fn expands to fill D as n→∞.

By our construction, the dilatation of fn converges to µ. Since the range of each
fn lies inD, the sequence {fn} forms a normal family [17], and thus has a subsequence
fnj

which converges uniformly on compact subsets of Ω. Our normalization and the
uniqueness part of the Measurable Riemann Mapping Theorem ensures that this limit
function is in fact Fµ.

Finally, we note that since any subsequence of {fn} would likewise form a normal
family and the limit of any subsequence must be the same function Fµ, the entire
sequence fn must converge to Fµ. �
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