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Abstract. We investigate the situation when a normal positive linear unital map on a semifinite

von Neumann algebra leaving the trace invariant does not change the Segal entropy of the density of

a normal, not necessarily normalised, state. Two cases are dealt with: a) no restriction on the map

is imposed, b) the map represents a repeatable instrument in measurement theory which means

that it is idempotent.

Introduction

In the paper, the question of invariance of Segal’s entropy under the action of a
normal positive linear unital map is addressed in the case of a semifinite von Neumann
algebra.

The notion of Segal’s entropy was introduced by Segal in [9] for semifinite von
Neumann algebras as a direct counterpart of von Neumann’s entropy defined for the
full algebra B(H) of all bounded linear operators on a Hilbert space by means of
the canonical trace. However, in the case of an arbitrary semifinite von Neumann
algebra, where instead of the canonical trace we have a normal semifinite faithful
trace, substantial differences between these two entropies arise. Perhaps the most
fundamental one consists in the fact that while a normal state on B(H) is represented
by a positive operator of trace one (the so-called ‘density matrix’), in the case of an
arbitrary semifinite von Neumann algebra this ‘density matrix’ can be an unbounded
operator. This prompted Segal to consider only the states whose ‘density matrices’
were in the algebra. In our analysis, we avoid this restriction as well as we allow
the trace to be semifinite and not finite, the latter being also often assumed while
dealing with Segal’s entropy.

On the way to the main theorems, some auxiliary results about strict operator
convexity or Jensen’s inequality for unbounded measurable operators are obtained
which seem to be interesting and of some importance in their own right.

1. Preliminaries and notation

Let M be a semifinite von Neumann algebra of operators acting on a Hilbert
space H with a normal semifinite faithful trace τ , identity 1, and predual M∗. By
M+ we shall denote the set of positive operators in M , and by M+

∗
—the set of

positive functionals in M∗. These functionals will be sometimes referred to as (non-
normalised) states.
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The algebra of measurable operators M̃ is defined as a topological ∗-algebra of
densely defined closed operators on H affiliated with M with strong addition ∔ and
strong multiplication ·, i.e.

x∔ y = x+ y, x · y = xy, x, y ∈ M̃ ,

where x+ y and xy are the closures of the corresponding operators defined by addi-
tion and composition respectively on the natural domains given by the intersections
of the domains of the x and y and of the range of y and the domain of x respectively.
In what follows, we shall omit the dot in the symbols of these operations and write
simply x+ y and xy to denote x∔ y and x · y.

The domain of a linear operator x on H will be denoted by D(x).
For each ρ ∈ M∗, there is a measurable operator h such that

ρ(x) = τ(xh) = τ(hx), x ∈ M .

The space of all such operators is denoted by L1(M , τ), and the correspondence
above is one-to-one and isometric, where the norm on L1(M , τ), denoted by ‖ · ‖1,
is defined as

‖h‖1 = τ(|h|), h ∈ L1(M , τ).

(In the theory of noncommutative Lp-spaces for semifinite von Neumann algebras,
it it shown that τ can be extended to the h’s as above; see e.g. [5, 10, 11] for a
detailed account of this theory.) Moreover, to hermitian functionals in M∗ corre-
spond selfadjoint operators in L1(M , τ), and to states in M∗—positive operators in
L1(M , τ).

For ρ ∈ M+
∗

, the corresponding element in L1(M , τ) is called the density of ρ
and is denoted by hρ. The Segal entropy of ρ, denoted by H(ρ), is defined as

H(ρ) = τ(hρ log hρ),

i.e. for the spectral representation of hρ

(1) hρ =

ˆ

∞

0

t e(dt),

we have

H(ρ) =

ˆ

∞

0

t log t τ(e(dt)).

Accordingly, we define Segal’s entropy for 0 6 h ∈ L1(M , τ) by the formula

H(h) = τ(h log h) =

ˆ

∞

0

t log t τ(e(dt)),

where h has the spectral representation as in (1). Let us note that the existence of
Segal’s entropy is by no means guaranteed, however, for finite τ and normal state ρ,
we have, on account of the inequality

t log t > t− 1,

the relation

H(ρ) =

ˆ

∞

0

t log t τ(e(dt)) >

ˆ

∞

0

(t− 1) τ(e(dt))

= τ
(ˆ ∞

0

t e(dt)
)
− τ

( ˆ ∞

0

e(dt)
)
= τ(hρ)− τ(1) > −∞,

showing that, at least in this case, Segal’s entropy is well defined (and nonnegative
for normalised states).
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2. Operator convexity and Jensen’s inequality

It is well-known that the function

g(t) =
1

s+ t

is strictly operator convex on B(H)+ for each positive s. However, we shall need
more.

Proposition 1. Let M be a semifinite von Neumann algebra. The function g as

above is strictly operator convex on M̃+, which means that for arbitrary x1, x2 ∈ M̃+

and arbitrary λ ∈ (0, 1) we have

(2)
(
s1+ λx1 + (1− λ)x2

)−1
6 λ

(
s1 + x1

)−1
+ (1− λ)

(
s1+ x2

)−1

with equality if and only if x1 = x2.

Proof. Let u be a positive selfadjoint measurable operator such that u−1 is also
measurable. Then

0 6
(
u1/2 − u−1/2

)2
= u+ u−1 − 21.

For arbitrary λ ∈ (0, 1), we have

λ(1− λ)
(
u+ u−1 − 21

)
> 0,

which yields the inequality

(1− 2λ+ 2λ2)1+ λ(1− λ)u+ λ(1− λ)u−1 > 1,

i.e. (
λ1+ (1− λ)u

)(
λ1+ (1− λ)u−1

)
> 1.

Multiplying both sides of the inequality above on the right and on the left by
(
λ1+

(1− λ)u
)−1/2

, we get

(3) λ1 + (1− λ)u−1 >
(
λ1+ (1− λ)u

)−1
.

Assume now that u is of the form

(4) u = z
−1/2
1 z2z

−1/2
1 ,

where z
1/2
1 , z

−1/2
1 , z2 and z−1

2 are positive measurable operators. Taking into account
the equality

(
λ1 + (1− λ)z

−1/2
1 z2z

−1/2
1

)−1
=

(
z
−1/2
1 (λz1 + (1− λ)z2)z

−1/2
1

)−1
,

we obtain from the inequality (3) the relation

λ1+ (1− λ)z
1/2
1 z−1

2 z
1/2
1 >

(
λ1+ (1− λ)z

−1/2
1 z2z

−1/2
1

)−1

=
(
z
−1/2
1 (λz1 + (1− λ)z2)z

−1/2
1

)−1
= z

1/2
1

(
λz1 + (1− λ)z2

)−1
z
1/2
1 .

Multiplying both sides of the inequality above on the right and on the left by z
−1/2
1 ,

we obtain

(5) λz−1
1 + (1− λ)z−1

2 >
(
λz1 + (1− λ)z2

)−1
.

Now putting

z1 = s1+ x1, z2 = s1+ x2,
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we get z
1/2
1 , z2 ∈ M̃ , z

−1/2
1 , z−1

2 ∈ M , thus u defined by the equality (4), as well as
u−1, are measurable, and the inequality (5) shows that the relation (2) holds. Now it
is clear that equality in (2) holds if and only if u1/2 = u−1/2, i.e. u = 1, which yields

z
−1/2
1 z2z

−1/2
1 = 1,

meaning that z1 = z2, i.e. x1 = x2. �

The function

(6) f(t) = t log t, t ∈ [0,∞)

is known to be strictly operator convex for positive bounded operators. We want to
extend this result to some class of unbounded operators as well. Observe that this
property amounts to the inequality

λx1 log x1 + (1− λ)x2 log x2 >
(
λx1 + (1− λ)x2

)
log

(
λx1 + (1− λ)x2

)

for positive selfadjoint operators x1 and x2, and arbitrary λ ∈ (0, 1) with equality if
and only if x1 = x2. However, in such a general setting obvious problems arise with
the domains or selfadjointness of respective operators. We shall confine ourselves to
selfadjoint measurable operators where these problems can be avoided. Observe first
that measurability is preserved by the function f .

Lemma 2. Let x be a positive selfadjoint measurable operator. Then x log x is
also measurable.

Proof. Let x be a positive selfadjoint measurable operator, and let

(7) x =

ˆ

∞

0

t p(dt)

be its spectral representation. Then

x log x =

ˆ

∞

0

t log t p(dt) =

ˆ 1

0

t log t p(dt) +

ˆ

∞

1

t log t p(dt).

The first integral on the right hand side of the equality above represents a bounded
operator, so

´ 1

0
t log t p(dt) ∈ M . For the second integral we have

ˆ

∞

1

t log t p(dt) =

ˆ

∞

0

λ (f ◦ p)(dλ),

where the measure f ◦ p is defined as

(f ◦ p)(E) = p(f−1(E)), E ∈ B(R).

The operator
´

∞

1
t log t p(dt) is selfadjoint and positive, and its spectral measure is

f ◦ p. Since x is measurable, there is t0 > 0 such that τ(p([t0,∞))) < ∞. Let λ0 be
such that f(t0) = λ0. Then we have

τ((f ◦ p)([λ0,∞))) = τ(p(f−1([λ0,∞)))) = τ(p([t0,∞))) < ∞,

showing that
´

∞

1
t log t p(dt) =

´

∞

0
λ (f ◦ p)(dλ) is measurable. It follows that x log x

is measurable as a sum of two measurable operators. �

We have the following counterpart of a result known for bounded operators.

Theorem 3. The function f defined by the formula (6) is strictly operator con-
vex for positive selfadjoint measurable operators.
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Proof. The method of proof is similar to that for bounded operators, however,
a number of refinements are required due to the unboundedness of the operators in
question. Let x be a positive selfadjoint measurable operator with spectral represen-
tation (7). Take an arbitrary ξ ∈ D(x log x). The representation

t log t =

ˆ

∞

0

( t

s + 1
−

t

s+ t

)
ds,

yields

〈(x log x)ξ|ξ〉 =

ˆ

∞

0

(ˆ ∞

0

( t

s+ 1
−

t

s+ t

)
ds
)
‖p(dt)ξ‖2.

The following estimates hold true for the function under the integral sign

∣∣∣ t

s + 1
−

t

s+ t

∣∣∣ = |t2 − t|

(s+ 1)(s+ t)
6 1, for 0 6 s 6 1, 0 6 t 6 1,

∣∣∣ t

s + 1
−

t

s+ t

∣∣∣ = |t2 − t|

(s+ 1)(s+ t)
6 t, for 0 6 s 6 1, t > 1,

∣∣∣ t

s + 1
−

t

s+ t

∣∣∣ = |t2 − t|

(s+ 1)(s+ t)
6

1

s2
, for s > 1, 0 6 t 6 1,

∣∣∣ t

s + 1
−

t

s+ t

∣∣∣ = |t2 − t|

(s+ 1)(s+ t)
6

t2

s2
, for s > 1, t > 1,

consequently,

¨

[0,1]×[0,1]

∣∣∣ t

s+ 1
−

t

s+ t

∣∣∣ (ds× ‖p(dt)ξ‖2)

6

¨

[0,1]×[0,1]

(ds× ‖p(dt)ξ‖2) = ‖p([0, 1])ξ‖2 6 ‖ξ‖2 < ∞,

¨

[0,1]×(1,∞)

∣∣∣ t

s+ 1
−

t

s+ t

∣∣∣ (ds× ‖p(dt)ξ‖2)

6

¨

[0,1]×(1,∞)

t (ds× ‖p(dt)ξ‖2) =

ˆ

(1,∞)

t ‖p(dt)ξ‖2

6

ˆ

(1,∞)

t2 ‖p(dt)ξ‖2 6

ˆ

∞

0

t2 ‖p(dt)ξ‖2 = ‖xξ‖2 < ∞,

¨

(1,∞)×[0,1]

∣∣∣ t

s+ 1
−

t

s+ t

∣∣∣ (ds× ‖p(dt)ξ‖2)

6

¨

(1,∞)×[0,1])

1

s2
(ds× ‖p(dt)ξ‖2) =

( ˆ ∞

1

1

s2
ds
)
‖p([0, 1])ξ‖2

6 ‖ξ‖2 < ∞,
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¨

(1,∞)×(1,∞)

∣∣∣ t

s+ 1
−

t

s+ t

∣∣∣ (ds× ‖p(dt)ξ‖2)

6

¨

(1,∞)×(1,∞)

t2

s2
(ds× ‖p(dt)ξ‖2) =

(ˆ ∞

1

1

s2
ds
)(ˆ ∞

1

t2 ‖p(dt)ξ‖2
)

6

ˆ

∞

0

t2 ‖p(dt)ξ‖2 = ‖xξ‖2 < ∞.

It follows that the function (s, t) 7→ t
s+1

− t
s+t

is integrable, and the Fubini theorem
yields

〈(x log x)ξ|ξ〉 =

ˆ

∞

0

(ˆ ∞

0

( t

s+ 1
−

t

s+ t

)
ds
)
‖p(dt)ξ‖2

=

ˆ

∞

0

(ˆ ∞

0

( t

s+ 1
−

t

s+ t

)
‖p(dt)ξ‖2

)
ds

=

ˆ

∞

0

〈( 1

s+ 1
x− x(s1+ x)−1

)
ξ|ξ

〉
ds

=

ˆ

∞

0

〈( 1

s+ 1
x− 1+ s(s1+ x)−1

)
ξ|ξ

〉
ds.

For arbitrary positive selfadjoint measurable operators x1, x2 and λ ∈ (0, 1) the
operators

λx1 log x1 + (1− λ)x2 log x2 = λf(x1) + (1− λ)f(x2)

and

(λx1 + (1− λ)x2) log(λx1 + (1− λ)x2) = f(λx1 + (1− λ)x2)

are selfadjoint and measurable. Let ξ belong to the intersection of their domains.
Then

〈(λf(x1) + (1− λ)f(x2)− f(λx1 + (1− λ)x2))ξ|ξ〉

=

ˆ

∞

0

s〈((s1+ λx1)
−1 +

(
s1+ (1− λ)x2

)−1
+

−
(
s1 + λx1 + (1− λ)x2

)−1
)ξ|ξ〉 ds > 0,

(8)

by virtue of Proposition 1. Moreover, the equality

λf(x1) + (1− λ)f(x2) = f(λx1 + (1− λ)x2)

yields that the term under the integral sign in (8) is zero for all ξ in the intersection
of the respective domains, i.e. that

(s1+ λx1)
−1 +

(
s1+ (1− λ)x2

)−1
=

(
s1+ λx1 + (1− λ)x2

)−1

on a dense subspace, hence everywhere, since the operators above are bounded, and
again Proposition 1 yields the equality x1 = x2. �

The point of the lemma that follows is that the function considered there has an
integral representation with the integral over a bounded interval, while the integral
representation of the function defined by the formula (6) deals with an integral over
the interval [0,∞). This will be employed later for the Bochner integrability of some
appropriate function.
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Lemma 4. Let m and M be such that 0 < m < M . The function

fm,M(t) = t log(m+ t)− t log(m+ 1)

+ t log(M + 1)− t log(M + t), t > 0,
(9)

is strictly operator convex on B(H)+.

Proof. The method of proof is essentially the same as that for proving the strict
operator convexity of the function t 7→ t log t, and is based on the representation

(10) fm,M(t) =

ˆ M

m

( t

s+ 1
−

t

s+ t

)
ds

in the same way in which the operator convexity of the function t 7→ t log t is based
on the representation

t log t =

ˆ

∞

0

( t

s+ 1
−

t

s+ t

)
ds,

so we omit the details. �

In what follows, while speaking about 0 6 h ∈ L1(M , τ) we shall assume that it
has the spectral representation

(11) h =

ˆ

∞

0

t e(dt).

Let 0 6 h ∈ L1(M , τ). The operator fm,M(h) is defined by means of the spectral
theorem, i.e.

fm,M(h) =

ˆ

∞

0

fm,M(t) e(dt).

We shall prove that fm,M(h) has also another representation.

Lemma 5. For 0 6 h ∈ L1(M , τ), we have

(12) fm,M(h) =

ˆ M

m

( 1

s+ 1
h− h(s1+ h)−1

)
ds,

where the integral on the right hand side is Bochner’s integral of a function with
values in L1(M , τ).

Proof. Observe first that we have

‖h(s′1+ h)−1 − h(s′′1 + h)−1‖1 = |s′ − s′′|‖h(s′′1+ h)−1(s′1 + h)−1‖1

6 |s′ − s′′|‖h‖1‖(s
′′
1 + h)−1(s′1+ h)−1‖∞ 6

|s′ − s′′|

s′s′′
‖h‖1,

which shows that the function

[m,M ] ∋ s 7→
1

s+ 1
h− h(s1+ h)−1

is continuous in ‖ · ‖1-norm, hence strongly measurable. Moreover,

(13)

∥∥∥ 1

s+ 1
h− h(s1+ h)−1

∥∥∥
1
=

1

s+ 1
‖h(h− 1)(s1+ h)−1‖1

6
1

s+ 1
‖h‖1‖(h− 1)(s1+ h)−1‖∞ 6

max
{
1, 1

s

}

s+ 1
‖h‖1,

because

‖(h− 1)(s1+ h)−1‖∞ = max
{
1,

1

s

}
.
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Since the function

[m,M ] ∋ s 7→
max

{
1, 1

s

}

s+ 1
‖h‖1

is integrable, it follows that there exists the Bochner integral on the right hand side
of the equality (12). Denote this integral by z:

z =

ˆ M

m

( 1

s + 1
h− h(s1+ h)−1

)
ds ∈ L1(M , τ).

For the spectral representation of h as in (11), and for each fixed positive integer
r put

er = e([0, r]).

Then her is bounded, and in the same way as in the proof of Lemma 5, we obtain

‖her(s
′
1+ h)−1 − her(s

′′
1+ h)−1‖∞

= |s′ − s′′|‖her(s
′′
1+ h)−1(s′1+ h)−1‖∞

6 |s′ − s′′|‖her‖∞‖(s′′1+ h)−1(s′1+ h)−1‖∞ 6
r|s′ − s′′|

s′s′′
,

and ∥∥∥ 1

s+ 1
her − her(s1+ h)−1

∥∥∥
∞

=
1

s+ 1
‖her(h− 1)(s1+ h)−1‖∞

6
1

s+ 1
‖her‖∞‖(h− 1)(s1+ h)−1‖∞ 6

rmax
{
1, 1

s

}

s+ 1
,

which shows that there exists the Bochner integral
ˆ M

m

( 1

s+ 1
her − her(s1 + h)−1

)
ds ∈ M .

Now put

s
(n)
k = m+ k

M −m

n
, k = 0, 1, . . . , n,

and define simple functions gn : [m,M ] → L1(M , τ) by the formula

gn(s) =
1

s
(n)
k + 1

h− h(s
(n)
k 1+ h)−1 for s ∈

[
s
(n)
k , s

(n)
k+1

)
,

i.e.

gn(s) =

n−1∑

k=0

(
1

s
(n)
k + 1

h− h(s
(n)
k 1+ h)−1

)
χ[

s
(n)
k

,s
(n)
k+1

)(s),

where χ∆ stands for the characteristic function of the set ∆ ⊂ R. We have

gn(s) −→
1

s+ 1
h− h(s1+ h)−1 in ‖ · ‖1-norm,

so for the integral sums

Sn =
n−1∑

k=0

(
1

s
(n)
k + 1

h− h(s
(n)
k 1+ h)−1

)(
s
(n)
k+1 − s

(n)
k

)

=
n−1∑

k=0

(
1

s
(n)
k + 1

h− h(s
(n)
k 1+ h)−1

)
M −m

n
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we get

Sn −→

ˆ M

m

( 1

s + 1
h− h(s1+ h)−1

)
ds = z in ‖ · ‖1-norm.

Similarly, for the simple functions gner : [m,M ] → M defined as

gn(s)er =

n−1∑

k=0

(
1

s
(n)
k + 1

her − her(s
(n)
k 1+ h)−1

)
χ[

s
(n)
k

,s
(n)
k+1

)(s),

we have

gn(s) −→
1

s + 1
her − her(s1+ h)−1 in ‖ · ‖∞-norm.

Hence for the integral sums Sner we get

Sner −→

ˆ M

m

( 1

s+ 1
her − her(s1+ h)−1

)
ds in ‖ · ‖∞-norm.

Now
‖(Sn − z)er‖1 6 ‖Sn − z‖1‖er‖∞ 6 ‖Sn − z‖1 → 0,

which means that

Sner −→ zer in ‖ · ‖1-norm.

Since

Sner −→

ˆ M

m

( 1

s+ 1
her − her(s1+ h)−1

)
ds in ‖ · ‖∞-norm,

it follows that

zer =

ˆ M

m

( 1

s+ 1
her − her(s1+ h)−1

)
ds.

The same procedure holds for the function ergn, thus zer = erz.
Take an arbitrary ξ ∈ er(H). Then we have, using the representation (10),

〈zξ|ξ〉 =
〈(ˆ M

m

( 1

s+ 1
her − her(s1+ h)−1

)
ds
)
ξ|ξ

〉

=

ˆ M

m

〈( 1

s+ 1
h− h(s1+ h)−1

)
ξ|ξ

〉
ds

=

ˆ M

m

ˆ

∞

0

( t

s+ 1
−

t

s + t

)
‖e(dt)ξ‖2ds

=

ˆ

∞

0

ˆ M

m

( t

s+ 1
−

t

s + t

)
ds‖e(dt)ξ‖2

=

ˆ

∞

0

fm,M(t)‖e(dt)ξ‖2 = 〈fm,M(h)ξ|ξ〉,

where the change of the order of integration is justified exactly as in the proof of
Theorem 3. This shows that zξ = fm,M(h)ξ, i.e.

zer = fm,M(h)er.

Since τ(e⊥r ) → 0 as r → ∞, we infer on account of [5, Theorem 2] (alternatively, one
may use [8, Corollary 5.1]) that

z = fm,M(h). �

Now we want to show that in some important case the operator h log h can be
approximated by fm,M(h).
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Lemma 6. Let 0 6 h ∈ L1(M , τ) be a density with finite Segal’s entropy, i.e.
h log h ∈ L1(M , τ). Then

lim
m→0
M→∞

fm,M(h) = h log h in ‖ · ‖1-norm.

Proof. Let h have the spectral representation (11). We have the following equality

‖h log(m1+ h)− h log h‖1 =

ˆ

∞

0

(t log(m+ t)− t log t) τ(e(dt)),

and, assuming m 6 1, the following estimate holds

t log(m+ t) 6 t log(1 + t) 6

{
t log 2, for t 6 1

t log 2t, for t > 1

=

{
t log 2, for t 6 1

t log 2 + t log t, for t > 1
6 t log 2 + |t log t|.

Since

t log t 6 t log(m+ t),

we have

|t log(m+ t)| 6 max{|t log t|, |t log 2 + |t log t||} = t log 2 + |t log t|,

so the function under the integral sign is estimated by

|t log(m+ t)− t log t| 6 t log 2 + 2|t log t|.

The finiteness of Segal’s entropy of h means that h log h ∈ L1(M , τ), so
ˆ

∞

0

|t log t| τ(e(dt)) = τ(|h log h|) < ∞,

and of course
ˆ

∞

0

t log 2 τ(e(dt)) = (log 2)τ(h) < ∞,

thus the function t 7→ t log 2 + 2|t log t| is integrable. Since

t log(m+ t)− t log t −→ 0 as m → 0,

we get, using the Lebesgue Dominated Convergence Theorem,

lim
m→0

‖h log(m1 + h)− h log h‖1

= lim
m→0

ˆ

∞

0

(t log(m+ t)− t log t) τ(e(dt))

=

ˆ

∞

0

lim
m→0

(t log(m+ t)− t log t) τ(e(dt)) = 0.

Further, we have

‖ log(M + 1)h− h log(M1 + h)‖1 =

ˆ

∞

0

t
∣∣∣ log M + 1

M + t

∣∣∣ τ(e(dt))

=

ˆ 1

0

t log
M + 1

M + t
τ(e(dt)) +

ˆ

∞

1

t log
M + t

M + 1
τ(e(dt))

6 log
M + 1

M

ˆ 1

0

t τ(e(dt)) +

ˆ

∞

1

t log
M + t

M + 1
τ(e(dt)).

(14)



Mappings preserving Segal’s entropy in von Neumann algebras 779

For the functions

kM(t) = t log
M + t

M + 1
, t ∈ [1,∞),

we have

lim
M→∞

kM(t) = 0,

and

|kM(t)| 6 t log t,

which means that the functions kM are bounded above by an integrable function, and
passing to the limit in the inequality (14), we get, again on account of the Lebesgue
Dominated Convergence Theorem,

lim
M→∞

‖ log(M + 1)h− h log(M1 + h)‖1 = 0.

Consequently,

‖fm,M(h)− h log h‖1 6 ‖h log(m1+ h)− h log h‖1 + ‖ log(m+ 1)h‖1

+ ‖ log(M + 1)h− h log(M1 + h)‖1,

and taking into account the obvious relation ‖ log(m + 1)h‖1 −→
m→0

0 we obtain the

conclusion. �

For a positive selfadjoint measurable operator x with spectral representation

x =

ˆ

∞

0

t p(dt)

denote by x[n] its restriction

x[n] =

ˆ n

0

t p(dt).

Let 0 6 h ∈ L1(M , τ) have finite entropy. Then

h log h− h[n] log h[n] =

ˆ

∞

n

t log t e(dt),

and thus

(15) ‖h log h− h[n] log h[n]‖1 =

ˆ

∞

n

t log t τ(e(dt)) → 0,

since

H(h) = τ(h log h) =

ˆ

∞

0

t log t τ(e(dt))

is finite. In an analogous way, we obtain for arbitrary M > 0

(16)

‖h log(M1 + h)− h[n] log(M1 + h[n])‖1

=

ˆ

∞

n

t log(M + t)τ(e(dt)) 6

ˆ

∞

n

t log 2t τ(e(dt))

= log 2

ˆ

∞

n

t τ(e(dt)) +

ˆ

∞

n

t log t τ(e(dt)) → 0,

since
ˆ

∞

0

t τ(e(dt)) = τ(h) < ∞.

We have the following special, yet interesting in their own right, cases of the Jensen
inequality for unbounded operators.
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Theorem 7. Let α : M → M be a positive unital linear map having an exten-
sion to L1(M , τ) bounded with respect to ‖ · ‖1-norm, and let 0 6 h ∈ L1(M , τ).
Then

(i) for h having finite Segal’s entropy,

α(h log h) > α(h) logα(h);

(ii) for α normal,

α
(
(s1+ h)−1

)
>

(
s1 + α(h)

)−1

for each s > 0.

Proof. (i) Let the function fm,M be defined by the formula (9). Since this function
is operator convex, the Jensen inequality for bounded operators yields

(17) α(fm,M(h[n])) > fm,M

(
α(h[n])

)
.

Taking into account the relations (15) and (16), we get

fm,M(h[n]) = h[n] log(m1 + h[n])− log(m+ 1)h[n] + log(M + 1)h[n]

− h[n] log(M1 + h[n]) −→ h log(m1 + h)− log(m+ 1)h

+ log(M + 1)h− h log(M1 + h) = fm,M(h),

where the convergence is in ‖ · ‖1-norm.
For the right-hand side of the inequality (17), we have

fm,M

(
α(h[n])

)
=

ˆ M

m

( 1

s+ 1
α(h[n])− α(h[n])(s1+ α(h[n]))

−1
)
ds,

and putting x = α(h[n]) in the inequality (13), we get

∥∥∥ 1

s+ 1
α(h[n])− α(h[n])(s1+ α(h[n]))

−1
∥∥∥
1
6

max{1, 1
s
}

s+ 1
‖α(h[n])‖1

6
max{1, 1

s
}

s + 1
‖α‖1‖h[n]‖1 6

max{1, 1
s
}

s+ 1
‖α‖1,

which means that the sequence of functions under the integral sign is bounded above
by an integrable function. Moreover, from the continuity of the function

[m,M ] ∋ s 7→
1

s+ 1
x− x(s1 + x)−1

in ‖ · ‖1-norm noticed at the beginning of the proof, it follows that

1

s+ 1
α(h[n])− α(h[n])(s1+ α(h[n]))

−1 →
1

s + 1
α(h)− α(h)(s1+ α(h))−1,

where the convergence is in ‖ · ‖1-norm, thus on account of the Lebesgue Dominated
Convergence Theorem for Bochner integrals, we obtain

fm,M

(
α(h[n])

)
=

ˆ M

m

( 1

s+ 1
α(h[n])− α(h[n])(s1+ α(h[n]))

−1
)
ds

−→

ˆ M

m

( 1

s+ 1
α(h)− α(h)(s1+ α(h))−1

)
ds = fm,M(α(h)),

again with the ‖ · ‖1-convergence. Passing to the limit with n → ∞ in ‖ · ‖1-norm in
the inequality (17), we get

α(fm,M(h)) > fm,M

(
α(h)

)
.
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Now passing to the limit with m → 0 and M → ∞ in the inequality above, we obtain
by virtue of Lemma 6

α(h log h) > α(h) logα(h),

which finishes the proof.
(ii) Let 0 6 hn ∈ M ∩L1(M , τ) be such that hn → h in ‖ · ‖1-norm. The Jensen

inequality for bounded operators yields

(18) α
(
(s1+ hn)

−1
)
>

(
s1+ α(hn)

)−1
.

We have

‖(s1+ hn)
−1 − (s1+ h)−1‖1 = ‖(s1+ hn)

−1(h− hn)(s1+ h)−1‖1

6 ‖(s1+ hn)
−1‖∞‖h− hn‖1‖(s1+ h)−1‖∞ 6

1

s2
‖h− hn‖1.

Take an arbitrary y ∈ M ∩ L1(M , τ). Then we have
∣∣(yτ)

(
(s1+ hn)

−1 − (s1+ h)−1
)∣∣ =

∣∣τ
((
(s1+ hn)

−1 − (s1 + h)−1
)
y
)∣∣

6 ‖(s1+ hn)
−1 − (s1+ h)−1‖1‖y‖∞ 6

1

s2
‖y‖∞‖h− hn‖1 → 0,

which means that

ϕ
(
(s1+ hn)

−1
)
→ ϕ

(
(s1+ h)−1

)

for all ϕ ∈ M∗ of the form ϕ = yτ where y ∈ M ∩L1(M , τ). Since such ϕ are dense
in norm in M∗, and (s1+ hn)

−1 are bounded in ‖ · ‖∞-norm, it follows that

ϕ
(
(s1+ hn)

−1
)
→ ϕ

(
(s1+ h)−1

)

for all ϕ ∈ M∗, i.e.

(s1+ hn)
−1 → (s1+ h)−1 σ-weakly.

Since 0 6 α(hn) ∈ M ∩ L1(M , τ) and α(hn) → α(h) in ‖ · ‖1-norm, we get by the
same token

(s1+ α(hn))
−1 → (s1+ α(h))−1 σ-weakly,

and since α is normal, passing to the limit in the inequality (18) gives the claim. �

The next lemma shows the possibility of extension to L1(M , τ) of a map with
respect to which the trace is invariant. A similar (much deeper) result for conditional
expectation shows that such an extension does not increase the ‖ · ‖1-norm, however,
we need only the boundedness of this extension.

Lemma 8. Let α be a positive linear unital map on M such that τ ◦ α = τ .
Then α can be extended to a bounded linear map on L1(M , τ) such that ‖α‖1 6 2.

Proof. Take an arbitrary x ∈ M h ∩ L1(M , τ). Then x = x+ − x− where
x+, x− ∈ M+ ∩ L1(M , τ), and we have

‖α(x)‖1 6 ‖α(x+‖1 + ‖α(x−)‖1 = τ(α(x+)) + τ(α(x−))

= τ(x+) + τ(x−) = τ(x+ + x−) = τ(|x|) = ‖x‖1,

which means that α can be extended to a map on L1(M , τ)h with norm one (of
course, we have for x ∈ M+ ∩L1(M , τ), ‖α(x)‖1 = τ(α(x)) = τ(x) = ‖x‖1, showing
that ‖α‖1 = 1). For arbitrary x ∈ L1(M , τ), we have x = x1 + ix2, where

x1 =
x+ x∗

2
∈ L1(M , τ)h, x2 =

x− x∗

2i
∈ L1(M , τ)h,
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and putting
α(x) = α(x1) + iα(x2),

we get
‖α(x)‖1 6 ‖α(x1)‖1 + ‖α(x2)‖1 6 ‖x1‖1 + ‖x2‖1 6 2‖x‖1,

since

‖x1‖1 =
∥∥∥x+ x∗

2

∥∥∥
1
6

‖x‖1 + ‖x∗‖1
2

= ‖x‖1,

and

‖x2‖1 =
∥∥∥x− x∗

2i

∥∥∥
1
6

‖x‖1 + ‖x∗‖1
2

= ‖x‖1. �

Let α be a positive normal linear unital map on M such that τ ◦ α = τ . Then
there exists a positive normal linear unital map α̃ on M , called conjugate to α, such
that τ ◦ α̃ = τ . The map α̃ is defined by the formula

τ(xα̃(y)) = τ(α(x)y), x, y ∈ M ∩ L1(M , τ).

This map is faithful. Indeed, if α̃(x) = 0 for x > 0, then we have

0 = τ(α̃(x)) = τ(x),

and the faithfulness of τ yields x = 0. (Of course, the same reasoning shows that α

is faithful too.) The existence of the map α̃ was mentioned in [7], while its detailed
construction together with proving its properties was performed in [4].

3. Mappings preserving entropy (general case)

In this section, we want to characterise the situation when a normal positive
linear unital map on a semifinite von Neumann algebra does not change the entropy
of a density.

For arbitrary elements x, y ∈ B(H), we define their Jordan product x ◦ y as

x ◦ y =
xy + yx

2
.

The next propositions are interesting in their own right.

Proposition 9. Let M be an arbitrary von Neumann algebra, and let α : M →
M be a positive linear contraction. Let x ∈ M be such that

(19) α(x∗ ◦ x) = α(x)∗ ◦ α(x).

Then for arbitrary y ∈ M we have

α(x ◦ y) = α(x) ◦ α(y).

Proof. For each z ∈ M the following version of the Schwarz inequality holds

α(z∗ ◦ z) > α(z)∗ ◦ α(z).

Take an arbitrary positive linear functional ϕ on M and define a sesquilinear form
[·, ·]ϕ on M × M by the formula

[z, y]ϕ = ϕ(α(z ◦ y∗)− α(z) ◦ α(y)∗).

From the Schwarz inequality it follows that this form is positive, consequently, we
have for arbitrary y ∈ M

|[x, y]ϕ|
2 6 [x, x]ϕ[y, y]ϕ,

and the relation (19) gives [x, x]ϕ = 0. It follows that

0 = [x, y]ϕ = ϕ(α(x ◦ y∗)− α(x) ◦ α(y)∗),
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and since ϕ was arbitrary, we obtain the equality

α(x ◦ y∗) = α(x) ◦ α(y)∗.

Now taking y∗ instead of y shows the claim. �

Proposition 10. Let M be an arbitrary von Neumann algebra, and let α : M →
M be a positive linear contraction. Let z∗ = z ∈ M be such that

α
(
z2
)
= α(z)2.

Then α restricted to the C*-algebra C∗(z) generated by z is a *-homomorphism.
Moreover, if α is normal, then α restricted to the von Neumann algebra W ∗(z)
generated by z is a *-homomorphism.

Proof. From Proposition 9 we get

α
(
z3
)
= α

(
z ◦ z2

)
= α(z) ◦ α

(
z2
)
= α(z) ◦ α(z)2 = α(z)3,

and by induction
α(zn) = α(z)n

for arbitrary positive integer n. From this equality, it follows that for every polyno-
mial W we have

α(W (z)) = W (α(z)),

consequently, for every continuous function f on the spectrum of z the following
equality holds

α(f(z)) = f(α(z)).

Since such functions form the C*-algebra C∗(z) generated by z, for each x, y ∈ C∗(z)
there are continuous functions f and g such that x = f(z), y = g(z), and we get

α(xy) = α(f(z)g(z)) = α((fg)(z)) = (fg)(α(z))

= f(α(z))g(α(z)) = α(f(z))α(g(z)) = α(x)α(y)

showing that α is a homomorphism on C∗(z). Let now y ∈ C∗(z) be arbitrary, and
let x ∈ W ∗(z). On account of the Kaplansky density theorem, there is a net {xi}
in C∗(z) such that ‖xi‖ 6 ‖x‖ and xi → x σ-weakly. Then xiy → xy σ-weakly, and
since α is normal we have α(xi) → α(x) σ-weakly and α(xiy) → α(xy) σ-weakly.
Consequently, we obtain

α(xy) = lim
i
α(xiy) = lim

i
α(xi)α(y) = α(x)α(y)

for x ∈ W ∗(z), y ∈ C∗(z). Repeating the reasoning above for arbitrary x ∈ W ∗(z)
and y ∈ W ∗(z) (approximating y by elements in C∗(z)), we show that α|W ∗(z) is a
homomorphism. �

The subinvariance property of Segal’s entropy, which is the content of the next
theorem, is an immediate corollary to the Jensen inequality for the function h 7→
h log h, obtained in full generality in Theorem 7 (i). This result with the assumption
that the corresponding density belongs to the algebra was proved in [7, Proposi-
tion 7.3] also by means of Jensen’s inequality but for bounded operators.

Remark. The definition of Segal’s entropy bears a strong resemblance to the
classical Boltzmann–Gibbs notion, where for a density function f on a probability
space (Ω,F, µ) its entropy is defined as

H(f) =

ˆ

Ω

f log f dµ.
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It should be noted that the original Segal definition differs from ours by a minus
sign before the trace. However, for simplicity and the sake of having nonnegative
entropy for normalised states on a finite von Neumann algebra we have adopted the
‘plus-sign’ version.

Theorem 11. Let M be a semifinite von Neumann algebra with a normal faith-
ful semifinite trace τ , and let α : M → M be a normal positive linear unital map
such that τ ◦ α = τ . For arbitrary 0 6 h ∈ L1(M , τ) with finite entropy we have

H(α(h)) 6 H(h).

Proof. On account of Theorem 7 (i) we have

α(h) logα(h) 6 α(h log h),

and applying τ to both sides of the inequality above yields the claim. �

Now we are in a position to prove one of the main results of the paper concerning
the invariance of Segal’s entropy under the action of a normal positive linear unital
map. This result generalises that of Choda [1] obtained for the von Neumann entropy
in finite dimension. It should be noted that in that case one simply refers to the finite
discrete spectral representation of the density matrix. Obviously, nothing of this kind
takes place for arbitrary semifinite von Neumann algebras.

Theorem 12. Let M be a semifinite von Neumann algebra with a normal faith-
ful semifinite trace τ , and let α : M → M be a normal positive linear unital map
such that τ ◦α = τ . For arbitrary 0 6 h ∈ L1(M , τ) with finite entropy the following
conditions are equivalent:

(i) H(h) = H(α(h)),
(ii) the map α restricted to the von Neumann algebra W ∗(h) generated by h is a

*-isomorphism,
(iii) α̃(α(h)) = h.

Proof. (i) =⇒ (ii) Assume that H(h) = H(α(h)). From the α-invariance of τ ,
it follows that

τ(α(h log h)) = τ(h log h) = H(h) = H(α(h)) = τ(α(h) logα(h)).

On account of Theorem 7 (i), we have

α(h log h) > α(h) logα(h),

and the equality of entropies yields

τ(α(h log h)− α(h) logα(h)) = 0.

The faithfulness of τ gives the equality

α(h log h) = α(h) logα(h).

For the function fm,M defined by the formula (9), we have, by virtue of Lemma 5
and the equality

h(s1+ h)−1 = 1− s(s1+ h)−1,

the relation

α(fm,M(h)) = α

(
ˆ M

m

( 1

s+ 1
h− h(s1+ h)−1

)
ds

)

=

ˆ M

m

( 1

s+ 1
α(h)− 1+ sα

(
(s1+ h)−1

))
ds,
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and similarly,

fm,M(α(h)) =

ˆ M

m

( 1

s+ 1
α(h)− 1+ s

(
(s1+ α(h))−1

))
ds.

Consequently,

α(fm,M(h))− fm,M(α(h)) =

ˆ M

m

s
(
α
(
(s1+ h)−1

)
− (s1+ α(h))−1

)
ds.

From Theorem 7 (ii), it follows that the difference of the operators under the integral
sign is nonnegative, so α(fm,M(h)) − fm,M(α(h)) is nonnegative and gets bigger as
m ց 0 and M ր ∞. This together with Lemma 6 yields

0 6 α(fm,M(h))− fm,M(α(h)) ր α(h log h)− α(h) logα(h) = 0

as m ց 0 and M ր ∞, showing that

α(fm,M(h))− fm,M(α(h)) = 0.

Consequently,
α
(
(s1+ h)−1

)
− (s1+ α(h))−1 = 0

almost everywhere in the interval [m,M ], and thus everywhere since the functions

s 7→ α
(
s1+ h)−1

)
and s 7→

(
s1+ α(h)

)−1
are continuous in ‖ · ‖∞-norm. More than

that, these functions are differentiable because we have

(s1 + h)−1 − (s01+ h)−1

s− s0

= −(s1+ h)−1(s01+ h)−1 −→
s→s0

−(s01+ h)−2 in ‖ · ‖∞-norm.

Taking derivatives in the equality

α
(
(s1+ h)−1

)
= (s1+ α(h))−1,

we obtain
α
(
(s1+ h)−2

)
= (s1+ α(h))−2.

Put z = (s1+ h)−1 ∈ M for some fixed s. Then we have

α(z2) = α
(
(s1+ h)−2

)
= (s1+ α(h))−2

=
(
(s1+ α(h)−1

)2
=

(
α
(
(s1+ h)−1

))2
= α(z)2.

From Proposition 10, it follows that α restricted to the von Neumann algebra
W ∗

(
(s1 + h)−1

)
generated by (s1 + h)−1 is a *-homomorphism, and being faithful

it is an isomorphism. Since we have the equality W ∗
(
(s1 + h)−1

)
= W ∗(h), the

conclusion follows.
(ii) =⇒ (i) The only thing that must be taken care of is the fact that h may be

unbounded. However, we have

α
(
h[n]

)
= α

(ˆ n

0

t e(dt)
)
=

ˆ n

0

t α(e(dt)),

and α(e(·)) is a spectral measure. Consequently, for the operator

x =

ˆ

∞

0

t α(e(dt))

we have

τ(x) = τ
(ˆ ∞

0

t α(e(dt))
)
=

ˆ

∞

0

t τ(α(e(dt))) =

ˆ

∞

0

t τ(e(dt)) = τ(h) < +∞,
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which means that x ∈ L1(M , τ). Moreover,

‖x− α
(
h[n]

)
‖1 = τ

( ˆ ∞

n

t α(e(dt))
)
=

ˆ

∞

n

t τ(α(e(dt)))

=

ˆ

∞

n

t τ(e(dt)) = ‖h− h[n]‖1 → 0.

Since α
(
h[n]

)
→ α(h) in ‖ · ‖1-norm, we obtain

α(h) = x =

ˆ

∞

0

t α(e(dt)).

In particular,

α(h)[n] =

ˆ n

0

t α(e(dt)) = α
(ˆ n

0

t e(dt)
)
= α(h[n]).

For every z ∈ W ∗(h) and every continuous function f , we have, since α is a *-
isomorphism,

α(f(z)) = f(α(z)),

thus

α
(
h[n] log h[n]

)
= α

(
h[n]

)
logα

(
h[n]

)
= α(h)[n] log

(
α(h)[n]

)
,

and passing to the limit in ‖ · ‖1-norm we get the equality

α(h log h) = α(h) logα(h),

which gives the relation H(h) = H(α(h)).
(ii) =⇒ (iii) For arbitrary x ∈ W ∗(h), we have

α(x∗ ◦ x) = α(x)∗ ◦ α(x),

thus according to Proposition 9, for any y ∈ M the relation

α(x ◦ y) = α(x) ◦ α(y)

holds. Consequently, taking arbitrary x, y ∈ M ∩ L1(M , τ) we obtain

τ(α̃(α(x)) ◦ y) = τ(α(x) ◦ α(y)) = τ(α(x ◦ y)) = τ(x ◦ y),

i.e.

τ((α̃(α(x))− x) ◦ y) = 0.

Putting y = (α̃(α(x))− x)∗ we get

τ((α̃(α(x))− x) ◦ (α̃(α(x))− x)∗) = 0,

and the faithfulness of τ yields

α̃(α(x)) = x.

Now choose hn ∈ M ∩ L1(M , τ) such that hn → h in ‖ · ‖1-norm. Then

α̃(α(hn)) = hn,

and passing to the limit gives the claim. (Observe that in the course of proof we have
actually shown that α̃ ◦ α is the identity map on W ∗(h) and that this statement is
true also for the space L1(W ∗(h), τ |W ∗(h)).)

(iii) =⇒ (ii) Since
t

1 + t
= 1−

1

1 + t
,
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we infer on account of Proposition 1 that the function t 7→ t
1+t

is strictly operator

concave on M̃+. Put Φ = α̃ ◦α. Then Φ is a normal positive linear unital map such
that τ ◦ Φ = τ , and the above-mentioned operator concavity yields

Φ
(
h(1+ h)−1

)
6 Φ(h)

(
1+ Φ(h)

)−1
= h(1+ h)−1.

Since h(1 + h)−1 ∈ M ∩ L1(M , τ), we get

τ
(
h(1+ h)−1 − Φ

(
h(1+ h)−1

))
= 0,

so the faithfulness of τ gives

Φ
(
h(1+ h)−1

)
= h(1 + h)−1.

Put z = h(1+ h)−1. Then z ∈ M ∩ L1(M , τ) and

α̃(α(z)) = Φ(z) = z.

Furthermore, we have z2 ∈ M ∩ L1(M , τ) as a product of an element from M by
an element from L1(M , τ), and

τ
(
z2
)
= τ

(
α
(
z2
))

> τ
(
α(z)2

)
= τ(α(z)α(z)) = τ(α̃(α(z))z) = τ(z2),

which gives

τ
(
α
(
z2)− α(z)2

)
= 0.

Since

α
(
z2) > α(z)2,

the faithfulness of τ yields

α
(
z2
)
= α(z)2.

On account of Proposition 10, we infer that α is a *-homomorphism on W ∗
(
(h(1 +

h)−1
)
= W ∗(h), and being faithful it is a *-isomorphism which finishes the proof. �

Remark. For better clarity, we have adopted the setup where the map α acts
on densities of normal states, i.e. on positive elements from L1(M , τ). However, a
‘dual’ situation referring to states instead of their densities is also possible, namely,
when for a state ρ the transformed state ρ ◦ α is considered. Then for the density of
this state we have

hρ◦α = α̃(hρ),

and it is seen that in order to deal with densities we must consider the map α̃ instead

of α. Taking into account the equality ˜̃α = α, the equivalent conditions of Theorem 12
would then read

(i) H(ρ) = H(ρ ◦ α),
(ii) α̃ is a *-isomorphism on the algebra W ∗(hρ),
(iii) α(α̃(hρ)) = hρ.

This approach will be followed in the next section because in measurement theory
one traditionally considers maps acting on states as a basic object.
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4. Mappings preserving entropy (measurement theory)

A mathematical tool for measurement theory was proposed in 1970 by Davies
and Lewis in [3], and is based on the notion of instrument which in our context of von
Neumann algebras can be briefly described as follows. Let (Ω,F) be a measurable
space describing the outcomes of a measurement performed on a physical system
(usually, Ω = R, F = B(R)), let a von Neumann algebra M describe the bounded
observables of this system, and let M+

∗
be the set of (non-normalised) states of

this system. The change of state caused by measurement is described by a map
E : F → L(M∗)

+ which to each set ∆ ∈ F assigns a positive linear map E∆ acting on
the predual of M . Then E∆ρ is the (non-normalised) state of the system, initially
in state ρ, after the measurement with the outcome in the set ∆. For the map E ,
countable additivity and the condition (EΩρ)(1) = ρ(1) for each state ρ ∈ M∗ are
assumed. The map EΩ describes the general change of state under measurement,
so that if the system was initially in state ρ, then the state of the system after
measurement, without reading its result, is EΩρ.

Now repeatable instruments (considered, without using this name, already by J.
von Neumann in his theory of measurement formulated for discrete Ω and the algebra
B(H)) are characterised by the condition

E2
∆ = E∆ for each ∆ ∈ F.

Passing to the dual instrument E∗, we obtain a map E∗ : F → L(M )+ which to
each set ∆ ∈ F assigns a positive normal linear map E∗

∆ acting on M . The map E∗

is also countably additive and satisfies the condition E∗

Ω(1) = 1. The condition of
repeatability has now the form

E∗2
∆ = E∗

∆ for each ∆ ∈ F.

(See [2] or [3] for a more detailed description of instruments.)
We have the following characterisation of the states invariant with respect to

repeatable measurements in terms of Segal’s entropy.

Theorem 13. Let E be a repeatable instrument on a von Neumann algebra M

with a normal faithful semifinite trace τ , such that τ ◦ E∗

Ω = τ . For an arbitrary
ρ ∈ M+

∗
with finite Segal’s entropy, we have

H(EΩρ) = H(ρ)

if and only if

EΩρ = ρ.

Proof. Let hρ be the density of the state ρ, and let Ẽ∗

Ω be the map conjugate
to E∗

Ω. In [4, Lemma 2] it was shown that for the density hEΩρ of the state EΩρ the
formula

(20) hEΩρ = Ẽ∗

Ω(hρ)

holds under the assumption that hρ ∈ M . However, the relation τ ◦ Ẽ∗

Ω = τ yields

the possibility to extend the map Ẽ∗

Ω to L1(M , τ) obtaining thus the formula (20)
for arbitrary 0 6 hρ ∈ L1(M , τ).

Assume that

H(EΩρ) = H(ρ),
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and let z = z∗ ∈ W ∗(hρ) be arbitrary. From Remark it follows that Ẽ∗

Ω|W
∗(hρ) is a

*-isomorphism, so

Ẽ∗

Ω(z
∗ ◦ z) = Ẽ∗

Ω(z
∗) ◦ Ẽ∗

Ω(z).

Proposition 9 yields the equality

Ẽ∗

Ω(z ◦ y) = Ẽ∗

Ω(z) ◦ Ẽ
∗

Ω(y)

for every y ∈ M . Further, we have
(
Ẽ∗

Ω(z)− z
)2

= Ẽ∗

Ω(z)
2 − Ẽ∗

Ω(z)z − zẼ∗

Ω(z) + z2 = Ẽ∗

Ω

(
z2
)
− 2z ◦ Ẽ∗

Ω(z) + z2,

thus

Ẽ∗

Ω

((
Ẽ∗

Ω(z)− z)2
)
= Ẽ∗

Ω

(
Ẽ∗

Ω

(
z2
))

− 2Ẽ∗

Ω

(
z ◦ Ẽ∗

Ω(z)
)
+ Ẽ∗

Ω

(
z2
)

= 2Ẽ∗

Ω

(
z2
)
− 2Ẽ∗

Ω(z) ◦ Ẽ
∗

Ω

(
Ẽ∗

Ω(z)
)
= 2Ẽ∗

Ω

(
z2
)
− 2Ẽ∗

Ω(z)
2 = 0,

and the faithfulness of Ẽ∗

Ω yields

Ẽ∗

Ω(z) = z.

Let now hn ∈ W ∗(hρ) be such that hn → hρ in ‖ · ‖1-norm. We have

Ẽ∗

Ω(hn) = hn,

and passing to the limit gives the equality

Ẽ∗

Ω(hρ) = hρ,

i.e.
hEΩρ = hρ,

which finishes the proof. �
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