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Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R
n, n ≥ 2

onto a C2-Jordan domain Ω is Hölder continuous with constant α = 2 − n

p
, provided its weak

Laplacian ∆w is in Lp(Bn) for some n/2 < p < n. In particular it is Hölder continuous for every

0 < α < 1 provided that ∆w ∈ Ln(Bn). Finally for p > n, we prove that w is Lipschitz continuous,

a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper

contains the proofs of some results announced in [17].

1. Introduction

In the paper Bn is the unit ball in R
n, n ≥ 2 and S

n−1 is the unit sphere. We con-
sider the vector norm |x| = (

∑n
i=1 x

2
i )

1/2 and the matrix norms |A| = sup{|Ax| : |x| =
1}. A homeomorphism u : Ω → Ω′ between two open subsets Ω and Ω′ of Euclidean
space R

n will be called a K (K ≥ 1) quasiconformal or shortly a qc mapping if the
following two conditions are satisfied:

(i) u is absolutely continuous function in almost every segment parallel to some
of the coordinate axes and there exist the partial derivatives which are locally
Ln integrable functions on Ω. We will write u ∈ ACLn.

(ii) u satisfies the condition

|∇u(x)|n/K ≤ Ju(x) ≤ Kl(∇u(x))n,

at almost every x in Ω where

l(∇u(x)) := inf{|∇u(x)ζ | : |ζ | = 1}

and Ju(x) is the Jacobian determinant of u (see [26]).

Notice that, for a continuous mapping u the condition (i) is equivalent to the condition
that u belongs to the Sobolev space W 1,n

loc (Ω).
Let P be Poisson kernel i.e. the function

P (x, η) =
1− |x|2

|x− η|n
,

and let G be the Green function i.e. the function

(1) G(x, y) = cn

{

(

1
|x−y|n−2 −

1
(| x|y|−y/|y| |)n−2

)

, if n ≥ 3;

log |x−y|
|1−xȳ|

, if n = 2 and x, y ∈ C ∼= R
2,
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where cn = 1
(n−2)Ωn−1

, and Ωn−1 is the measure of Sn−1. Both P and G are harmonic

for |x| < 1, x 6= y .
Let p > 1 and f ∈ Lp(Sn−1,Rn). Further let g : Bn 7→ R

n be continuous. The
weak solution of the equation (in the sense of distributions) ∆u = g in the unit ball
satisfying the boundary condition u|Sn−1 = f ∈ L1(Sn−1) is given by

(2) u(x) = P [f ](x)−G[g](x) :=

ˆ

Sn−1

P (x, η)f(η)dσ(η)−

ˆ

Bn

G(x, y)g(y)dy,

|x| < 1. Here dσ is the n − 1 dimensional Hausdorff measure of Euclidean sphere
satisfying the condition: P [1](x) ≡ 1. It is well known that if f and g are continuous
in S

n−1 and in Bn respectively, then the mapping u = P [f ]−G[g] has a continuous
extension ũ to the boundary and ũ = f on S

n−1. If g ∈ L∞ then G[g] ∈ C1,α(Bn).
See [6, Theorem 8.33] for this argument.

We will consider the solutions of the PDE ∆u = g that are quasiconformal as
well and investigate their Lipschitz and Hölder character. A mapping f of a set Ω in
Euclidean n-space R

n into R
n, n ≥ 2, is said to belong to the Hölder class Lipα(Ω),

0 < α ≤ 1, if there exists a constant M > 0 such that

(3) |f(x)− f(y)| ≤M |x− y|α

for x, y ∈ Ω. If D is a bounded domain in R
n and if f is quasiconformal in D with

f(D) ⊂ R
n, then f is in Lipα(A) for each compact A ⊂ D, where α = KI(f)

1/(1−n)

and KI(f) is the inner dilatation of f . Simple examples show that f need not be in
Lipα(D) even when f is continuous in D.

However, Martio and Näkki in [20] showed that if f induces a boundary mapping
which belongs to Lipα(∂D), then f is in Lipβ(D), where

β = min(α,KI(f)
1/(1−n));

the exponent β is sharp. In a recent paper of the first author and Saksman [16] it is
proved the following result, if f is quasiconformal mapping of the unit disk B

2 onto
a Jordan domain with C2 boundary such that its weak Laplacian ∆f ∈ Lp(B2), for
p > 2, then f is Lipschitz continuous. The condition p > 2 is necessary also. Further
in the same paper they proved that if p = 1, then f is absolutely continuous on the
boundary of ∂B2.

The results from [16] generalize in certain sense the results of the first author,
Mateljević, Božin, Pavlović, Partyka, Sakan, Manojlović, Astala [10, 11, 14, 13, 22,
21, 23, 24, 8, 9, 3], since they do not assume that the mapping is harmonic, neither
its weak Laplacian is bounded. The topic has its origin in the classical paper by
Martio [18].

In this paper we consider the following problem (a question). To what extent the
condition 1 < p < 2 affects to the boundary behaviour of quasiconformal mappings
between Euclidean domains with smooth boundaries?

We are interested in the condition under which the quasiconformal mapping is in
Lipα(B

n), for every α < 1. It follows form our results that if u is a quasiconformal
selfmapping of the unit ball and |∆u| ∈ Lp with p > n/2 then u is in Lipα(B

n),
where α = 2− p

n
. In particular if p = n, then u ∈ Lipα(B

n) for α < 1.
Our result is the following:

Theorem 1. Let n ≥ 2 and let p > n/2 and assume that g ∈ Lp(Bn). Assume
that w is a K-quasiconformal solution of ∆w = g, that maps the unit ball onto a
bounded Jordan domain Ω ⊂ R

n with C2-boundary.
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(1) If p < n, then w is Hölder continuous with the Hölder constant α = 2− n
p
.

(2) If p = n, then w is Hölder continuous for every α ∈ (0, 1).
(3) If p > n, then w is Lipschitz continuous.

Remark 1.1. The item (3) of the previous theorem for n = 2 has been already
proved in [16], where it is also mentioned that a similar approach can be used for
n > 2. The main novelty of this paper are items (1) and (2). The proof presented
in this paper uses some iterating schema that already appeared in the papers by
Astala and Manojlović [3] and by the first author and Saksman in [16]. Astala and
Manojlović in [3] among the other results presented a short proof of the fact that
every harmonic mapping of the unit ball onto a Jordan domain with C2 is Lipschitz
continuous. This result has been firstly proved by Kalaj in [10].

The formulations of results of this paper and the formulations of some necessary
lemmas has been published in the conference paper [17], but without proofs. The
detailed proofs are given here. Motivated by the corresponding result for the planar
case in [16], we conjecture that

Conjecture 1.1. Under condition of Theorem 1, for p = n/2, n ≥ 3, the map-
ping w is absolutely continuous on every line from the boundary of the unit ball.

2. Proofs of the results

In what follows, we say that a bounded Jordan domain Ω ⊂ R
n has C2-boundary

if it is the image of the unit ball Bn under a C2-diffeomorphism of the whole Euclidean
space onto itself. In the sequel, ∆ refers to the distributional Laplacian. We shall
make use of the following well-known facts from potential theory:

Proposition 2.1. (Morrey’s inequality) Assume that n < p ≤ ∞ and assume
that U is a domain in R

n with C1 boundary. Then there exists a constant C de-
pending only on n, p and U so that

(4) ‖u‖C0,α(U) ≤ C‖u‖W 1,p(U)

for every u ∈ C1(U) ∩ Lp(U), where

α = 1−
n

p
.

Lemma 1. (See e.g. [3]) Suppose that ω ∈ W 2,1
loc

(Bn)∩C(Bn ), that h ∈ Lp(Bn)
for some 1 < p <∞ and that

∆ω = h in B
n, with ω

∣

∣

Sn−1
= 0.

a) If 1 < p < n, then

‖∇ω‖Lq(Bn) ≤ c(p, n)‖h‖Lp(Bn), q =
pn

n− p
.

b) If p = n and 1 < q <∞, then

‖∇ω‖Lq(Bn) ≤ c(q, n)‖h‖Ln(Bn).

c) if p > n, then

‖∇ω‖L∞(Bn) ≤ c(p, n)‖h‖Ln(Bn).

Now we prove

Lemma 2. If ∆u = g ∈ Lp and r < 1, then Du ∈ Lq(rB) for q ≤ np
n−p

.
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Proof of Lemma 2. By writing u = v + w from (2), and differentiating it we
have

(5) Du(x) = Dv +Dw =

ˆ

Sn−1

∇xP (x, η)f(η) dσ(η)−

ˆ

B

∇xG(x, y)g(y) dy.

Then
ˆ

rB

|Du(x)|q dx =

ˆ

rB

∣

∣

∣

∣

ˆ

Sn−1

∇xP (x, η)f(η) dσ(η)−

ˆ

B

∇xG(x, y)g(y) dy

∣

∣

∣

∣

q

dx.

Thus

‖Du‖Lq(rB) = ‖Dv‖Lq(rB) + ‖Dw‖Lq(rB)

≤

(

ˆ

rB

∣

∣

∣

∣

ˆ

Sn−1

∇xP (x, η)f(η) dσ(η)

∣

∣

∣

∣

1/q
)1/q

+

(
ˆ

rB

∣

∣

∣

∣

ˆ

B

∇xG(x, y)g(y) dy

∣

∣

∣

∣

q

dx

)1/q

.

Further, there is a constant C so that

(6) |∇xP (x, η)| ≤
C

(1− |x|)n+1
.

From Lemma 1 and (6) we have ‖Du‖Lq(rB) <∞. �

Now we formulate the following fundamental result of Gehring:

Proposition 2.2. [5] Let f be a quasiconformal mapping of the unit ball Bn

onto a Jordan domain Ω with C2 boundary. Then there is a constant p = p(K, n) > n
so that

ˆ

Bn

|Df |p < C(n,K, f(0),Ω).

Then we prove

Lemma 3. If H : Rn → R and w = (w1, . . . , wn) : A→ B (where A,B are open
subsets in R

n) are functions C2 mappings, then

∆(H ◦ w) =

n
∑

i=1

∂2H

∂w2
i

|∇wi|
2 + 2

∑

1≤i<j≤n

∂2H

∂wi∂wj
〈∇wi,∇wj〉+

n
∑

i=1

∂H

∂wi
∆wi

Proof. For every k ∈ (1, . . . , n) we have:

∂(H ◦ w)(x1, . . . , xn)

∂xk
=

n
∑

i=1

∂H

∂wi

∂wi

∂xk
.

Thus

∂2(H ◦ w)(x1, . . . , xn)

∂x2k
=

n
∑

i=1

∂ [ ∂H
∂wi

∂wi

∂xk
]

∂xk

=
n
∑

i=1

[

∂ [ ∂H
∂wi

]

∂xk

∂wi

∂xk
+
∂H

∂wi

∂2wi

∂x2k

]

=
n
∑

i=1

[[

n
∑

j=1

∂2H

∂wj∂wi

∂wj

∂xk

]

∂wi

∂xk

]

+
n
∑

i=1

∂H

∂wi

∂2wi

∂x2k

=

n
∑

i,j=1

∂2H

∂wi∂wj

[

∂wi

∂xk

∂wj

∂xk

]

+

n
∑

i=1

∂H

∂wi

∂2wi

∂x2k
.
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Now we have:

∆(H ◦ w) =

n
∑

k=1

∂2(H ◦ w)(x1, . . . , xn)

∂x2k

=

n
∑

k=1

[

n
∑

i,j=1

∂2H

∂wi∂wj

[

∂wi

∂xk

∂wj

∂xk

]

+

n
∑

i=1

∂H

∂wi

∂2wi

∂x2k

]

=

n
∑

i,j=1

∂2H

∂wi∂wj

[

n
∑

k=1

∂wi

∂xk

∂wj

∂xk

]

+

n
∑

i=1

∂H

∂wi

[

n
∑

k=1

∂2wi

∂x2k

]

=
n
∑

i=1

∂2H

∂w2
i

|∇wi|
2 + 2

∑

1≤i<j≤n

∂2H

∂wi∂wj

〈∇wi,∇wj〉+
n
∑

i=1

∂H

∂wi

∆wi. �

Proof of Theorem 1. It turns out that the approach of [8], where the use of
distance functions was initiated, is substantial for further development.

We say a ≈ b if there is a constant C ≥ 1 such that a/C ≤ b ≤ Ca; and we say
a . b if there is a constant C > 0 such that a ≤ Cb.

By our assumption on the domain, we may fix a diffeomorphism ψ : Ω → Bn

that is C2 up to the boundary. Denote H := 1 − |ψ|2, whence H is C2-smooth in Ω
and vanishes on ∂Ω with |∇H| ≈ 1 in a neighborhood of ∂Ω. We may then define
h : Bn → [0, 1] by setting

h(z) := H ◦ w(z) = 1− |ψ(w(z))|2 for z ∈ B
n.

The quasiconformality of w and the behavior of ∇H near ∂Ω imply that there is
r0 ∈ (0, 1) so that the weak gradients satisfy

(7) |∇h(x)| ≈ |∇w(x)| for r0 ≤ |x| < 1.

Moreover, by Lemma 2, for q ∈ (1, np
n−p

] , we have

‖∇h(x)‖Lq(r0Bn) . ‖∇w(x)‖Lq(r0Bn) ≤ C.

It follows that for any q ∈ (1, np
n−p

] we have that

(8) ∇h ∈ Lq(Bn) if and only if ∇w ∈ Lq(Bn).

From Lemma 3 by using the fact that H ∈ C2 is a real valued function, we obtain

(9) |∆h| . |∇w|2 + |g|.

The higher integrability of quasiconformal self-maps of Bn makes sure that ∇(ψ◦
w) ∈ Lq(Bn) for some q > n, which implies that ∇w ∈ Lq(Bn). By combining this
with the fact that g ∈ Lp(Bn) with p > n/2, we deduce that ∆h ∈ Lr(Bn) with
r = min(p, q/2) > n/2. As in [3] and [16], we use bootstrapping argument which can
be stated as the following observation.

(10) If ∇w ∈ Lq(Bn) with n < q < 2n, then ∇w ∈ L
na

2n−a (Bn),

where a = q ∧ 2p := min{q, 2p}. In order to prove (10), assume that ∇w ∈ Lq(Bn)
for an exponent q ∈ (n, 2n). Then (9) and our assumption on g verify that ∆h ∈
Lq/2∧p(Bn). Since h vanishes continuously on the boundary ∂Bn, we may apply
Lemma 1(a) to obtain that ∇h ∈ Lna/(2n−a)(Bn) which yields the claim according to
(8).
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We then claim that in our situation one has ∇w ∈ Lq(Bn) with some exponent

q

{

= 2p, if p ≤ n;

> 2n, if p > n.

To prove that, fix an exponent q0 > n obtained from the higher integrability of the
quasiconformal map w so that ∇w ∈ Lq0(Bn). By diminishing q0 if needed, we may
assume that q0 ∈ (n, 2n) and q0 6∈ {2m/(2m−1 − 1), m = 3, 4, . . .}. Then we may
iterate (10) and deduce inductively that ∇w ∈ Lak(Bn) for k = 0, 1, 2, . . . , k0, where
a0 = q0 ∧ 2p and ak satisfy the recursion ak+1 =

nak
2n−ak

∧ 2p and k0 is the first index
such that

(11) ak0

{

= 2p, if p ≤ n;

> 2n, if p > n.

Such an index exists. Namely if p > n and ak ≤ 2n, then ak < ak+1 = nak
2n−ak

. If for
all k, ak ≤ 2n, then ak converges to a point a so that na

2n−a
= a, which is then equal

to n and this is impossible. If p ≤ n, then again ak is nondecreasing, which means
that it converges to a = n, which is impossible, or which is stationary sequence from
an index k0, and then ak = 2p for k ≥ k0.

Thus we may assume that ∇w ∈ Lq(Bn), where q = ak0 satisfies (11). Now we
consider the following cases.

The case p < n. Since ∇w ∈ Lnp/(n−p)(Bn), by Morrey’s inequality w is Hölder
continuous with the constant c = α = 2− n

p
as claimed.

The case p = n, in this case we use the previous case by choosing p′ < p close
enough to p.

The case p > n. We know that ∇w ∈ Lq with some q > 2n. Further (9) shows
that ∆h ∈ Lp∧(q/2)(Bn). As p ∧ (q/2) > 2n, Lemma 1(c) verifies that ∇h ∈ L∞(Bn).
Thus ∇w ∈ L∞(Bn) and hence w is Lipschitz continuous. �

If follows from the proof of the previous theorem the following theorem.

Theorem 2. Assume that g ∈ Ln(Bn). If w is a K-quasiconformal solution
of ∆w = g, that maps the unit disk onto a bounded Jordan domain Ω ⊂ R

n with
C2-boundary, then Dw ∈ Lp(Bn) for every p <∞.
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