
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 841–875

GEOMETRIC FINITENESS IN NEGATIVELY
PINCHED HADAMARD MANIFOLDS

Michael Kapovich and Beibei Liu

UC Davis, Department of Mathematics
One Shields Avenue, Davis CA 95616, U.S.A.; kapovich@math.ucdavis.edu

UC Davis, Department of Mathematics
One Shields Avenue, Davis CA 95616, U.S.A.; bxliu@math.ucdavis.edu

Abstract. In this paper, we generalize Bonahon’s characterization of geometrically infinite
torsion-free discrete subgroups of PSL(2,C) to geometrically infinite discrete subgroups Γ of isome-
tries of negatively pinched Hadamard manifolds X. We then generalize a theorem of Bishop to
prove that every discrete geometrically infinite isometry subgroup Γ has a set of nonconical limit
points with the cardinality of the continuum.

1. Introduction

The notion of geometrically finite discrete groups was originally introduced by
Ahlfors in [1], for subgroups of isometries of the 3-dimensional hyperbolic space H3 as
the finiteness condition for the number of faces of a convex fundamental polyhedron.
In the same paper, Ahlfors proved that the limit set of a geometrically finite subgroup
of isometries of H3 has either zero or full Lebesgue measure in S2. The notion of
geometric finiteness turned out to be quite fruitful in the study of Kleinian groups.
Alternative definitions of geometric finiteness were later given by Marden [20], Bear-
don and Maskit [5], and Thurston [25]. These definitions were further extended by
Bowditch [10] and Ratcliffe [24] for isometry subgroups of higher dimensional hy-
perbolic spaces and, a bit later, by Bowditch [11] to negatively pinched Hadamard
manifolds. While the original Ahlfors’ definition turned out to be too limited (when
used beyond the hyperbolic 3-space), other definitions of geometric finiteness were
proven to be equivalent by Bowditch in [11].

Our work is motivated by the definition of geometric finiteness due to Beardon
and Maskit [5] who proved

Theorem 1.1. A discrete isometry subgroup Γ of H3 is geometrically finite if
and only if every limit point of Γ is either a conical limit point or a bounded parabolic
fixed point.

This theorem was improved by Bishop in [6]:

Theorem 1.2. A discrete subgroup Γ < Isom(H3) is geometrically finite if and
only if every point of Λ(Γ) is either a conical limit point or a parabolic fixed point.
Furthermore, if Γ < Isom(H3) is geometrically infinite, Λ(Γ) contains a set of non-
conical limit points with the cardinality of the continuum.

The key ingredient in Bishop’s proof of Theorem 1.2 is Bonahon’s theorem1 [9]:
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1Bonahon uses this result to prove his famous theorem about tameness of hyperbolic 3-manifolds.
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Theorem 1.3. A discrete torsion-free subgroup Γ < Isom(H3) is geometrically
infinite if and only if there exists a sequence of closed geodesics λi in the manifold
M = H3/Γ which “escapes every compact subset ofM ,” i.e., for every compact subset
K ⊂M ,

card ({i : λi ∩K 6= ∅}) <∞.
According to Bishop, Bonahon’s theorem also holds for groups with torsion. We

extend Bonahon’s proof and prove that Bonahon’s theorem holds for discrete isometry
subgroups of negatively pinched Hadamard manifolds X.

Bowditch generalized the notion of geometric finiteness to discrete subgroups
of isometries of negatively pinched Hadamard manifolds [11]. A negatively pinched
Hadamard manifold is a complete, simply connected Riemannian manifold such that
all sectional curvatures lie between two negative constants. From now on, we use X
to denote an n-dimensional negatively pinched Hadamard manifold, ∂∞X its visual
(ideal) boundary, X̄ the visual compactification X ∪ ∂∞X, Γ a discrete subgroup of
isometries of X, Λ = Λ(Γ) the limit set of Γ. The convex core Core(M) of M = X/Γ
is defined as the Γ-quotient of the closed convex hull of Λ(Γ) in X. Recall also that a
point ξ ∈ ∂∞X is a conical limit point2 of Γ if for every x ∈ X and every geodesic ray
l in X asymptotic to ξ, there exists a positive constant A such that the set Γx∩NA(l)
accumulates to ξ, where NA(l) denotes the A-neighborhood of l in X. A parabolic
fixed point ξ ∈ ∂∞X (i.e. a fixed point of a parabolic element of Γ) is called bounded
if

(Λ(Γ)− {ξ})/Γξ
is compact. Here Γξ is the stabilizer of ξ in Γ.

Bowditch [11], gave four equivalent definitions of geometric finiteness for Γ:

Theorem 1.4. The followings are equivalent for discrete subgroups Γ < Isom(X):
(1) The quotient space M̄(Γ) = (X̄ − Λ)/Γ has finitely many topological ends

each of which is a “cusp”.
(2) The limit set Λ(Γ) of Γ consists entirely of conical limit points and bounded

parabolic fixed points.
(3) The noncuspidal part of the convex core Core(M) of M = X/Γ is compact.
(4) For some δ>0, the uniform δ-neighbourhood of the convex core, Nδ(Core(M)),

has finite volume and there is a bound on the orders of finite subgroups of Γ.

If one of these equivalent conditions holds, the subgroup Γ < Isom(X) is said to
be geometrically finite; otherwise, Γ is said to be geometrically infinite.

The main results of our paper are:

Theorem 1.5. Suppose that Γ < Isom(X) is a discrete subgroup. Then the
followings are equivalent:

(1) Γ is geometrically infinite.
(2) There exists a sequence of closed geodesics λi ⊂ M = X/Γ which escapes

every compact subset of M .
(3) The set of nonconical limit points of Γ has the cardinality of the continuum.

Corollary 1.6. If Γ < Isom(X) is a discrete subgroup then Γ is geometrically
finite if and only if every limit point of Γ is either a conical limit point or a parabolic
fixed point.

2Another way is to describe conical limit points of Γ as points ξ ∈ ∂∞X such that one, equiva-
lently, every, geodesic ray R+ → X asymptotic to ξ projects to a non-proper map R+ →M .
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These results can be sharpened as follows. We refer the reader to section 11 for
the precise definitions of ends e of the orbifolds Y = Core(M) and noncuspε(Y ), of
their neighborhoods C ⊂ Y and of their end-limit sets Λ(C), Λ(e), which are certain
subsets of the set of non-conical limit points of Γ.

In [16, Section 4], Falk, Matsuzaki and Stratmann conjectured the end-limit set
of an end e of Y is countable if and only if Λ(e) is the Γ-orbit of a (bounded) parabolic
fixed point. A slight modification of the proof of Theorem 1.5 proves this conjecture:

Corollary 1.7. Λ(e) is countable if and only if the end e of Y is a cusp.

Furthermore:

Corollary 1.8. Let C ⊂ Y be an unbounded complementary component of a
compact subset K ⊂ Y . The Λ(C) is countable if and only if C is Hausdorff-close to
a finite union of cuspidal neighborhoods of cusps in Y .

By Theorem 1.5, the set of nonconical limit points of a discrete isometry subgroup
Γ has the cardinality of the continuum if Γ is geometrically infinite. It is natural to
ask:

Question 1.9. What is the Hausdorff dimension of the set of nonconical limit
points of Γ? Here, the Hausdorff dimension is defined with respect to any of the
visual metrics on ∂∞X, see [23].

Partial results have been obtained by Fernández and Melián [17] in the case of
Fuchsian subgroups of the 1st kind, Γ < Isom(H2) and by Bishop and Jones [7] in
the case of finitely generated discrete torsion-free subgroups Γ < Isom(H3) of the
2nd kind, such that the manifold H3/Γ has injectivity radius bounded below. In
both cases, the Hausdorff dimension of the set of nonconical limit points equals the
Hausdorff dimension of the entire limit set.

Below is an outline of the proof of Theorem 1.5. Our proof of the implication (1)
=⇒ (2) mostly follows Bonahon’s argument with the following exception: At some
point of the proof Bonahon has to show that certain elements of Γ are loxodromic.
For this he uses a calculation with 2 × 2 parabolic matrices: If g, h are parabolic
elements of Isom(H3) generating a nonelementary subgroup then either gh or hg is
non-parabolic. This argument is no longer valid for isometries of higher dimensional
hyperbolic spaces, let alone Hadamard manifolds. We replace this computation with
a more difficult argument showing that there exists a number ` = `(n, κ) such that
for every n-dimensional Hadamard manifold X with sectional curvatures pinched be-
tween −κ2 and −1 and for any pair of parabolic isometries g, h ∈ Isom(X) generating
a nonelementary discrete subgroup, a certain word w = w(g, h) of length ≤ ` is lox-
odromic (Theorem 8.5). We later found a stronger result by Breuillard and Fujiwara
[12] that there exists a loxodromic element of uniformly bounded word length in the
discrete nonelementary subgroup generated by any isometry subset (Corollary 8.11),
which can be used to deal with nonelementary groups generated by elliptic isometries.

Our proof of the implication (2) =⇒ (3) is similar to Bishop’s but is more coarse-
geometric in nature. Given a sequence of closed geodesics λi in M escaping compact
subsets, we define a family of proper piecewise geodesic paths γτ in M consisting of
alternating geodesic arcs µi, νi, such that µi connects λi to λi+1 and is orthogonal
to both, while the image of νi is contained in the loop λi. If the lengths of νi are
sufficiently long, then the path γτ lifts to a uniform quasigeodesic γ̃τ in X, which,
therefore, is uniformly close to a geodesic γ̃∗τ . Projecting the latter to M , we obtain
a geodesic γ∗τ uniformly close to γτ , which implies that the ideal point γ̃∗τ (∞) ∈ ∂∞X
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is a nonconical limit point of Γ. Different choices of the arcs νi yield distinct limit
points, which, in turn implies that Λ(Γ) contains a set of nonconical limit points with
the cardinality of the continuum. The direction (3) =⇒ (1) is a direct corollary of
Theorem 1.4.

Organization of the paper. In Section 3, we review the angle comparison the-
orem [11, Proposition 1.1.2] for negatively pinched Hadamard manifolds and derive
some useful geometric inequalities. In Section 5, we review the notions of elementary
subgroups of isometries of negatively pinched Hadamard manifolds, [11]. In Section 6,
we review the thick-thin decomposition in negatively pinched Hadamard manifolds
and some properties of parabolic subgroups, [11]. In Section 7, we use the results
in Section 3 to prove that certain piecewise geodesic paths in Hadamard manifolds
with sectional curvatures ≤ −1 are uniform quasigeodesics. In Section 8, we explain
how to produce loxodromic isometries as words w(g, h) of uniformly bounded length,
where g, h are parabolic isometries of X with distinct fixed points. In Section 9,
we generalize Bonahon’s theorem, the implication (1) =⇒ (2) in Theorem 1.5. In
Section 10, we construct the set of nonconical limit points with the cardinality of the
continuum and complete the proof of Theorem 1.5. Lastly, in Section 11 we prove
Corollaries 1.7 and 1.8.
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16-04241 as well as by KIAS (the Korea Institute for Advanced Study) through the
KIAS scholar program. Some of this work was done during his stay at KIAS and he
is thankful to KIAS for its hospitality. The second author was partly supported by
the NSF grant DMS-17-00814.

2. Notation

In a metric space (Y, d), we will use the notation B(a, r) to denote the open r-ball
centered at a in Y . For a subset A ⊂ Y and a point y ∈ Y , we will denote by d(y, A)
the minimal distance from y to A, i.e.

d(y, A) := inf{d(y, a) | a ∈ A}.
Similarly, for two subsets A,B ⊂ Y define their minimal distance as

d(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.
We will use the notation l(p) or length(p) for the length of a rectifiable path p in a
metric space.

We use the notation N̄r(A) for the closed r-neighborhood of A in Y :

N̄r(A) = {y ∈ Y : d(y, A) ≤ r}.
The Hausdorff distance hd(Q1, Q2) between two closed subsets Q1 and Q2 of

(Y, d) is the infimum of r ∈ [0,∞) such that Q1 ⊆ N̄r(Q2) and Q2 ⊆ N̄r(Q1).
Throughout the paper, X will denote an n-dimensional negatively pinched Hada-

mard manifold, unless otherwise stated; we assume that all sectional curvatures of
X lie between −κ2 and −1, where κ > 0. Note that the lower bound −κ2 is used
essentially in a property of quasiconvex subsets (Proposition 3.13), Margulis Lemma
(Section 6), in Sections 8, 9 and 11. We let d denote the Riemannian distance function
on X and let Isom(X) denote the isometry group of X.

For a Hadamard manifold X, the exponential map is a diffeomorphism, in par-
ticular, X is diffeomorphic to Rn.Then X can be compactified by adjoining the ideal
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boundary sphere ∂∞X, and we will use the notation X̄ = X ∪ ∂∞X for this com-
pactification. The space X̄ is homeomorphic to the closed n-dimensional ball.

In this paper, geodesics will be always parameterized by their arc-length; we will
conflate geodesics in X with their images.

Given a closed subset A ⊆ X and x ∈ X, we write

ProjA(x) = {y ∈ A | d(x, y) = d(x,A)}

for the nearest-point projection of x to A. It consists of all points in A which are
closest to x. If A is convex, then ProjA(x) is a singleton.

Hadamard spaces are uniquely geodesic and we will let xy ⊂ X denote the
geodesic segment connecting x ∈ X to y ∈ X. Similarly, given x ∈ X and ξ ∈
∂∞X we will use the notation xξ for the unique geodesic ray emanating from x and
asymptotic to ξ; for two distinct points ξ, η ∈ ∂∞X, we use the notation ξη to denote
the unique (up to reparameterization) geodesic asymptotic to ξ and η.

Given ξ ∈ ∂∞X, horospheres about ξ are level sets of a Busemann function h
about ξ. For details of Busemann functions, see [2, 11] (notice that Bowditch uses a
nonstandard notation for Busemann functions, which are negatives of the standard
Busemann functions). A set of the form h−1((−∞, r]) for r ∈ R is called a horoball
about ξ. Horoballs are convex.

Given points P1, P2, · · · , Pm ∈ X we let [P1P2 · · ·Pm] denote the geodesic polygon
in X which is the union of geodesic segments PiPi+1, i taken modulo m.

Given two distinct points x, y ∈ X, and a point q ∈ xy, we define the normal
hypersurface Nq(x, y), i.e. the image of the normal exponential map to the segment
xy at the point q:

Nq(x, y) = expq(T
⊥
q (xy)),

where T⊥q (xy) ⊂ TqX is the orthogonal complement in the tangent space at q to
the segment xy. In the special case when q is the midpoint of xy, Nq(x, y) is the
perpendicular bisector of the segment xy, and we will denote it Bis(x, y). Similarly,
we define the normal hypersurface Nq(ξ, η) for any point q in the biinfinite geodesic
ξη.

Note that if X is a real-hyperbolic space, then Bis(x, y) is totally geodesic and
equals the set of points equidistant from x and y. For general Hadamard spaces, this
is not the case. However, if X is δ-hyperbolic, then each Np(x, y) is δ-quasiconvex,
see Definition 3.11.

We let δ denote the hyperbolicity constant of X; hence, δ ≤ cosh−1(
√

2). We
will use the notation Hull(A) for the closed convex hull of a subset A ⊂ X, i.e.
the intersection of all closed convex subsets of X containing A. The notion of the
closed convex hull extends to the closed subsets of ∂∞X as follows. Given a closed
subset A ⊂ ∂∞X, we denote by Hull(A) the smallest closed convex subset of X
whose accumulation set in X̄ equals A. (Note that Hull(A) is nonempty as long as
A contains more than one point.)

For a subset A ⊂ X the quasiconvex hull QHull(A) of A in X is defined as the
union of all geodesics connecting points of A. Similarly, for a closed subset A ⊂ ∂∞X,
the quasiconvex hull QHull(A) is the union of all biinfinite geodesics asymptotic to
points of A. Then QHull(A) ⊂ Hull(A).

We will use the notation Γ for a discrete subgroup of isometries of X. We let
Λ = Λ(Γ) ⊂ ∂∞X denote the limit set of Γ, i.e. the accumulation set in ∂∞X of
one (equivalently, any) Γ-orbit in X. The group Γ acts properly discontinuously on
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X̄ \ Λ, [11, Proposition 3.2.6]. We obtain an orbifold with boundary

M̄ =
(
X̄ \ Λ

)
/Γ.

If Γ is torsion-free, then M̄ is a partial compactification of the quotient manifold
M = X/Γ. We let π : X →M denote the covering projection.

3. Review of negatively pinched Hadamard manifolds

3.1. Metric comparison inequalities. For any triangle [ABC] in (X, d), we
define a comparison triangle [A′B′C ′] for [ABC] in (H2, d′) as follows.

Definition 3.1. For a triangle [ABC] in (X, d), let A′, B′, C ′ be 3 points in the
hyperbolic plane (H2, d′) satisfying that d′(A′, B′) = d(A,B), d′(B′, C ′) = d(B,C)
and d′(C ′, A′) = d(C,A). Then [A′B′C ′] is called a comparison triangle for [ABC].

In general, for any geodesic polygon [P1P2 · · ·Pm] in (X, d), we define a compar-
ison polygon [P ′1P

′
2 · · ·P ′m] for [P1 · · ·Pm] in (H2, d′).

Definition 3.2. For any geodesic polygon [P1P2 · · ·Pm] in X, we pick points
P ′1, · · · , P ′m in H2 such that [P ′1P

′
iP
′
i+1] is a comparison triangle for [P1PiPi+1] and

the triangles [P ′1P
′
i−1P

′
i ] and [P ′1P

′
iP
′
i+1] lie on different sides of P ′1P ′i for each 2 ≤

i ≤ m − 1. The geodesic polygon [P ′1P
′
2 · · ·P ′m] is called a comparison polygon for

[P1P2 · · ·Pm].

Remark 3.3. Such a comparison polygon [P ′1P
′
2 · · ·P ′m] is not necessarily convex

and embedded3. In the rest of the section, we have additional assumptions for the
polygons [P1P2 · · ·Pm]. Under these assumptions, their comparison polygons in H2

are embedded and convex, see Corollary 3.7.

One important property of negatively pinched Hadamard manifolds X is the
following angle comparison theorem; cf. [13].

Proposition 3.4. [11, Proposition 1.1.2] For a triangle [ABC] in (X, d), let
[A′B′C ′] denote a comparison triangle for [ABC]. Then ∠ABC ≤ ∠A′B′C ′,∠BCA ≤
∠B′C ′A′ and ∠CAB ≤ ∠C ′A′B′.

Proposition 3.4 implies some useful geometric inequalities in X:

Corollary 3.5. Consider a triangle in X with vertices ABC such that the angles
at A,B,C are α, β, γ and the sides opposite to A,B,C have lengths a, b, c, respec-
tively. If γ ≥ π/2, then

cosh a sin β ≤ 1.

Proof. Let [A′B′C ′] be a comparison triangle for [ABC] in (H2, d′). Let α′, β′, γ′
denote the angles at A′, B′, C ′ respectively as in Figure 1. By Proposition 3.4,
d′(A′, B′) = c, d′(A′, C ′) = b, d′(B′, C ′) = a and β′ ≥ β, γ′ ≥ γ ≥ π/2. Take the
point C ′′ ∈ A′B′ such that ∠B′C ′C ′′ = π/2. In the right triangle [B′C ′C ′′] in H2,
we have cosh a sin β′ = cos(∠C ′C ′′B′), see [4, Theorem 7.11.3]. So we obtain the
inequality:

cosh a sin β ≤ cosh a sin β′ ≤ 1. �

Remark 3.6. If A ∈ ∂∞X, we use a sequence of triangles in X to approximate
the triangle [ABC] and prove that cosh a sin β ≤ 1 still holds by continuity.

3I.e. the natural map S1 → H2 defined by tracing the oriented edges of the polygon in the cyclic
order need not be injective.
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Figure 1.

Corollary 3.7. Let [ABCD] denote a quadrilateral in X such that ∠ABC ≥
π/2,∠BCD ≥ π/2 and ∠CDA ≥ π/2 as in Figure 2(a). Then:

(1) sinh(d(B,C)) sinh(d(C,D)) ≤ 1.
(2) Suppose that ∠BAD ≥ α > 0. If cosh(d(A,B)) sinα > 1, then

cosh(d(C,D)) ≥ cosh(d(A,B)) sinα > 1.

Proof. Let [A′B′C ′D′] be a comparison quadrilateral for [ABCD] in (H2, d′)
such that [A′B′C ′] is a comparison triangle for [ABC] and [A′C ′D′] is a comparison
triangle for [ACD]. By Proposition 3.4, ∠A′B′C ′ ≥ π/2, ∠A′D′C ′ ≥ π/2 and

∠B′C ′D′ = ∠B′C ′A′ + ∠A′C ′D′ ≥ ∠BCD ≥ π/2.

Thus, 0 < ∠B′A′D′ ≤ π/2 and [A′B′C ′D′] is an embedded convex quadrilateral.
We first prove that sinh d(B,C) sinh(d(C,D)) ≤ 1. In Figure 2(c), take the

point H ∈ A′B′ such that ∠HC ′D′ = π/2 and take the point G ∈ A′H such that
∠GD′C ′ = π/2. We claim that ∠C ′HA′ ≥ π/2. Observe that

∠C ′HB′ + ∠HB′C ′ + ∠B′C ′H ≤ π,

∠C ′HA′ + ∠C ′HB′ = π.

Thus ∠C ′HA′ ≥ ∠C ′B′H ≥ π/2. We also have d′(C ′, H) ≥ d′(C ′, B′) since

sinh(d′(C ′, H))

sin(∠C ′B′H)
=

sinh(d′(C ′, B′))

sin(∠C ′HB′)
.

Take the point H ′ ∈ GD′ such that ∠C ′HH ′ = π/2. In the quadrilateral [C ′HH ′D′],
cos(∠HH ′D′) = sinh(d′(H,C ′)) sinh(d′(C ′, D′)), [4, Theorem 7.17.1]. Thus, we have

sinh(d(C,D)) sinh(d(B,C)) = sinh(d′(C ′, D′) sinh(d′(B′, C ′))

≤ sinh(d′(C ′, D′)) sinh(d′(C ′, H)) ≤ 1.

Next, we prove that if cosh(d(A,B)) sinα > 1, then cosh(d(C,D)) ≥ cosh(d(A,
B)) sinα. In Figure 2(b), take the C ′′ ∈ C ′D′ such that ∠A′B′C ′′ = π/2. Observe
that C ′′ cannot be on A′D′. Otherwise in the right triangle [A′B′C ′′], we have

cosh(d(A,B)) sinα ≤ cosh(d′(A′, B′)) sin(∠B′A′D′) ≤ 1,

which is a contradiction. Let EF denote the geodesic segment which is orthogonal
to B′E and A′F . In the quadrilateral [A′B′EF ],

cosh(d′(E,F )) = cosh(d′(A′, B′)) sin(∠B′A′F )

by hyperbolic trigonometry [4, Theorem 7.17.1]. Thus,

cosh(d(C,D)) ≥ cosh(d′(C ′′, D′)) ≥ cosh(d′(E,F )) ≥ cosh(d(A,B)) sinα. �
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Remark 3.8. If A ∈ ∂∞X and ∠BAD = 0, we use quadrilaterals in X to
approximate the quadrilateral [ABCD] and prove that sinh(d(B,C)) sinh(d(C,D)) ≤
1 by continuity.

Figure 2.

Another comparison theorem, the CAT(-1) inequality, can be used to derive the
following proposition (see [11]):

Proposition 3.9. [11, Lemma 2.2.1] For any m + 1 points x0, x1, · · · , xm ∈ X̄
we have

x0xm ⊆ N̄λ(x0x1 ∪ x1x2 ∪ · · · ∪ xm−1xm)

where λ = λ0dlog2me, λ0 = cosh−1(
√

2).

Given a point ξ ∈ ∂∞X, for any point y ∈ X, we use a map ρy : R+ → X to
parametrize the geodesic yξ by its arc-length. The following lemma is deduced from
the CAT (−1) inequality, see [11]:

Lemma 3.10. [11, Proposition 1.1.11]
(1) Given any y, z ∈ X, the function d(ρy(t), ρz(t)) is monotonically decreasing

in t.
(2) For each r, there exists a constant R = R(r), such that if y, z ∈ X lie in the

same horosphere about ξ and d(y, z) ≤ r, then d(ρy(t), ρz(t)) ≤ Re−t for all
t.

3.2. Convex and quasiconvex subsets.

Definition 3.11. A subset A ⊆ X is convex if xy ⊆ A for all x, y ∈ A. A closed
subset A ⊆ X is λ-quasiconvex if xy ⊆ N̄λ(A) for all x, y ∈ A. Convex closed subsets
are 0-quasiconvex.

Remark 3.12. If A is a λ-quasiconvex set, then QHull(A) ⊆ N̄λ(A).

Proposition 3.13. [11, Proposition 2.5.4] There is a function rκ : R+ → R+

(depending also on κ) such that for every λ-quasiconvex subset A ⊆ X, we have

Hull(A) ⊆ N̄rκ(λ)(A).

Remark 3.14. Note that, by the definition of the hyperbolicity constant δ of
X, the quasiconvex hull QHull(A) is 2δ-quasiconvex for every closed subset A ⊆ X̄.
Thus, Hull(A) ⊆ N̄r(QHull(A)) for some absolute constant r ∈ [0,∞).

Remark 3.15. For any closed subset A ⊆ ∂∞X with more than one point,
∂∞Hull(A) = A.
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Lemma 3.16. Assume that ξ, η are distinct points in ∂∞X and (xi), (yi) are
sequences in X converging to ξ and to η respectively. Then for every point p ∈ ξη ⊆
X, p ∈ N̄2δ(xiyi) for all sufficiently large i.

Proof. Since (xi) converges to ξ and (yi) converges to η, we have d(p, xiξ)→∞
and d(p, yiη)→∞ as i→∞. By the δ-hyperbolicity of X,

p ∈ N̄2δ(xiyi ∪ xiξ ∪ yiη).

Since d(p, xiξ)→∞ and d(p, yiη)→∞, we obtain

p ∈ N̄2δ(xiyi)

for sufficiently large i. �

Remark 3.17. This lemma holds for any δ-hyperbolic geodesic metric space.

3.3. Volume inequalities. Let V (r, n) denote the volume of the r-ball in Hn.
Then, for a positive constant cn depending only on n,

V (r, n) = cn

ˆ r

0

sinhn−1(t) dt ≤ cn
2n−1(n− 1)

e(n−1)r = Cne
(n−1)r,

see e.g. [22, Sect. 1.5].
Volumes of metric balls B(x, r) ⊂ X satisfy the inequalities

(3.1) V (r, n) ≤ VolB(x, r) ≤ V (κr, n)/κn,

see e.g. Proposition 1.1.12 and Proposition 1.2.4 in [11], or [8, Sect. 11.10]. As a
corollary of these volume inequalities we obtain the following packing inequality:

Lemma 3.18. Suppose that Z ⊂ X is a subset such that the minimal distance
between distinct points of Z is at least 2r. Then for every x ∈ X, R ≥ 0, we have

card (B(x,R) ∩ Z) ≤ V (κ(R + r), n)

κnV (r, n)
≤ Cn
κnV (r, n)

eκ(n−1)(R+r).

In particular, if

card (Z) >
Cn

V (r, n)
eκ(n−1)(R+r)

then for any z ∈ Z there exists z′ ∈ Z such that d(z, z′) > R.

4. Escaping sequences of closed geodesics in negatively curved manifolds

In this section, X is a Hadamard manifold of negative curvature ≤ −1 with the
hyperbolicity constant δ, Γ < Isom(X) is a discrete isometry subgroup andM = X/Γ
is the quotient orbifold. A sequence of subsets Ai ⊂M is said to escape every compact
subset of M if for every compact K ⊂M , the subset

{i ∈ N : Ai ∩K 6= ∅}
is finite. Equivalently, for every x ∈M , d(x,Ai)→∞ as i→∞.

Lemma 4.1. Suppose that (ai) is a sequence of closed geodesics in M = X/Γ
which escapes every compact subset of M and x ∈ M . Then, after passing to a
subsequence in (ai), there exist geodesic arcs bi connecting ai, ai+1 and orthogonal to
these geodesics, such that the sequence (bi) also escapes every compact subset of M .

Proof. Consider a sequence of compact subsets Kn := B̄(x, 7δn) exhausting M .
Without loss of generality, we may assume that ai ∩Kn = ∅ for all i ≥ n.

We first prove the following claim:
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Claim. For each compact subset K ⊂ M and for each infinite subsequence
(ai)i∈I , I ⊂ N, there exists a further infinite subsequence, (ai)i∈J , J ⊂ I, such that
for each pair of distinct elements i, j ∈ J , there exists a geodesic arc bij connecting
ai to aj and orthogonal to both, which is disjoint from K.

Proof. Given two closed geodesics a, a′ in M , we consider the set π1(M,a, a′)
of relative homotopy classes of paths in M connecting a and a′, where the relative
homotopy is defined through paths connecting a to a′.

In each class [b′] ∈ π1(M,a, a′), there exists a continuous path b which is the
length minimizer in the class. By minimality of its length, b is a geodesic arc orthog-
onal to a and a′ at its end-points.

For each compact subset K ⊂M , there exists m ∈ N such that for all i ∈ Im :=
I ∩ [m,∞), ai ∩K ′ = ∅ where K ′ = N̄7δ(K). For i ∈ Im let ci denote a shortest arc
between ai and K ′; this geodesic arc terminates a point xi ∈ K ′. By compactness
of K ′, the sequence (xi)i∈Im contains a convergent subsequence, (xi)i∈J , J ⊂ Im and,
without loss of generality, we may assume that for all i, j ∈ J , d(xi, xj) ≤ δ. Let xixj
denote a (not necessarily unique) geodesic in M of length ≤ δ connecting xi to xj.
For each pair of indices i, j ∈ J , consider the concatenation

b′ij = ci ∗ xixj ∗ c−1
j ,

which defines a class [b′ij] ∈ π1(M,ai, aj). Let bij ∈ [b′ij] be a length-minimizing
geodesic arc in this relative homotopy class. Then bij is orthogonal to ai and aj. By
the δ-hyperbolicity of X,

bij ⊆ N̄7δ(ai ∪ ci ∪ cj ∪ aj).
Hence, bij ∩K = ∅ for any pair of distinct indices i, j ∈ J . This proves the claim. �

We now prove the lemma. Assume inductively (by induction on N) that we have
constructed an infinite subset SN ⊂ N such that:

For the N -th element iN ∈ SN , for each j > iN , j ∈ SN , there exists a geodesic
arc bj inM connecting aiN to aj and orthogonal to both, which is disjoint from KN−1.

Using the claim, we find an infinite subset SN+1 ⊂ SN which contains the first
N elements of SN , such that for all s, t > iN , s, t ∈ SN+1, there exists a geodesic bs,t
in M connecting as to at, orthogonal to both and disjoint from KN .

The intersection
S :=

⋂
N∈N

SN

equals {iN : N ∈ N} and, hence, is infinite. We, therefore, obtain a subsequence
(ai)i∈S such that for all i, j ∈ S, i < j, there exists a geodesic bij in M connecting ai
to aj and orthogonal to both, which is disjoint from Ki−1. �

Remark 4.2. It is important to pass a subsequence of (ai), otherwise, the lemma
is false. A counter-example is given by a geometrically infinite manifold with two
distinct ends E1 and E2 where we have a sequence of closed geodesics ai (escaping
every compact subset of M) contained in E1 for odd i and in E2 for even i. Then bi
will always intersect a compact subset separating the two ends no matter what bi we
take.

5. Elementary groups of isometries

Every isometry g of X extends to a homeomorphism (still denoted by g) of X̄.
We let Fix(g) denote the fixed point set of g : X̄ → X̄. For a subgroup Γ < Isom(X),
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we use the notation
Fix(Γ) :=

⋂
g∈Γ

Fix(g),

to denote the fixed point set of Γ in X̄. Typically, this set is empty.
Isometries of X are classified as follows:
(1) g is parabolic if Fix(g) is a singleton {p} ⊂ ∂∞X. In this case, g preserves

(setwise) every horosphere centered at p.
(2) g is loxodromic if Fix(g) consists of two distinct points p, q ∈ ∂∞X. The

loxodromic isometry g preserves the geodesic pq ⊂ X and acts on it as a
nontrivial translation. The geodesic pq is called the axis Ag of g.

(3) g is elliptic if it fixes a point in X. The fixed point set of an elliptic isometry is
a totally-geodesic subspace of X invariant under g. In particular, the identity
map is an elliptic isometry of X.

If g ∈ Isom(X) is such that Fix(g) contains three distinct points ξ, η, ζ ∈ ∂∞X,
then g also fixes pointwise the convex hull Hull({ξ, η, ζ}) and, hence, g is an elliptic
isometry of X.

For each isometry g ∈ Isom(X) we define its translation length l(g) as follows:

l(g) = inf
x∈X

d(x, g(x)),

and we define the rotation of g at x ∈ X as:

rg(x) = max
v∈TxX

∠(v, Pg(x),x ◦ g∗xv).

Here g∗x : TxX → Tg(x)X is the differential and Pg(x),x : Tg(x)X → TxX is the parallel
transport along the unique geodesic from g(x) to x. Following [3], given a ≥ 8 we
define the norm of g at x as ng(x) = max(rg(x), a · dg(x)) where dg(x) = d(x, g(x)).

A discrete subgroup G of isometries of X is called elementary if either Fix(G) 6= ∅
or if G preserves set-wise some bi-infinite geodesic in X. (In the latter case, G
contains an index 2 subgroup G′ such that Fix(G′) 6= ∅.) Based on the fixed point
set, elementary groups are divided into the following three classes [11]:

(1) F (G) is a nonempty subspace of X̄.
(2) F (G) consists of a single point of ∂∞X.
(3) G has no fixed point inX, andG preserves setwise a unique bi-infinite geodesic

in X.

Remark 5.1. If G < Isom(X) is discrete and in the first class, then G is finite
by discreteness and consists of elliptic isometries. If G is discrete and in the second
class, it is called parabolic, and it contains a parabolic isometry [11, Proposition 4.2].
Discrete groups G in the third class will be called elementary loxodromic groups.

Lemma 5.2. If G < Isom(X) is a discrete elementary subgroup consisting en-
tirely of elliptic elements, then G is finite.

Proof. By Remark 5.1, G is either finite or loxodromic. Suppose that G is
loxodromic and preserves a geodesic l ⊂ X setwise. Let ρ : G → Isom(l) denote the
restriction homomorphism. Since G is loxodromic, the subgroup ρ(G) has no fixed
point in l. Hence, there exist two elements g, h ∈ G such that ρ(g), ρ(h) are distinct
involutions. Their product ρ(g)ρ(h) is a nontrivial translation of l. Hence, gh is a
loxodromic isometry of X, contradicting our assumption. Hence, G is finite. �
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Corollary 5.3. Every discrete elementary loxodromic group contains a loxo-
dromic isometry.

Consider a subgroup Γ of isometries of X. Given any subset Q ⊆ X̄, let

stabΓ(Q) = {γ ∈ Γ | γ(Q) = Q}

denote the setwise stabilizer of Q in Γ.

Definition 5.4. A point p ∈ ∂∞X is called a parabolic fixed point of a subgroup
Γ < Isom(X) if stabΓ(p) is parabolic.

Remark 5.5. If p ∈ ∂∞X is a parabolic fixed point of a discrete subgroup
Γ < Isom(X), then stabΓ(p) is a maximal parabolic subgroup of Γ, see [11, Proposi-
tion 3.2.1]. Thus, we have a bijective correspondence between the Γ-orbits of para-
bolic fixed points of Γ and the Γ-conjugacy classes of maximal parabolic subgroups
of Γ.

Consider an elementary loxodromic subgroup G < Γ with the axis β. Then
stabΓ(β) is a maximal loxodromic subgroup of Γ, see [11, Proposition 3.2.1].

6. The thick-thin decomposition

For an isometry g ∈ Isom(X), define the Margulis region Mar(g, ε) of g as:

Mar(g, ε) = {x ∈ X | d(x, g(x)) ≤ ε}.

By the convexity of the distance function, Mar(g, ε) is convex.
Given x ∈ X and a discrete subgroup Γ < Isom(X), let Fε(x) = {γ ∈ Γ |

d(x, γx) ≤ ε} denote the set of isometries in Γ which move x a distance at most ε.
Let Γε(x) denote the subgroup generated by Fε(x). We use ε(n, κ) to denote the
Margulis constant of X. Then, by the Margulis Lemma, Γε(x) is virtually nilpotent
whenever 0 < ε ≤ ε(n, κ). More precisely,

Proposition 6.1. [3, Theorem 9.5] Given 0 < ε ≤ ε(n, κ) and x ∈ X, the group
N generated by the set {γ ∈ Γε(x) | nγ(x) ≤ 0.49} is a nilpotent subgroup of Γε(x) of
a uniformly bounded index (where the bound depends only on κ and n). Moreover,
each coset γN ⊂ Γε(x) can be represented by an element γ of word length ≤ m(n, κ)
in the generating set Fε(x) of Γε(x). Here m(n, κ) is a constant depending only on
κ and n.

Remark 6.2. Γε(x) is always finitely generated.

We will use the following important property of nilpotent groups in Section 8:

Theorem 6.3. [15, 19] Let G be a nilpotent group. The set of all finite order
elements of G forms a characteristic subgroup of G. This subgroup is called the
torsion subgroup of G and denoted by Tor(G).

Given 0 < ε ≤ ε(n, κ) and a discrete subgroup Γ < Isom(X), define the set

Tε(Γ) = {p ∈ X | Γε(p) is infinite}.

Below we establish some properties of Tε(Γ) where Γ < Isom(X) are discrete sub-
groups.

Applying Lemma 3.18 to the subset Z = G · x ⊂ X we obtain:
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Lemma 6.4. Suppose that G = 〈g〉 is a (discrete) infinite cyclic subgroup and
x /∈ int(Tε(G)), i.e. d(x, gi(x)) ≥ ε for all i 6= 0. Then for every D there exists i,

0 < i ≤ N(ε, n, κ,D) := 1 +
Cne

κ(n−1)ε/2

κnV (ε/2, n)
eκ(n−1)D

such that d(x, gix) ≥ D.

Lemma 6.5. Suppose that G < Isom(X) is a discrete parabolic subgroup and
ε > 0. For any z ∈ Tε/3(G), we have B(z, ε/3) ⊆ Tε(G).

Proof. The set Fε/3(z) = {γ ∈ G|d(z, γ(z)) ≤ ε/3} generates an infinite subgroup
of G since z ∈ Tε/3(G). For any element γ ∈ Fε/3(z) and z′ ∈ B(z, ε/3), we have

d(z′, γ(z′)) ≤ d(z, z′) + d(z, γ(z)) + d(γ(z), γ(z′)) ≤ ε/3 + ε/3 + ε/3 = ε.

Therefore, Fε(z′) = {γ ∈ G|d(z′, γ(z′)) ≤ ε} also generates an infinite subgroup.
Thus z′ ∈ Tε(Gi) and B(z, ε/3) ⊆ Tε(G). �

Proposition 6.6. [11, Proposition 3.5.2] Suppose G < Isom(X) is a discrete
parabolic subgroup with the fixed point p ∈ ∂∞X, and ε > 0. Then Tε(G) ∪ {p}
is starlike about p, i.e. for each x ∈ X̄ \ {p}, the intersection xp ∩ Tε(G) is a ray
asymptotic to p.

Corollary 6.7. Suppose that G < Isom(X) is a discrete parabolic subgroup
with the fixed point p ∈ ∂∞X. For every ε > 0, Tε(G) is a δ-quasiconvex subset of
X.

Proof. By Proposition 6.6, Tε(G) ∪ {p} is starlike about p. Every starlike set is
δ-quasiconvex, [11, Corollary 1.1.6]. Thus Tε(G) is δ-quasiconvex for every discrete
parabolic subgroup G < Isom(X). �

Remark 6.8. According to Proposition 3.13, there exists r = rκ(δ) ∈ [0,∞)
such that Hull(Tε(G)) ⊆ N̄r(Tε(G)) for any ε > 0.

Lemma 6.9. If G < Isom(X) is a discrete parabolic subgroup with the fixed
point p ∈ ∂∞X, then ∂∞Tε(G) = {p}.

Proof. By Lemma 3.10(2), for any p′ ∈ ∂∞X \{p}, both p′p∩Tε(G) and X∩(p′p\
Tε(G)) are nonempty [11, Proposition 3.5.2]. If p′ ∈ ∂∞Tε(G), there exists a sequence
of points (xi) ⊆ Tε(G) which converges to p′. By Proposition 6.6, xip ⊆ Tε(G). Since
Tε(G) is closed in X, then p′p ⊆ Tε(G), which is a contradiction. �

Proposition 6.10. Suppose that G < Isom(X) is a discrete parabolic subgroup
with the fixed point p ∈ ∂∞X. Given r > 0 and x ∈ X with d(x,Hull(Tε(G))) = r, if
(xi) is a sequence of points on the boundary of N̄r(Hull(Tε(G))) and d(x, xi) → ∞,
then there exists zi ∈ xxi such that the sequence (zi) converges to p and for every
ε > 0, zi ∈ N̄δ(Tε(G)) for all sufficiently large i.

Proof. By the δ-hyperbolicity of X, there exists a point zi ∈ xxi such that
d(zi, px) ≤ δ and d(zi, pxi) ≤ δ. Let wi ∈ pxi and vi ∈ px be the points closest to zi,
see Figure 3. Then d(zi, wi) ≤ δ, d(zi, vi) ≤ δ and, hence, d(wi, vi) ≤ 2δ.

According to Lemma 6.9, the sequence (xi) converges to the point p. Hence, any
sequence of points on xip converges to p as well; in particular, (wi) converges to p.
As d(wi, zi) ≤ δ, we also obtain

lim
i→∞

zi = p.
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Since d(zi, vi) ≤ δ, it suffices to show that vi ∈ Tε(G) for all sufficiently large i.
This follows from the fact that d(x, vi) → ∞ and that xp ∩ Tε(G) is a geodesic ray
asymptotic to p. �

Figure 3.

Proposition 6.11. Let 〈g〉 < Isom(X) be the cyclic group generated by a loxo-
dromic isometry g. Let γ denote the simple closed geodesic Ag/〈g〉 in M = X/〈g〉. If
w ⊆M is a piecewise-geodesic loop freely homotopic to γ which consists of r geodesic
segments, then

d(w, γ ∪ (Mar(g, ε)/〈g〉)) ≤ cosh−1(
√

2)dlog2 re+ sinh−1(2/ε).

Proof. Let x ∈ w be one of the vertices. Connect this point to itself by a
geodesic segment α in M which is homotopic to w (rel {x}). The loop w ∗ α−1 lifts
to a polygonal loop β ⊆ X with consecutive vertices x0, x1, · · · , xr such that the
geodesic segment α̃ := x0xr covers α. Let w̃ denote the union of edges of β distinct
from α̃. By Proposition 3.9, α̃ is contained in the λ-neighborhood of the piecewise
geodesic path w̃ where λ = cosh−1(

√
2)dlog2 re. It follows that α ⊆ N̄λ(w).

Suppose that Mar(g, ε) 6= ∅. It is closed and convex. Let h = d(α̃,Mar(g, ε)).
Choose points A ∈ α̃, B ∈ Mar(g, ε) such that d(A,B) = h realizes the minimal
distance between α̃ and Mar(g, ε). Let F = ProjMar(g,ε)(xr). Then we obtain a
quadrilateral [ABFxr] with ∠ABF = ∠BFxr = ∠BAxr ≥ π/2. By Corollary 3.7,

d(B,F ) ≤ sinh(d(B,F )) ≤ 1/ sinh(h).

Take the point D ∈Mar(g, ε) which is closest to x0. By a similar argument, we
have d(B,D) ≤ 1/ sinh(h). Thus, d(F,D) ≤ 2/ sinh(h). The projection ProjAg is
〈g〉-equivariant, thus F,D are identified by the isometry g. Hence

ε = d(D, g(D)) = d(D,F ) ≤ 2/ sinh(h)

and h ≤ sinh−1(2/ε).
If Mar(g, ε) = ∅, then the translation length l(g) ≥ ε. Let h = d(α̃, Ag). Replac-

ing Mar(g, ε) by Ag, we use a similar argument to obtain that

d(Ag, α̃) ≤ sinh−1(2/ε).

Hence,

d(w, γ ∪ (Mar(g, ε)/〈g〉)) ≤ cosh−1(
√

2)dlog2 re+ sinh−1(2/ε). �

Corollary 6.12. Under the conditions in Proposition 6.11, if the translation
length of g satisfies that l(g) ≥ ε > 0, then γ is contained in the C-neighborhood of
the loop w where C = cosh−1(

√
2)dlog2 re+ sinh−1(2/ε) + 2δ.
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Proof. We use the same notations as in proof of Proposition 6.11. Let E ∈
Ag be the nearest point to g(A) as in Figure 4. Then π(BE) in M = X/〈g〉 is
the geodesic loop γ where π is the covering projection. By δ-hyperbolicity of X,
BE is within the (h + 2δ)-neighborhood of the lifts of α as in Figure 4. Thus γ
is within the (sinh−1(2/ε) + 2δ)-neighborhood of α. Since α is contained in the
(cosh−1(

√
2)dlog2 re)-neighborhood of w, the loop γ is contained in the (cosh−1(

√
2)

dlog2 re+ sinh−1(2/ε) + 2δ)-neighborhood of w. �

Figure 4.

Given 0 < ε ≤ ε(n, κ) and a discrete subgroup Γ, the set Tε(Γ) is a disjoint union
of the subsets of the form Tε(G), where G ranges over all maximal infinite elementary
subgroups of Γ, [11, Proposition 3.5.5]. If G < Γ is a maximal parabolic subgroup,
Tε(G) is precisely invariant and StabΓ(Tε(G)) = G, [11, Corollary 3.5.6]. In this case,
by abuse of notation, we regard Tε(G)/G as a subset of M , and call it a Margulis
cusp. Similarly, if G < Γ is a maximal loxodromic subgroup, Tε(G)/G is called a
Margulis tube.

For the quotient orbifold M = X/Γ, set

thinε(M) = Tε(Γ)/Γ.

This closed subset is the thin part4 of the quotient orbifold M . It is a disjoint union
of its connected components, and each such component has the form Tε(G)/G, where
G ranges over all maximal infinite elementary subgroups of Γ.

The closure of the complement M \ thinε(M) is the thick part of M , denoted
by thickε(M). Let cuspε(M) denote the union of all Margulis cusps of M ; it is
called the cuspidal part of M . The closure of the complement M \ cuspε(M) is
denoted by noncuspε(M); it is called the noncuspidal part of M . Observe that
cuspε(M) ⊆ thinε(M) and thickε(M) ⊆ noncuspε(M). If M is a manifold (i.e., Γ
is torsion-free), the ε-thin part is also the collection of all points x ∈ M where the
injectivity radius of M at x is no greater than ε/2.

7. Quasigeodesics

In this section, X is a Hadamard manifold of sectional curvature ≤ −1. We
will prove that certain concatenations of geodesics in X are uniform quasigeodesics,
therefore, according to the Morse Lemma, are uniformly close to geodesics.

Definition 7.1. A map q : I → X defined on an interval I ⊂ R is called a
(λ, α)-quasigeodesic (for λ ≥ 1 and α ≥ 0) if

λ−1|s− t| − α ≤ d(q(s), q(t)) ≤ λ|s− t|+ α

4more precisely, ε-thin part
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for all s, t ∈ I.
Proposition 7.2. (Piecewise-geodesic paths with long edges) Define the func-

tion
L(θ) = 2 cosh−1

(
2

sin(θ/2)

)
+ 1.

Suppose that γ = γ1 ∗ · · · ∗ γn ⊆ X̄ is a piecewise geodesic path5 from x to y where
each γi is a geodesic of length ≥ L = L(θ) and the angles between adjacent arcs γi
and γi+1 are ≥ θ > 0. Then γ is a (2L, 4L+ 1)-quasigeodesic.

Proof. Recall that Bis(xi, xi+1) denotes the perpendicular bisector of γi = xixi+1

where x1 = x and xn+1 = y. We claim that the consecutive bisectors are at least
unit distance apart:

(7.1) d(Bis(xi, xi−1),Bis(xi, xi+1)) ≥ 1.

If the closures in X̄ of the bisectors Bis(xi, xi+1) and Bis(xi+1, xi+2) intersect
each other, then we have a quadrilateral [ABCD] with ∠DAB = ∠DCB = π/2 as
in Figure 5(a), where B ∈ X̄. Connecting D,B by a geodesic segment (or a ray), we
get two right triangles [ADB] and [BCD], and one of the angles ∠ADB,∠CDB is
≥ θ/2. Without loss of generality, we can assume that ∠ADB ≥ θ/2. By Corollary
3.5 and Remark 3.6, cosh(d(A,D)) sin∠ADB ≤ 1. However, we know that

cosh(d(A,D)) sin(∠ADB) ≥ cosh(L/2) sin(θ/2) > 1,

which is a contradiction. Thus, the closures of Bis(xi, xi+1) and Bis(xi+1, xi+2) are
disjoint.

Figure 5.

Let C ∈ Bis(xi, xi+1), D ∈ Bis(xi+1, xi+2) denote points (not necessarily unique)
such that d(C,D) is the minimal distance between these perpendicular bisectors.
Since CB ⊂ Bis(xi, xi+1), DE ⊂ Bis(xi+1, xi+2), it follows that the segment CD is
orthogonal to both CB and DE. The segment CD lies on a unique (up to reparam-
eterization) bi-infinite geodesic ξη. Then A ∈ NP (ξ, η) for some point P ∈ ξη. We
claim that P ∈ CD. Otherwise, we obtain a triangle in X with two right angles,
which is a contradiction. Hence, the geodesic AP ⊆ NP (C,D) and AP is orthogonal
to CD as in Figure 5(b). We get two quadrilaterals [ABCP ] and [APDE]. Without
loss of generality, assume that ∠BAP ≥ θ/2. By Corollary 3.7,

cosh(d(C,D)) ≥ cosh(d(C,P )) ≥ cosh(L/2) sin(θ/2) > 2 > cosh(1).

Hence, d(C,D) > 1. This implies the inequality (7.1).
5parameterized by its arc-length
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We now prove that the path γ is quasigeodesic. For each i, if d(xi, xi+1) ≥ 2L,
take the point yi1 ∈ γi such that d(xi, yi1) = L. If L ≤ d(yi1, xi+1) < 2L, we stop.
Otherwise, take the point yi2 ∈ γi such that d(yi1, yi2) = L. If d(yi2, xi+1) ≥ 2L, we
continue the process until we get yij such that L ≤ d(yij, xi+1) < 2L. Thus we get a
new partition of the piecewise geodesic path γ:

γ = γ′1 ∗ · · · ∗ γ′n′

such that for each i, L ≤ length(γ′i) < 2L, and consecutive geodesic arcs γ′i and γ′i+1

meet either at the angle π or, at least, at the angle ≥ θ. See Figure 6(a).
In order to prove that γ is (λ, ε)-quasigeodesic, with λ ≥ 1 and ε ≥ 0, we need

to verify the inequality
1

λ
length(γ|[ta,tb])− ε ≤ d(a, b) ≤ λ · length(γ|[ta,tb]) + ε

for all pairs of points a, b ∈ γ, where γ(ta) = a and γ(tb) = b. The upper bound (for
arbitrary λ ≥ 1 and ε ≥ 0) follows from the triangle inequality and we only need to
establish the lower bound.

The main case to consider is when a, b are both terminal endpoints of some
geodesic pieces γ′i, γ′j of γ; see Figure 6(b). The bisectors of the geodesic segments of
γ divide ab into several pieces, and, by (7.1), each piece has length ≥ 1. At the same
time, each arc γ′k of γ has length < 2L. Thus, d(a, b) ≥ |j − i|, while

2L|j − i|+ 2L > length(γ|[ta,tb]).
We obtain:

d(a, b) ≥ 1

2L
length(γ|[ta,tb])− 1.

Lastly, general points a ∈ γ′i, b ∈ γ′j are within distance < 2L from the terminal
endpoints a′, b′ of these segments. Hence,

d(a, b) ≥ d(a′, b′)− 4L ≥ 1

2L
length(γ|[ta′ ,tb′ ])− 1− 4L

≥ 1

2L
length(γ|[ta,tb])− 1− 4L =

1

2L
length(γ|[ta,tb])− (4L+ 1).

Therefore, γ is a (2L, 4L+ 1)-quasigeodesic. �

Figure 6.
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Proposition 7.3. (Piecewise-geodesic paths with long and short edges) Define
the function

L(θ, ε) = 2 cosh−1

(
e2 + 1

2 sin(α/2)

)
+ 1

where α = min{θ, π/2 − arcsin(1/ cosh ε)}. Suppose that γ = γ1 ∗ · · · ∗ γn ⊆ X̄ is a
piecewise geodesic path from x to y such that:

(1) Each geodesic arc γj has length either at least ε > 0 or at least L = L(θ, ε).
(2) If γj has length < L, then the adjacent geodesic arcs γj−1 and γj+1 have

lengths at least L and γj meets γj−1 and γj+1 at angles ≥ π/2.
(3) Other adjacent geodesic arcs meet at an angle ≥ θ.

Then γ is a (2L, 4L+3)-quasigeodesic.

Proof. We call an arc γj long if its length is ≥ L and short otherwise. Notice
that γ contains no consecutive short arcs. Unlike the proof of Proposition 7.2, we
cannot claim that the bisectors of consecutive arcs of γ are unit distance apart (or
even disjoint). Observe, however, that by the same proof as in Proposition 7.2, the
bisectors of every consecutive pair γj, γj+1 of long arcs are at least unit distance apart.

Consider, therefore, short arcs. Suppose that γj = xjxj+1 is a short arc. Then
γj−1 = xj−1xj and γj+1 = xj+1xj+2 are long arcs. Consider the geodesic xj−1xj+1

and the triangle [xj−1xjxj+1]. By Proposition 3.4, d(xj−1, xj+1) ≥ d(xj−1, xj) ≥ L
and by Corollary 3.5,

cosh ε sin∠xjxj+1xj−1 ≤ cosh(d(xj, xj+1)) sin∠xjxj+1xj−1 ≤ 1.

Hence,

∠xjxj+1xj−1 ≤ arcsin

(
1

cosh ε

)
,

and
∠xj−1xj+1xj+2 ≥

π

2
− arcsin

(
1

cosh ε

)
.

By a similar argument to the one of Proposition 7.2, the bisectors of the arcs xj−1xj+1

and xj+1xj+2 are at least distance 2 apart, see Figure 7.

Figure 7.

We now prove that γ is a (2L, 4L + 3)-quasigeodesic. By the same argument as
in Proposition 7.2, we can assume that all long arcs of γ are shorter than 2L (and
short arcs, are, of course, shorter than L).

As in the proof of Proposition 7.2, we first suppose that points a = γ(ta), b = γ(tb)
in γ are terminal points of arcs γi, γj, i < j. Consider bisectors of xk−1xk+1 for short
arcs γk in γ |[ta,tb] and bisectors of the remaining long arcs except γk−1. They divide
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ab into several segments, each of which has length at least 2. By adding these lengths
together, we obtain the inequality

d(a, b) ≥ j − i− 2,

while
2(j − i+ 1)L ≥ length(γ |[ta,tb]).

Putting these inequalities together, we obtain

d(a, b) ≥ 1

2L
length(γ |[ta,tb])− 3.

Lastly, for general points a, b in γ, choosing a′, b′ as in the proof of Proposition 7.2,
we get:

d(a, b) ≥ d(a′, b′)− 4L ≥ 1

2L
length(γ|[ta′ ,tb′ ])− 4L− 3

≥ 1

2L
length(γ|[ta,tb])− 4L− 3 =

1

2L
length(γ|[ta,tb])− (4L+ 3).

Thus, γ is a (2L, 4L+ 3)-quasigeodesic. �

Remark 7.4. By the Morse Lemma, the Hausdorff distance between the quasi-
geodesic path γ and xy is at most C = C(L), [15, Lemma 9.38, Lemma 9.80].

8. Loxodromic products

In order to prove our generalization of Bonahon’s theorem for torsion-free groups,
we need to construct a loxodromic element with uniformly bounded word length in
〈f, g〉 where f, g are two parabolic isometries generating a discrete nonelementary
subgroup of Isom(X). To deal with the case of general discrete subgroups, possibly
containing elliptic elements, we also need to extend this result to pairs of elliptic
isometries g1, g2.

We first consider discrete subgroups generated by parabolic isometries. Our goal
is to prove Theorem 8.5. For the proof of this theorem we will need several technical
results.

Lemma 8.1. [21, Theorem Σm] Let F = {A1, A2, · · · , Am} be a family of open
subsets of an n-dimensional topological space X. If for every subfamily F ′ of size j
where 1 ≤ j ≤ n + 2, the intersection ∩F ′ is nonempty and contractible, then the
intersection ∩F is nonempty.

Proof. This lemma is a special case of the topological Helly theorem [21]. Here we
give another proof of the lemma. Suppose k is the smallest integer such that there
exists a subfamily F ′ = {Ai(1), Ai(2), · · · , Ai(k)} of size k with empty intersection
∩F ′ = ∅. By the assumption, k ≥ n+ 3. Then

U :=
⋃

1≤j≤k

Ai(j)

is homotopy equivalent to the nerve N(F ′) [18, Corollary 4G.3], which, in turn,
is homotopy equivalent to Sk−2. Then Hk−2(Sk−2) ∼= Hk−2(U) ∼= Z, which is a
contradiction since k − 2 ≥ n+ 1 and X has dimension n.

�
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Proposition 8.2. LetX be a δ-hyperbolic n-dimensional Hadamard space. Sup-
pose that B1, · · · , Bk are convex subsets of X such that Bi ∩ Bj 6= ∅ for all i and j.
Then there is a point x ∈ X such that d(x,Bi) ≤ nδ for all i = 1, . . . , k.

Proof. For k = 1, 2, the lemma is clearly true. We first claim that for each
3 ≤ k ≤ n + 2, there exists a point x ∈ X such that d(x,Bi) ≤ (k − 2)δ. We prove
the claim by induction on k. When k = 3, pick points xij ∈ Bi ∩ Bj, i 6= j. Then
xijxil ⊂ Bi for all i, j, l. Since X is δ-hyperbolic, there exists a point x ∈ X within
distance ≤ δ from all three sides of the geodesic triangle [x12x23x31]. Hence,

d(x,Bi) ≤ δ, i = 1, 2, 3,

as well.
Assume that the claim holds for k − 1. Set B′i = N̄δ(Bi) and Ci = B′i ∩ B1

where i ∈ {2, 3, · · · , k}. By the convexity of the distance function on X, each B′i is
still convex in X and, hence, is a Hadamard space. Furthermore, each B′i is again
δ-hyperbolic.

We claim that Ci ∩ Cj 6= ∅ for all i, j ∈ {2, 3, · · · , k}. By the nonemptyness
assumption, there exist points x1i ∈ B1 ∩ Bi 6= ∅, x1j ∈ B1 ∩ Bj 6= ∅ and xij ∈
Bi ∩ Bj 6= ∅. By δ-hyperbolicity of X, there exists a point y ∈ x1ix1j such that
d(y, x1ixij) ≤ δ, d(y, x2jxij) ≤ δ.

Therefore, y ∈ B1 ∩ N̄δ(Bi) ∩ N̄δ(Bj) = Ci ∩ Cj. By the induction hypothesis,
there exists a point x′ ∈ X such that d(x′, Ci) ≤ (k − 3)δ for each i ∈ {2, 3, · · · , k}.
Thus,

d(x′, Bi) ≤ (k − 2)δ, i ∈ {1, 2, · · · , k}

as required.
For k > n + 2, set Ui = N̄nδ(Bi). Then by the claim, we know that for any

subfamily of {Ui} of size j where 1 ≤ j ≤ n + 2, its intersection is nonempty and
the intersection is contractible since it is convex. By Lemma 8.1, the intersection
of the family {Ui} is also nonempty. Let x be a point in this intersection. Then
d(x,Bi) ≤ nδ for all i ∈ {1, 2, · · · , k}. �

Proposition 8.3. There exists a function k : R+ × R+ → N with the fol-
lowing property. Let g1, g2, · · · , gk be parabolic elements in a discrete subgroup
Γ < Isom(X). For each gi let Gi < Γ be the unique maximal parabolic subgroup
containing gi, i.e. Gi = stabΓ(pi), where pi ∈ ∂∞X is the fixed point of gi. Suppose
that

Tε(Gi) ∩ Tε(Gj) = ∅

for all i 6= j. Then, whenever k ≥ k(D, ε), there exists a pair of indices i, j with

d(Tε(Gi), Tε(Gj)) > D.

Proof. For each i, Hull(Tε(Gi)) is convex and by Remark 6.8, Hull(Tε(Gi)) ⊆
N̄r(Tε(Gi)), for some uniform constant r = rκ(δ). Suppose that g1, g2, · · · , gk and D
are such that for all i and j,

d(Tε(Gi), Tε(Gj)) ≤ D.

Then d(Hull(Tε(Gi)),Hull(Tε(Gj))) ≤ D.
Our goal is to get a uniform upper bound on k. Consider the D/2-neighborhoods

N̄D/2(Hull(Tε(Gi))). They are convex inX and have nonempty pairwise intersections.
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Thus, by Proposition 8.2, there is a point x ∈ X such that

d(x, Tε(Gi)) ≤ R1 := nδ +
D

2
+ r, i = 1, . . . , k.

Then
Tε(Gi) ∩B(x,R1) 6= ∅, i = 1, . . . , k.

Next, we claim that there exists R2 ≥ 0, depending only on ε, such that

Tε(Gi) ⊆ N̄R2(Tε/3(Gi)).

Choose any point y ∈ Tε(Gi) and let ρi : [0,∞)→ X be the ray ypi. By Lemma 3.10,
there exists R = R(ε) such that

d(ρi(t), g(ρi(t))) ≤ Re−t

whenever g ∈ Gi is a parabolic (or elliptic) isometry such that

d(y, g(y)) ≤ ε.

Let t = max{ln(3R/ε), 0}. Then d(ρi(t), g(ρi(t))) ≤ ε/3 and, therefore,

Tε(Gi) ⊆ N̄t(Tε/3(Gi))

for all i. Let R2 = t. By the argument above, B(x,R1 + R2) ∩ Tε/3(Gi) 6= ∅ for all
i. Assume that zi ∈ B(x,R1 + R2) ∩ Tε/3(Gi). Then B(zi, ε/3) ⊆ B(x,R3) where
R3 = R1 + R2 + ε/3. By Lemma 6.5, B(zi, ε/3) ⊆ B(x,R3) ∩ Tε(Gi). Since Tε(Gi)
and Tε(Gj) are disjoint for all i 6= j, the metric balls B(zi, ε/3) and B(zj, ε/3) are
also disjoint. Recall that V (r, n) denotes the volume of the r-ball in Hn. Then
Lemma 3.18 implies that for every

k ≥ k(D, ε) :=
Cne

κ(n−1)R3

V (ε/3, n)
+ 1,

there exist i, j, 1 ≤ i, j ≤ k, such that d(Tε(Gi), Tε(Gj)) > D. �

Figure 8.

Proposition 8.4. Suppose that g1, g2 are parabolic isometries ofX. There exists
a constant L which only depends on ε such that if d(Mar(g1, ε),Mar(g2, ε)) > L,
then h = g2g1 is loxodromic.

Proof. Let Bi = Mar(gi, ε), so d(B1, B2) > L. Consider the orbits of B1 and
B2 under the action of the cyclic group generated by g2g1 as in Figure 9. Let x0 ∈
B1, y0 ∈ B2 denote points such that d(x0, y0) minimizes the distance function between
points of B1 and B2. For positive integers m > 0, we let

x2m−1 = (g2g1)m−1g2(x0), x2m = (g2g1)m(x0)

and
y2m−1 = (g2g1)m−1g2(y0), y2m = (g2g1)m(y0).
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Similarly, for negative integers m < 0, we let

x2m+1 = (g2g1)m+1g−1
1 (x0), x2m = (g2g1)m(x0)

and
y2m+1 = (g2g1)m+1g−1

1 (y0), y2m = (g2g1)m(y0).

Figure 9.

We construct a sequence of piecewise geodesic paths {γm} where
γm = x−2my−2m ∗ y−2my−2m+1 · · · ∗ x0y0 ∗ y0y1 ∗ y1x1 · · · ∗ x2my2m

for positive integers m. Observe that d(xi, yi) = d(B1, B2) > L and d(x2i−1, x2i) = ε,
d(y2i, y2i+1) = ε for any integer i. By convexity of B1, B2, the angle between any
adjacent geodesic arcs in γm is at least π/2. Let γ denote the limit of the sequence
(γm). By Proposition 7.3, there exists a constant L > 0 such that the piecewise
geodesic path γ : R→ X is unbounded and is a uniform quasigeodesic invariant under
the action of h. By the Morse Lemma [15, Lemma 9.38, Lemma 9.80], the Hausdorff
distance between γ and the complete geodesic which connects the endpoints of γ is
bounded by a uniformly constant C. Thus, g2g1 fixes the endpoints of γ and acts on
the complete geodesic as a translation. We conclude that g2g1 is loxodromic. �

Theorem 8.5. Suppose that g1, g2 are two parabolic elements with different
fixed points. Then there exists a word w ∈ 〈g1, g2〉 such that |w| ≤ 4k(L, ε) + 2 and
w is loxodromic where |w| denotes the length of the word and k(L, ε) is the function
in Proposition 8.3, 0 < ε ≤ ε(n, κ) and L is the constant in Proposition 8.4.

Proof. Let pi ∈ ∂∞X denote the fixed point of the parabolic isometry gi, i =
1, 2. Assume that every element in 〈g1, g2〉 of word length at most 2k(L, ε) + 1 is
parabolic (otherwise, there exists a loxodromic element w ∈ 〈g1, g2〉 of word-length
≤ 4k(L, ε) + 2).

Consider the parabolic elements gi2g1g
−i
2 ∈ 〈g1, g2〉, 0 ≤ i ≤ k(L, ε). The fixed

point (in ∂∞X) of each gi2g1g
−i
2 is gi2(p1). We claim that the points gi2(p1) and gj2(p1)

are distinct for i 6= j. If not, gi2(p1) = gj2(p1) for some i > j. Then gi−j2 (p1) = p1,
and, thus, gi−j2 has two distinct fixed points p1 and p2. This is a contradiction since
any parabolic element has only one fixed point. Thus, gi2g1g

−i
2 are parabolic ele-

ments with distinct fixed points for all 0 ≤ i ≤ k(L, ε). Since 0 < ε ≤ ε(n, κ),
Tε(〈gi2g1g

−i
2 〉), Tε(〈g

j
2g1g

−j
2 〉) are disjoint for any pair of indices i, j [11]. By Proposi-

tion 8.3, there exist 0 ≤ i, j ≤ k(L, ε) such that

d(Mar(gi2g1g
−i
2 , ε),Mar(gj2g1g

−j
2 , ε)) > L.

By Proposition 8.4, the element gj2g1g
i−j
2 g1g

−i
2 ∈ 〈g1, g2〉 is loxodromic, and its word

length is ≤ 4k(L, ε) + 2. Thus we can find a word w ∈ 〈g1, g2〉 such that |w| ≤
4k(L, ε) + 2 and w is loxodromic. �
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Remark 8.6. According to Lemma 6.4, for every parabolic isometry g ∈ Isom(X)
and x /∈ Tε(〈g〉), there exists i ∈ (0, N(ε, n, κ, L)] such that d(x, gi(x)) > L. There-
fore, using an argument similar to the one in the proof of Proposition 8.4, we conclude
that one of the products gk11 g

k2
2 is loxodromic, where k1, k2 > 0 are uniformly bounded

from above. This provides an alternative proof of the existence of loxodromic ele-
ments of uniformly bounded word length. We are grateful to the referee for suggesting
this alternative argument.

We now consider discrete subgroups generated by elliptic elements. In this set-
ting, we will prove that every infinite discrete elementary subgroup Γ < Isom(X)
contains an infinite order element of uniformly bounded word-length (Lemma 8.7
and Proposition 8.8).

Lemma 8.7. Suppose that the set T = {g1, g2, · · · , gm} ⊂ Isom(X) consists of
elliptic elements, and the group 〈T 〉 is an elementary loxodromic group. Then there
is a pair of indices 1 ≤ i, j ≤ m such that gigj is loxodromic.

Proof. Let l denote the geodesic preserved setwise by 〈T 〉. We claim that there
exists gi which swaps the endpoints of l. Otherwise, l is fixed pointwise by 〈T 〉,
and 〈T 〉 is a finite elementary subgroup of Isom(X) which is a contradiction. Since
gi(l) = l, there exists x ∈ l such that gi(x) = x. By the same argument as in
Lemma 5.2, there exists gj such that gj(x) 6= x, and gigj is loxodromic. �

For discrete parabolic elementary subgroups generated by elliptic isometries, we
have the following result.

Proposition 8.8. Given x ∈ X, 0 < ε ≤ ε(n, κ) and a discrete subgroup Γ <
Isom(X), suppose that the set Fε(x) ⊂ Γ consists of elliptic elements and the group
Γε(x) < Γ generated by this set is a parabolic elementary subgroup. Then there
is a parabolic element g ∈ Γε(x) of word length in Fε(x) uniformly bounded by a
constant C(n, κ).

Proof. Let N be the subgroup of Γε(x) generated by the set {γ ∈ Γε(x) | nγ(x) ≤
0.49}. By Proposition 6.1, N is a nilpotent subgroup of Γε(x) = s1N ∪ s2N · · · ∪ sIN
where the index I is uniformly bounded and each si has uniformly bounded word
length ≤ m(n, κ) with respect to the generating set Fε(x) of Γε(x).

Let F = FS denote the free group on S = Fε(x). Consider the projection map π :
F → Γε(x), and the preimage π−1(N) < F . Let T denote a left Schreier transversal
for π−1(N) in F (i.e. a transverse for π−1(N) in F so that every initial segment of
an element of T itself belongs to T ). By the construction, every element t ∈ T in the
Schreier transversal has the minimal word length among all the elements in tπ−1(N).
Then the word length of t is also bounded by m(n, κ) since tπ−1(N) = siπ

−1(N) for
some i. By the Reidemeister–Schreier Theorem, π−1(N) is generated by the set

Y = {tγis | t, s ∈ T, γi ∈ Fε(x), and sπ−1(N) = tγiπ
−1(N)}.

Since the word length of elements in a Schreier transversal is not greater thanm(n, κ),
then the word length of elements in the generating set Y is not greater than 2m(n, κ)+
1.

Next, we claim that there exists a parabolic element in π(Y). If not, then all the
elements in π(Y) are elliptic. By Theorem 6.3, all the torsion elements in N form
a subgroup of N . Hence all elements in N = 〈π(Y)〉 are elliptic. By Lemma 5.2,
N is finite, which contradicts our assumption that Γε(x) is infinite. Therefore, there
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exists a parabolic element in π(Y ) whose word length is ≤ 2m(n, κ) + 1. We let
C(n, κ) = 2m(n, κ) + 1. �

Remark 8.9. The virtually nilpotent group Γε(x) is uniformly finitely generated
by at most S(n, κ) isometries α satisfying d(x, α(x)) ≤ ε, [3, Lemma 9.4]. Let F be
the free group on the set A consisting of such elements α. Since the number of
subgroups of F with a given finite index is uniformly bounded, and each subgroup
has a finite free generating set it follows that π−1(N) has a generating set where each
element has word length (with respect to A) uniformly bounded by some constant
C(n, κ). Hence there is a generating set of N where the word length of each element
is uniformly bounded by C(n, κ). Similarly, there exists a parabolic element g in
this generating set of word length bounded by C(n, κ) in elements α. This argument
provides an alternative proof of the existence of a parabolic isometry of uniformly
bounded word length in Γε(x).

The methods of the proof of the above results are insufficient for treating nonele-
mentary discrete subgroups generated by elliptic elements. After proving our results
we learned about the recent paper by Breuillard and Fujiwara which can handle this
case. Their theorem also implies Theorem 8.5. We decided to keep the proof of our
theorem since it presents independent interest and is used in our subsequent paper
[14].

Given a finite subset A of isometries of a metric space X, we let Am denote the
subset of Isom(X) consisting of products of ≤ m elements of A. Furthermore, define

L(A) = inf
x∈X

max
g∈A

d(x, gx).

If X is a Hadamard space then L(A) satisfies the inequality

L(Am) ≥
√
m

2
L(AA−1),

see [12, Proposition 3.6]. If, in addition, X is an n-dimensional Riemannian manifold
of sectional curvature bounded below by −κ2, and the subgroup 〈A〉 < Isom(X) is
discrete and nonelementary, then L(A) > ε(n, κ), the Margulis constant of X. We
will need the following result proven in [12, Theorem 13.1]:

Theorem 8.10. (Breuillard and Fujiwara) There exists an absolute constant
C > 0 such that for every δ-hyperbolic space X and every subset A ⊂ Isom(X)
generating a nonelementary subgroup Γ one of the following holds:

(i) L(A) ≤ Cδ.
(ii) If m > C then Γ contains a loxodromic element of word-length ≤ m.

This theorem implies:

Corollary 8.11. (Breuillard and Fujiwara) There exists a function N = N(n, κ)
satisfying the following. Suppose that X is a negatively curved Hadamard manifold
whose sectional curvature belongs to the interval [−κ2,−1]. Then for any subset
A = A−1 ⊂ Isom(X) generating a discrete nonelementary subgroup Γ < Isom(X),
there exists a loxodromic element of word-length ≤ N .

Proof. By the Margulis lemma, L(A) > ε(n, κ) = µ. Moreover, δ = cosh−1(
√

2)
and, as noted above,

L(Ak) ≥
√
k

2
L(A) ≥

√
k

2
µ.



Geometric finiteness in negatively pinched Hadamard manifolds 865

Therefore, by Theorem 8.10, for

m = N(n, κ) :=

⌈
(C + 1)

(
2Cδ

µ

)2
⌉

the set Am contains a loxodromic element. �

9. A generalization of Bonahon’s theorem

In this section, we use the construction in Section 8 to generalize Bonahon’s
theorem for any discrete subgroup Γ < Isom(X) where X is a negatively pinched
Hadamard manifold.

Lemma 9.1. For every x̃ ∈ Hull(Λ(Γ)),

hd(QHull(Γx̃),QHull(Λ(Γ))) <∞
Proof. By the assumption that x̃ ∈ Hull(Λ(Γ)) and Remark 3.14, there exists

r1 = rκ(2δ) ∈ [0,∞) such that

QHull(Γx̃) ⊆ Hull(Λ(Γ)) ⊆ N̄r1(QHull(Λ(Γ)))

Next, we want to prove that there exists a constant r2 ∈ [0,∞) such that QHull(Λ(Γ))
⊆ N̄r2(QHull(Γx̃)).

Pick any point p ∈ QHull(Λ(Γ)). Then p lies on some geodesic ξη where ξ, η ∈
Λ(Γ) are distinct points. Since ξ and η are in the limit set, there exist sequences
of elements (fi) and (gi) in Γ such that the sequence (fi(x̃)) converges to ξ and
the sequence (gi(x̃)) converges to η. By Lemma 3.16, p ∈ N̄2δ(fi(x̃)gi(x̃)) for all
sufficiently large i. Let r = max{r1, 2δ}. Thus,

hd(QHull(Γx̃),QHull(Λ(Γ))) = r <∞. �

Remark 9.2. Let γi = fi(x̃)gi(x̃). Then there exists a sequence of points pi ∈ γi,
which converges to p.

If Γ < Isom(X) is geometrically infinite, then

Core(M) ∩ noncuspε(M)

is noncompact, [11]. By Lemma 9.1, (QHull(Γx̃)/Γ) ∩ noncuspε(M) is unbounded.
We now generalize Bonahon’s theorem to geometrically infinite discrete subgroup

Γ < Isom(X).

Proof of the implication (1) =⇒ (2) in Theorem 1.5. If there exists a sequence
of closed geodesics βi ⊆ M whose lengths tend to 0 as i → ∞, the sequence (βi)
escapes every compact subset of M . From now on, we assume that there exists a
constant ε > 0 which is a lower bound on the lengths of closed geodesics β in M .

Consider Margulis cusps Tε(G)/G, where G < Γ are maximal parabolic sub-
groups. There exists a constant r ∈ [0,∞), r = rκ(δ) such that

Hull(Tε(G)) ⊆ N̄r(Tε(G))

for every maximal parabolic subgroup G (see Section 5). Let B(G) = N̄2+4δ(Hull(Tε
(G))). Let M o be the union of all subsets B(G)/Γ where G ranges over all maximal
parabolic subgroups of Γ. Further, we let M c denote the closure of Core(M) \M o.
Since Γ is geometrically infinite, the noncuspidal part of the convex core,

noncuspε(Core(M) = Core(M)) \ cuspε(M)



866 Michael Kapovich and Beibei Liu

is unbounded by Theorem 1.4. Then M c is also unbounded since

M o ⊆ N̄r+2+4δ(cuspε(M)),

Fix a point x ∈M c and a point x̃ ∈ π−1(x) ⊂ X. Let

Cn = B(x, nR) = {y ∈M c | d(x, y) ≤ nR},

where
R = r + 2 + 4δ +mε

and m = C(n, κ) is the constant in Proposition 8.8. Let δCn denote the relative
boundary

∂Cn \ ∂M c
cusp

of Cn where
M c

cusp = M o ∩ Core(M).

By Lemma 9.1 (QHull(Γx̃)/Γ) ∩M c is unbounded. For every Cn, there exists
a sequence of geodesic loops (γi) connecting x to itself in Core(M) such that the
Hausdorff distance hd(γi ∩ M c, Cn) → ∞ as i → ∞. Let yi ∈ γi ∩ M c be such
that d(yi, Cn) is maximal on γi ∩M c. We pick a component αi of γi ∩M c in the
complement of Cn such that yi ∈ αi. Consider the sequence of geodesic arcs (αi).

After passing to a subsequence in (αi), one of the following three cases occurs:
Case (a): Each αi has both endpoints x′i and x′′i on ∂M c

cusp as in Figure 10(a).
By the construction, there exist y′i and y′′i in the cuspidal part such that d(x′i, y

′
i) ≤

r1, d(y′i, y
′′
i ) ≤ r1 where r1 = 2 + 4δ+ r. Let ỹ′i be a lift of y′i such that ỹ′i ∈ Tε(G′) for

some maximal parabolic subgroup G′ < Γ. By the definition, the subgroup Γε(ỹ
′
i)

generated by the set

Fε(ỹ′i) = {γ ∈ G′ | d(ỹ′i, γ(ỹ′i)) ≤ ε}

is infinite.
We claim that there exists a parabolic element g′ ∈ Γε(ỹ

′
i) such that d(ỹ′i, g

′(ỹ′i)) ≤
mε. Assume that Fε(ỹ′i) = {γ1, · · · , γb}. If γj is parabolic for some 1 ≤ j ≤ b, we have
d(ỹ′i, γj(ỹ

′
i)) ≤ ε. Now assume that γj are elliptic for all 1 ≤ j ≤ b. By Proposition

8.8, there is a parabolic element g′ ∈ Γε(ỹ
′
i) of word length (in the generating set

Fε(ỹ′i)) bounded by m. By the triangle inequality, d(ỹ′i, g
′(ỹ′i)) ≤ mε.

Then we find a nontrivial geodesic loop α′i contained M o such that α′i connects
y′i to itself and has length l(α′i) ≤ mε. Similarly, there exists a nontrivial geodesic
loop α′′i which connects y′′i to itself and has length l(α′′i ) ≤ mε. Let

w′ = x′iy
′
i ∗ α′i ∗ y′ix′i ∈ Ω(M,x′i)

and
w′′ = αi ∗ x′′i y′′i ∗ α′′i ∗ y′′i x′′i ∗ α−1

i ∈ Ω(M,x′i),

where Ω(M,x′i) denotes the loop space of M . Observe that w′ ∩ Cn−1 = ∅ and
w′′ ∩ Cn−1 = ∅.

Let g′, g′′ denote the elements of Γ = π1(M,x′i) represented by w′ and w′′ re-
spectively. By the construction, g′ and g′′ are both parabolic. We claim that g′ and
g′′ have different fixed points in ∂∞X. Otherwise, g, g′′ ∈ G′ where G′ < Γ is some
maximal parabolic subgroup. Then y′i, y

′′
i ∈ Tε(G′)/Γ and x′i, x

′′
i ∈ B(G′)/Γ. Since

Hull(Tε(G′)) is convex, B(G′) = N̄2+4δ(Hull(Tε(G′))) is also convex by convexity of
the distance function. Thus, x′ix′′i ⊆ B(G′)/Γ. However, x′ix′′i lies outside of B(G′)/Γ
by construction, which is a contradiction.
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By Theorem 8.5, there exists a loxordomic element ωn ∈ 〈g′, g′′〉 < Γ = π1(M,x′i)
with the word length uniformly bounded by a constant K = k(ε, κ) independent of n.
Let wn be a concatenation of w′i, w′′i and their reverses which represents ωn. Then the
number of geodesic arcs in wn is uniformly bounded by 5K. The piecewise geodesic
loop wn is freely homotopic to a closed geodesic w∗n inM ; hence, by Proposition 6.12,
w∗n is contained in some D-neighborhood of the loop wn where

D = cosh−1(
√

2)dlog2 5Ke+ sinh−1(2/ε) + 2δ.

Thus, d(x,w∗n) ≥ (n− 1)R−D.

Figure 10.

Case (b): For each i, the geodesic arc αi connects x′i ∈ δCn to x′′i ∈ ∂M c
cusp,

as in Figure 10(b). For each x′′i , there exists a point y′′i ∈ cuspε(M) such that
d(x′′i , y

′′
i ) ≤ r1 and a short nontrivial geodesic loop α′′i contained inM o which connects

y′′i to itself and has length l(α′′i ) ≤ mε. Since δCn is compact, after passing to a
further subsequence in (αi), there exists k ∈ N such that for all i ≥ k, d(x′i, x

′
k) ≤ 1

and less than the injectivity radius of M at x′k. Hence, there exists a unique shortest
geodesic x′kx′i in the manifold M . Let µi = x′kx

′′
i denote the geodesic arc homotopic

to the concatenation x′kx′i ∗x′ix′′i rel. {x′i, x′′i }. Then, by the δ-hyperbolicity of X, the
geodesic µi = x′kx

′′
i is contained in the (1 + δ)-neighborhood of αi.

Let
w′k = αk ∗ x′′ky′′k ∗ α′′k ∗ y′′kx′′k ∗ α−1

k ∈ Ω(M,x′k)

and
w′i = µi ∗ x′′i y′′i ∗ α′′i ∗ y′′i x′′i ∗ (µi)

−1 ∈ Ω(M,x′k)

for all i > k. By the construction, w′i ∩ Cn−1 = ∅ for each i ≥ k.
Let gi denote the element of Γ = π1(M,x′k) represented by w′i, i ≥ k. Then each

gi is parabolic. We claim that there exists a pair of indices i, j ≥ k such that gi and
gj have distinct fixed points. Otherwise, assume that all parabolic elements gi have
the same fixed point p. Then x′′i ∈ B(G′)/Γ for any i ≥ k where G′ = StabΓ(p).

Since µi∪αk is in the (1+δ)-neighborhood ofM c, by the δ-hyperbolicity of X we
have that x′′kx′′i is in (1 + 2δ)-neighborhood of M c for every i > k. By the definition
of M c, it follows that

x′′kx
′′
i ∩ N̄δ(Hull(Tε(G′)))/Γ = ∅.

By the construction, the length l(αi)→∞ as i→∞. Hence, the length l(µi)→∞
and the length l(x′′kx′′i )→∞ as i→∞. By Lemma 6.10, there exists points zi ∈ x′′kx′′i
such that zi ∈ N̄δ(Tε(G

′))/Γ for sufficiently large i. Therefore,

x′′kx
′′
i ∩ N̄δ(Hull(Tε(G′)))/Γ 6= ∅,
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which is a contradiction.
We conclude that for some i, j ≥ k, the parabolic elements gi, gj of Γ have

distinct fixed points and, hence, generate a nonelementary subgroup of Isom(X). By
Theorem 8.5, there exists a loxodromic element ωn ∈ 〈gi, gj〉 with the word length
uniformly bounded by a constant K. By the same argument as in Case (a), we
obtain a closed geodesic w∗n (representing the conjugacy class of ωn) in M such that
d(x,w∗n) ≥ (n− 1)R−D.

Figure 11.

Case (c): We assume that for each i, the geodesic arc αi connects x′i ∈ δCn to
x′′i ∈ δCn. The argument is similar to the one in Case (b). Since δCn is compact,
after passing to a further subsequence in (αi), there exists k ∈ N such that for all
i ≥ k, d(x′i, x

′
k) ≤ 1, d(x′′i , x

′′
k) ≤ 1 and there are unique shortest geodesics x′kx′i and

x′′kx
′′
i . For each i > k we define a geodesic µi = x′kx

′′
i as in Case (b), see Figure 11(a).

Then, by the δ-hyperbolicity of X, each µi is in the (δ + 1)-neighborhood of αi. Let
vi = αk ∗ x′′kx′′i ∗ (µi)

−1 ∈ Ω(M,x′k) for i > k. By the construction, vi ∩ Cn−1 = ∅.
Let hi denote the element in Γ = π1(M,x′k) represented by vi. If hi is loxodromic

for some i > k, there exists a closed geodesic w∗n contained in the D-neighborhood
of vi, cf. Case (a). In this situation, d(x,w∗n) ≥ (n− 1)R−D.

Assume, therefore, that hi are not loxodromic for all i > k. We first claim that hi
is not the identity for all sufficiently large i. Let x̃′k be a lift of x′k in X. Pick points
x̃′′k, x̃

′′
i , x̃

′
i and hi(x̃′k) in X such that x̃′kx̃′′k is a lift of αk, x̃′′kx̃′′i is a lift of x′′kx′′i , x̃′ix̃′′i is a

lift of αi and x̃′ihi(x̃′k) is a lift of x′ix′k as in Figure 11(b) and Figure 11(c). If hi = 1,
then hi(x̃′k) = x̃′k and d(x̃′i, x̃

′′
i ) ≤ 2 + d(x̃′k, x̃

′′
k) as in Figure 11(b). By construction,

the length l(αi) → ∞ as i → ∞, so d(x̃′i, x̃
′′
i ) → ∞. Thus for sufficiently large i,

hi(x̃′k) 6= x̃′k.
Assume, therefore, that hi are not loxodromic and not the identity for all i > k.

Then hi could be either parabolic or elliptic for i > k.

Claim. For every k, there exist i, j > k and a loxodromic element in 〈hi, hj〉
whose word length is bounded by a constant independent of k.

Proof. Suppose there is a subsequence in (hi)i>k consisting of parabolic ele-
ments. For simplicity, we assume that hi are parabolic for all i > k′ where k′ > k
is a sufficiently large number. We claim that there exists a pair of indices i, j > k′

such that hi and hj have distinct fixed points in ∂∞X. Otherwise, all the para-
bolic elements hi have the same fixed point p for i > k′. By the δ-hyperbolicity
of X, x̃′khi(x̃′k) ⊆ N̄3δ+2(x̃′kx̃

′′
k ∪ x̃′′i x̃′i). Since αk and αi lie outside of B(G′)/Γ
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where G′ = StabΓ(p), the segment x̃′khi(x̃′k) lies outside of N̄δ(Hull(Tε(G′))). Let
r3 = d(x̃′k,Hull(Tε(G

′))). Then d(hi(x̃′k),Hull(Tε(G
′))) = r3.

By the construction, the length l(αi) → ∞ as i → ∞. Then the length
l(x̃′khi(x̃

′
k))→∞ as well. Observe that the points x̃′k and hi(x̃′k) lie on the boundary

of N̄r3(Hull(Tε(G))) for all i > k′. By Lemma 6.10, there exist points z̃i ∈ x̃′khi(x̃′k)
such that z̃i ∈ N̄δ(Tε(G

′)) for sufficiently large i, which is a contradiction. Hence, for
some i > k′, j > k′, parabolic isometries hi and hj have distinct fixed points.

By Theorem 8.5, there exists a loxodromic element ωn ∈ 〈hi, hj〉 of the word
length bounded by a uniform constant K.

Now assume that hi are elliptic for all i > k. If there exist i, j > k such that
〈hi, hj〉 is nonelementary, by Corollary 8.11, there exists a loxodromic element ωn ∈
〈hi, hj〉 of word length uniformly bounded by a constantK. Now suppose that 〈hi, hj〉
is elementary for any pair of indices i, j > k. If one of the elementary subgroups is
infinite and preserves a geodesic, by Lemma 8.7, hihj is loxodromic.

Assume that all the elementary subgroups 〈hi, hj〉 are either finite or parabolic
for all i, j > k. Let Bi denote the closure of Mar(hi, ε) in X̄. If there exist i, j
such that Bi and Bj are disjoint, then 〈hi, hj〉 is nonelementary which contradicts
our assumption. Thus for any pair of indices i, j > k, Bi ∩ Bj 6= ∅. There exists a
uniform constant r′ such that Nr′(Bi) ∩ Nr′(Bj) 6= ∅ in X. Hence, by Proposition
8.2, there exists z̃ ∈ X such that for all i > k we have d(z̃, Nr′(Bi)) ≤ nδ. For any
q ∈ Nr′(Bi), d(q, hi(q)) ≤ 2r′ + ε by the triangle inequality. Thus,

d(z̃, hi(z̃)) ≤ 2nδ + 2r′ + ε

for all i > k. Let x̃′k denote a lift of x′k in X, and l = d(z̃, x̃′k). Then

d(x̃′k, hi(x̃
′
k)) ≤ 2l + 2nδ + 2r′ + ε

for all i > k. Note that d(x̃′k, hi(x̃
′
k))→∞ as i→∞, which is a contradiction. �

Thus, for some pair of indices i, j > k, there exists a loxodromic element ωn ∈
〈hi, hj〉 whose word length is uniformly bounded by some constant K. By the same
argument as in Case (a), there exists a closed geodesic w∗n such that d(x,w∗n) ≥
(n− 1)R−D.

Thus in all cases, for each n, the orbifold M contains a closed geodesic w∗n such
that d(x,w∗n) ≥ (n − 1)R − D. The sequence of closed geodesics {w∗n}, therefore,
escapes every compact subset of M . �

10. Continuum of nonconical limit points

In this section, using the generalized Bonahon theorem in Section 9, for each
geometrically infinite discrete subgroup Γ < Isom(X) we find a set of nonconical
limit points with the cardinality of the continuum. This set of nonconical limit
points is used to prove Theorem 1.5.

Theorem 10.1. If Γ < Isom(X) is a geometrically infinite discrete isometry
subgroup, then the set of nonconical limit points of Γ has the cardinality of the
continuum.

Proof. The proof is inspired by Bishop’s construction of nonconical limit points
of geometrically infinite Kleinian groups in the 3-dimensional hyperbolic space H3;
[6, Theorem 1.1]. Let π : X → M = X/Γ denote the covering projection. Pick a
point x̃ ∈ X and set x := π(x̃). If Γ is geometrically infinite, by the generalized
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Bonahon theorem in Section 9, there exists a sequence of oriented closed geodesics
(λi) in M which escapes every compact subset of M , i.e.

lim
i→∞

d(x, λi) =∞.

Let L be the constant as in Proposition 7.2 when θ = π/2. After passing to a
subsequence if necessary, we can assume that d(x, λ1) ≥ L and the minimal distance
between any consecutive pair of geodesics λi, λi+1 is at least L. For each i, let li
denote the length of the closed geodesic λi and let mi be a positive integer such that
mili > L.

We then pass to a subsequence in (λi) as in Lemma 4.1 (retaining the notation
(λi) for the subsequence), so that there exists a sequence of geodesic arcs µi := x+

i x
−
i+1

meeting λi, λi+1 orthogonally at its end-points, for which

lim
i→∞

d(x, µi) =∞.

Let Di denote the length of the shortest positively oriented arc of λi connecting x−i
to x+

i . We let µ0 denote the shortest geodesic in M connecting x to x−1 .

Figure 12. Here Ai denotes a geodesic in X covering the loop λi, i ∈ N.

We next construct a family of piecewise geodesic paths γτ in M starting at x
such that the geodesic pieces of γτ are the arcs µi above and arcs νi whose images are
contained in λi and which have the same orientation as λi: Each νi wraps around λi
a certain number of times and connects x−i to x+

i . More formally, we define a map
P : N∞ → P (M) where N∞ is the set of sequences of positive integers and P (M) is
the space of paths in M as follows:

P : τ = (t1, t2, · · · , ti, · · · ) 7→ γτ = µ0 ∗ ν1 ∗ µ1 ∗ ν2 ∗ µ2 ∗ · · · ∗ νi ∗ µi ∗ · · ·
where the image of the geodesic arc νi is contained in λi and νi has length

l(νi) = timili +Di.

Observe that for i ≥ 1, the arc µi connects λi and λi+1 and is orthogonal to both,
with length l(µi) ≥ L and νi starts at x−i and ends at x+

i with length l(νi) ≥ L.
For each γτ , we have a canonical lift γ̃τ in X, which is a path starting at x̃.

We will use the notation µ̃i, ν̃i for the lifts of the subarcs µi, νi respectively, see
Figure 12(a, b). By the construction, each γτ has the following properties:

(1) Each geodesic piece of γ̃τ has length at least L.
(2) Adjacent geodesic segments of γ̃τ make the angle equal to π/2 at their common

endpoint.
(3) The path γτ : [0,∞)→M is a proper map.
By Proposition 7.2, γ̃τ is a (2L, 4L+1)-quasigeodesic. Hence, there exists a limit

lim
t→∞

γ̃τ (t) = γ̃τ (∞) ∈ ∂∞X,
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and the Hausdorff distance between γ̃τ and xγ̃τ (∞) is bounded above by a uniform
constant C, depending only on L and κ.

We claim that each γ̃τ (∞) is a nonconical limit point. Observe that γ̃τ (∞) is
a limit of loxodromic fixed points, so γ̃τ (∞) ∈ Λ(Γ). Let γ∗τ be the projection of
xγ̃τ (∞) under π. Then the image of γ∗τ is uniformly close to γτ . Since γτ is a proper
path in M , so is γ∗τ . Hence, γ̃τ (∞) is a nonconical limit point of Γ.

We claim that the set of nonconical limit points γ̃τ (∞), τ ∈ N∞, has the cardi-
nality of the continuum. It suffices to prove that the map

P∞ : τ 7→ γ̃τ (∞)

is injective.
Let τ = (t1, t2, · · · , ti) and τ ′ = (t′1, t

′
2, · · · , t′i, · · · ) be two distinct sequences of

positive integers. Let m be the smallest positive integer such that tm 6= t′m. Then
the paths γ̃τ , γ̃τ ′ can be written as concatenations

α̃τ ? ν̃m ∗ β̃τ , α̃τ ? ν̃
′
m ∗ β̃τ ′ ,

where α̃τ is the common initial subpath

µ̃0 ∗ ν̃1 ∗ µ̃1 ∗ ν̃2 ∗ µ̃2 ∗ · · · ∗ ν̃m−1 ∗ µ̃m−1.

The geodesic segments ν̃m, ν̃ ′m have the form

ν̃m = x̃−n x̃
+
m, ν̃ ′m = x̃−n x̃

′+
m.

Consider the bi-infinite piecewise geodesic path

σ := β̃−1
τ ? x̃+

n x̃
′+
n ? β̃τ ′

in X. Each geodesic piece of the path has length at least L and adjacent geodesic
segments of the path are orthogonal to each other. By Proposition 7.2, σ is a complete
(2L, 4L+ 1)-quasigeodesic and, hence, it is backward/forward asymptotic to distinct
points in ∂∞X. These points in ∂∞X are respectively γ̃τ (∞) and γ̃τ ′(∞). Hence,
the map P∞ is injective. We conclude that the endpoints of the piecewise geodesic
paths γ̃τ yield a set of nonconical limit points of Γ which has the cardinality of the
continuum. �

Remark 10.2. This proof is a simplification of Bishop’s argument in [6], since,
unlike [6], we have orthogonality of the consecutive segments in each γτ .

Proof of Theorem 1.5. The implication (1) =⇒ (2) (a generalization of Bona-
hon’s theorem) is the main result of Section 9. The implication (2) ⇒ (3) is the
content of Theorem 10.1. It remains to prove that (3) ⇒ (1). If Γ is geometrically
finite, by Theorem 1.4 Λ(Γ) consists of conical limit points and bounded parabolic
fixed points. Since Γ is discrete, it is at most countable; therefore, the set of fixed
points of parabolic elements of Γ is again at most countable. If Λ(Γ) contains a subset
of nonconical limit points of the cardinality of the continuum, we can find a point
in the limit set which is neither a conical limit point nor a parabolic fixed point. It
follows that Γ is geometrically infinite. �

Proof of Corollary 1.6. If Γ is geometrically finite, by Theorem 1.4, Λ(Γ) consists
of conical limit points and bounded parabolic fixed points. Now we prove that if Λ(Γ)
consists of conical limit points and parabolic fixed points, then Γ is geometrically
finite. Suppose that Γ is geometrically infinite. By Theorem 1.5, there is a set
of nonconical limit points with the cardinality of the continuum. Since the set of
parabolic fixed points is at most countable, there exists a limit point in Λ(Γ) which
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is neither a conical limit point nor a parabolic fixed point. This contradicts to our
assumption. Hence, Γ is geometrically finite. �

11. Limit sets of ends

We start by reviewing the notion of ends of locally path-connected, locally com-
pact, Hausdorff topological spaces Z. We refer to [15] for a more detailed treatment.

An end of Z is the equivalence class of a sequence of connected nonempty open
sets

C1 ⊃ C2 ⊃ C3 ⊃ · · ·
of Z, where each Ci, i ∈ N, is a component of Kc

i = Z \ Ki, and {Ki}i∈N is an
increasing family of compact subsets exhausting Z with

Ki ⊂ Kj, whenever i ≤ j,

so that ⋃
i∈N

Ki = Z.

Here two sequences (Ci), (C ′i) are equivalent if each Ci contains some C ′j and vice-
versa. The sets Ci are called neighborhoods of e in Z. A proper continuous map (a
ray) ρ : R+ → Z is said to be asymptotic to the end e if for every neighborhood Ci
of e, the subset ρ−1(Ci) ⊂ R+ is unbounded.

In this paper we will be considering ends of two classes of topological spaces:
(1) Z = Y = Core(M), with M = X/Γ, where Γ is a discrete isometry group of

a Hadamard manifold X of pinched negative curvature.
(2) Z = noncuspε(Y ) (with Y as above), where ε is less than the Margulis con-

stant of X.
An end e of Y = Core(M) is called cuspidal or a cusp if it can be represented

by a sequence Ci consisting of projections of Hull(Λ) ∩ Bi, where Bi’s are nested
horoballs in X. (As before, Λ ⊂ ∂∞X denotes the limit set of Γ.) Equivalently, e
can be represented by a sequence Ci of components of the εi-thin part thinεi(Y ) of
Y , with limi→∞ εi = 0. When ε is less than the Margulis constant of X, components
of thinε(Y ) which are neighborhoods of e are called cuspidal neighborhoods of e. In
view of Theorem 1.4, the group Γ is geometrically infinite if and only if Y has at
least one non-cuspidal end. Equivalently, Γ is geometrically finite if and only if Z is
compact, equivalently, has no ends.

Consider a neighborhood C of an end e of Z, where Z is either Y = Core(M) or is
the noncuspidal part of Y . The preimage π−1(C) ⊂ Hull(Λ) under the quotient map
π : X →M is a countable union of components Ej. Then C is naturally isometric to
the quotients Ej/Γj, where Γj = StabΓ(Ej) is the stabilizer of Ej in Γ. A point

λ ∈
⋃
j

Λ(Γj) ⊂ Λ

is an end-limit point of C if one (equivalently, every) geodesic ray β in Hull(Λ)
asymptotic to λ projects to a proper ray in Y = Core(M) asymptotic to e. We let
Λ(C) denote the set of end-limit points of C and let Λ(e), the end-limit set of e,
denote the intersection ⋂

i

Λ(Ci)
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taken over all neighborhoods Ci of e. (It suffices to take the intersection over a
sequence (Ci) representing e.) Clearly, for every end e, Λ(e) is disjoint from the
conical limit set of Γ.

The main result of this section is

Theorem 11.1. For every end e of Z = noncuspε(Y ), Λ(e) has the cardinality
of continuum.

Proof. The end e is represented by a nested sequence (Ci) of components of

Kc
i = noncuspε(Y ) \Ki,

where Ki = B(x, iR) with x ∈ noncuspε(Y ) and R is the same constant as in proof
of Theorem 1.5.

We first claim that there exists a sequence of closed geodesics (λi) exiting e, i.e.
λi ⊂ Ci, i ∈ N. We follow Bonahon’s proof in [9]. By Lemma 9.1, every intersection

(QHull(Γx̃)/Γ) ∩ Ci
is unbounded, where x̃ is a lift of x to X.

By the argument in the proof of Theorem 1.5, for every Cn, there exists a sequence
of geodesic arcs (αi) ⊂ Cn such that the Hausdorff distance hd(αi, Kn) → ∞ as
i → ∞, and there exists a sequence of piecewise geodesic loops wn ⊂ Cn exiting e.
These geodesic loops wn represent loxodromic isometries ωn ∈ Isom(X). Up to a
subsequence, there are two possible cases:

(1) l(ωn) ≥ ε > 0 for some positive constant ε and all n.
(2) l(ωn)→ 0 as n→∞.
For case (1), we use the same argument as in the proof of Theorem 1.5 to construct

a sequence of closed geodesics (λi) exiting e.
For case (2), let T ⊂ Γ be the set consisting of elliptic isometries and the identity.

For x̃ ∈ X, we define
dΓ(x̃) = min

γ∈Γ\T
d(γx̃, x̃).

For x ∈M , set
r(x) = dΓ(x̃)

where x̃ ∈ X is a lift of x. (If Γ is torsion free, then r(x) is twice of the injectivity
radius at x.) It is clear that r is a continuous function on Y , hence, it is bounded
away from zero on compact subsets of Y .

Thus, rk := minx∈Kk r(x) > 0. By passing to a subsequence, we assume that
l(ωn) < r1/2. Then Mar(ωn, r1/2) is nonempty and disjoint from K1 for all n. By
Proposition 6.11,

d(wn,Mar(ωn, r1/2)) ≤ D,

where
D = cosh−1(

√
2)dlog2 5Ke+ sinh−1(4/r1)

andK is the same constant as in the proof of Theorem 1.5. Thus,Mar(ωn, r1/2) ⊂ C1

for all n. Inductively, we find a subsequence (ωik) such that Mar(ωik , rk/2) ⊂ Ck.
The closed geodesics w∗ik ⊂ Mar(ωik , rk/2) are also contained in Ck. This is the
required sequence of closed geodesics (λi) exiting the end e.

We then continue to argue as in the proof of Theorem 10.1. Namely, we define a
family of proper piecewise-geodesic paths γτ in Z. Since these rays are proper and
the sequence (λi) exits the end e, the paths γτ are asymptotic to the end e. Hence,
the geodesic rays γ∗τ are also asymptotic to e.
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After choosing a lift of the starting point x of all piecewise geodesic paths γτ in
Z, there is a canonical choice of the lift γ̄τ of γτ . We claim that all the endpoints
γ̄τ (∞) belong to Λ(e). It suffices to prove that γ̄τ (∞) ∈ Λ(Ci) for all i ≥ 1.

Since the sequence (Ci) is nested, we can find a nested sequence (Ei) of lifts of
Ci to X. Recall that λi ⊂ Ci for every i. Pick a complete geodesic Ai ⊂ Ei which is
a lift of λi. Each loop λi represents an element (unique up to conjugation) ωi ∈ Γ.
We choose ωi ∈ Γ which preserves the geodesic Ai. Then ωi preserves Ei as well and,
hence, the ideal fixed points of ωi (the ideal end-points of the geodesic Ai) are in the
limit set of Γi = StabΓ(Ei). By the construction, γ̃τ (∞) is the limit of the sequence
of geodesics (Aj). Hence, γ̃τ (∞) is a limit point of Γi. Since γ∗τ is a proper geodesic
ray asymptotic to e, it follows that γ̃τ (∞) ∈ Λ(Ci), as required. As in the proof of
Theorem 1.5, the rays γ∗τ define continuum of distinct limit points of Λ(e). Hence,
Λ(e) has the cardinality of the continuum. �

Since Λ(e) is the intersection of the limit sets Λ(C) taken over all neighborhoods
C ⊂ Z = noncuspε(Y ), we obtain

Corollary 11.2. For every neighborhood C ⊂ Z of an end e of Z, the limit set
Λ(C) has the cardinality of continuum.

Proof of Corollary 1.8. If a complementary component C of a compact subset of
Y is Hausdorff-close to a finite union of cuspidal neighborhoods of cusps in Y , then
Λ(C) is a finite union of orbits of the bounded parabolic fixed points corresponding
to the cusps. Suppose, therefore, that C is not Hausdorff-close to a finite union of
cuspidal neighborhoods of cusps in Y . Thus, C is also a neighborhood of an end e
of Y which is not a cusp. In particular, C ∩ noncuspε(Y ) contains an unbounded
component C ′. Since Λ(C ′) ⊂ Λ(C) and Λ(C ′) has the cardinality of continuum
(Corollary 11.2), so does Λ(C). �

Proof of Corollary 1.7. If e is a cuspidal end of Y , then Λ(e) is the orbit of the
bounded parabolic fixed point corresponding to e under the group Γ. Hence, Λ(e)
is countable. Suppose, therefore, that e is a non-cuspidal end. As we noted above,
for every neighborhood C of e in Y , the intersection C ∩ Z = noncuspε(Y ) contains
an unbounded component C ′. Therefore, every nested sequence (Ci) representing e
gives rise to a nested sequence (C ′i) in Z representing an end e′ of Z. Since Λ(e′) has
the cardinality of continuum (Theorem 11.1) and, by the construction, Λ(e′) ⊂ Λ(e),
it follows that Λ(e) also has the cardinality of continuum. �
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