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Abstract. We provide a Reifenberg type characterization for m-dimensional C'-submani-
folds of R™. This characterization is also equivalent to Reifenberg-flatness with vanishing constant
combined with suitably converging approximating m-planes. Moreover, a sufficient condition can be
given by the finiteness of the integral of the quotient of (r)-numbers and the scale r, and examples
are presented to show that this last condition is not necessary.

1. Introduction

It is often useful to control local geometric properties of a subset > C R" to
obtain topological and analytical information about that set. One of these geometric
properties is the local flatness of a set, first introduced and studied by Reifenberg in
[12] for his solution of the Plateau problem in arbitrary dimensions. The content of
his so-called Topological-Disk Theorem is that J-Reifenberg-flatness ensures that X
is locally a topological C%?-disk if § < &, where &y = dy(m,n) is a positive constant,
which depends only on the dimensions of ¥ and n (see e.g. [12, 10, 5|).

Definition 1.1. Let n,m € N with m <n and ¥ C R". Forx € ¥ and r > 0
set 1
Os(z,r) :=— inf disty (Z N B.(z),(z+L)N B,,(x)),
T LeG(n,m)
where G(n, m) denotes the Grassmannian of all m-dimensional linear subspaces (m-
planes) of R". For § > 0, the set X is called §-Reifenberg-flat of dimension m if for
all compact sets K C X there exists a radius rx > 0 such that
Ok (r) = sup Os(x,r) <o forall r e (0,rk].
reXNK
3l is called Reifenberg-flat of dimension m with vanishing constant if X is 6-Reifenberg-
flat of dimension m for all 6 > 0.

It is easy to see that d-Reifenberg-flat sets do not have to be C!-submanifolds.
For example, for each fixed § > 0, a J-Reifenberg-flat set of dimension 1 can be
constructed as the graph of u: R — R: z + d|z|, which is not a C'-submanifold of
R2. Moreover, even Reifenberg-flatness with vanishing constant is still not enough
to guarantee C'-regularity. It can be shown that the graph of

oo

cos(2kx)
u:R—-R, =+ Z —,
= 2k

is a Reifenberg-flat set with vanishing constant (see [14]). Nevertheless, although
w is continuous, it is nowhere differentiable. Moreover, Toro stated that the graph
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is not rectifiable in the sense of geometric measure theory, and therefore not a C'-
submanifold. We will show in detail with an indirect argument that graph(u) cannot
be represented as a graph of a C''-function in a neighbourhood of (0, u(0)) in Appen-
dix A.

There are a couple of variations to the definition of Reifenberg-flat sets with ad-
ditional conditions, which guarantee more regularity than Reifenberg’s Topological-
Disk Theorem. If for a Reifenberg-flat set with vanishing constant there exists in
addition, an exponent o € (0, 1] and for each compact set K C X a constant Cx > 0,
such that the decay of the so-called fS-numbers introduced by Jones in [6] can be
estimated as

1
(1) Ps(x,r) == inf sup dist(y,xz + L) | < Ckr?

T LeG(n,m) \ yexnB,(z)
for all x € K and r < 1, then David, Kenig and Toro could show in |2, Prop. 9.1],
that ¥ is an embedded, m-dimensional C''“-submanifold of R".

A weaker assumption on ¥ C R" was stated by Toro in [13] calling it (J, ¢, R)-
Reifenberg-flat at x € 3 for §,¢, R > 0, if and only if

0@ (r) <6 forall re (0,R]

and

R 2
(2) / LBR@) (r) dr < &2.
0

r

In this setting it can be shown that there exist universal positive constants do(m,n)
and £9(m,n), depending only on the dimensions m and n, such that all sets ¥ C
R™ that are (J,¢, R)-Reifenberg-flat at all of their points with 0 < § < dg, 0 <
€ < €p, can be locally parameterized, on a scale determined by R, by bi-Lipschitz-
homeomorphisms over open subsets of R™. In particular, such sets 3 are embedded
C%!submanifolds of R".

In search of a characterization of C'-submanifolds one may consider slightly
stronger variants of Toro’s integral condition in (2), which on the other hand, need
to be weaker than the power-decay (1) of the S-numbers. We will present such a
characterization in our main result, Theorem 1.4 below, but first state a corollary
of that result that uses an integral condition stronger than (2). This statement was
independently proven by Ranjbar-Motlagh in [11].

Theorem 1.2. Let X C R"™ be closed. If for all x € X there exists a radius

R, > 0 such that
/ ) QBRL)(T) dr < oo
0

r

then ¥ is an embedded, m-dimensional C*-submanifold of R".

Note that the dimension m is encoded in the definition of the #-numbers; see
Definition 1.1. Moreover, ¥ is not explicitly claimed to be Reifenberg-flat in Theo-
rem 1.2, but the finite integral will ensure that > is Reifenberg-flat with vanishing
constant. Nevertheless, Theorem 1.2 does not yet yield a characterization for C!-
submanifolds, since there are graphs of C!'-functions leading to an infinite integral.
For example, let u: (—1/2,1/2) — R be defined by

@ 2 11
—— 2 _)dy| forall — =
|, )] oo e (5:5)

u(z) =
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then u is of class C' on (—1/2,1/2) and can be extended to a function @ € C*(R). But
¥ := graph(a) C R? does not satisfy the integral condition in Theorem 1.2 as shown
in detail in Appendix B. Moreover, for every fixed , 5 > 0 minor modifications of u
lead to a C'-submanifold with

&)
/Rx QBRx (x)—(r) dr = 0.
0

,r.a

A characterization for C'-submanifolds using the condition of Reifenberg-flatness
needs to allow #-numbers and the scale r to decay more independently. Roughly
speaking, a closed ¥ C R" is a C'-submanifold, if and only if there exists a sequence
of radii tending to zero, with controlled decay, such that > satisfies the estimate
for Reifenberg-flatness at these scales and the planes approximating > converge to a
limit-plane. We call this condition (RPC') and the precise definition is as follows.

Definition 1.3. (Reifenberg-Plane-Convergence) For 1 < m < n, we say % C
R™ satisfies the condition (RPC') with dimension m if the following holds: For all
x € ¥ there exist a radius R, > 0, a sequence (7,,)ien C (0, R;] and a constant
C, > 1 with

Toiv1 < Tpi < Cyryipr forall i€ N and lim r,; = 0.
1—00
Furthermore, there exist two sequences (0, ;)ien, (€z.4)ien C (0,1], both converging
to zero, such that for all y € ¥ N By, (x) there exist planes P(y,r.;), P, € G(n,m)
with
disty (2 NB,,,(y), (y+ Ply,r::) N Brz,i(y)> < OpiTasi

and
<(P(y7 Tx,i)a Py) S 5:2,@'-

Notice that the Grassmannian G(n,m) equipped with the angle-metric is com-
pact (see Definition 2.3), so that every sequence of m-planes contains a converging
subsequence, but the relation between the approximating planes P(y,r,;) and the
scale 7, ; is crucial in Definition 1.3. Notice also that (RPC') does not explicitly claim
that the set is Reifenberg-flat, since the approximation of X is postulated only for a
specific sequence of radii. Nevertheless, we show that (RPC') is actually equivalent to
Reifenberg-flatness with vanishing constant and uniformly converging approximating
planes.

Here is our main result.

Theorem 1.4. For a closed ¥ C R" the followings are equivalent:

(1) X satisfies (RPC') with dimension m;

(2) ¥ is an embedded, m-dimensional C''-submanifold of R";

(3) ¥ is Reifenberg-flat with vanishing constant, and for all compact subsets
K C ¥ and all x € K there exists an m-plane L, € G(n,m) such that

sup <(L(z,7), Ly) — 0,

for all L(x,r) € G(n,m) with
1.
2161[13 . disty <2 N B.(z), (x4 L(z,r)) N Br(x)> — 0.

As one can expect intuitively, in this case P, from condition (RPC') and L, will
coincide with the tangent plane T,3.



696 Bastian Kéfer

In Section 2 we will review some basic facts about the Grassmannian and about
orthogonal projections onto linear as well as onto affine subspaces of R™. Section 3 is
dedicated to the proof of the main theorem and finally, in Section 4 we will prove that
the condition of Theorem 1.2 is sufficient to obtain an embedded C'-submanifold.
The detailed structure of the examples mentioned in the introduction is presented in
the appendix as well as the proofs of two technical lemmata.

2. Projections and preparations
The aim of this section is to introduce all needed definitions and properties for

linear and affine spaces, as well as for the projections onto those planes.

Definition 2.1. For n,m € N with m < n, the Grassmannian G(n, m) denotes
the set of all m-dimensional linear subspaces of R".

Definition 2.2. For P € G(n,m), the orthogonal projection of R™ onto P is
denoted by 7p. Further 75 := idgn — mp shall denote the orthogonal projection onto
the linear subspace perpendicular to P.

Using orthogonal projections it is possible to define a distance between two ele-
ments of G(n,m).

Definition 2.3. For two planes Py, P, € G(n,m) the included angle is defined
by

<<P17P2> = Hﬂ-Pl - 7TP2|| ‘= Ssup . ‘ﬂ-Pl(x> - 7Tp2<ZL’)|.
reSn—

The angle <(-,-) is a metric on the Grassmannian G(n,m).

Together with this metric, the Grassmannian (G(n, m), <(+,)) is a compact man-
ifold. The following lemma allows to use different useful presentations for the angle
between two planes.

Lemma 2.4. [1,8.9.3] If P, P, € G(n,m), then

I7p = 7|l = lmp, — 7|l = 75, 0 TRyl = ||7py © || = |7, 0 Ty || = |17, © 705 .
Citing the first part of Lemma 2.2 in [9] we get

Lemma 2.5. Assume P, P, € G(n,m). If <(Py, P,) < 1, then the projection
Tp|py: P2 — Py is a linear isomorphism.

Although we use linear spaces most of the time, it is also necessary to define
projections onto affine spaces and the angles between those.

Definition 2.6. For z € R™ and P € G(n,m), the orthogonal projection onto
@ := x + P and the corresponding perpendicular plane are defined by

o(2) ==x 4+ mp(z — )
and
m5(2) =z —mo(z) = (z —x) — 7p(z — 2) = Tp(2 — ).
Moreover, for z1, x5 € R™ and P;, P, € G(n, m) the angle between @y := x1 + P; and
Q)2 := 12 + P, is defined as
UQ1, Q2) == <(P1, ).

For a smooth function’s graph, [1, 8.9.5] leads to an estimate for the angle between
tangent spaces.
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Lemma 2.7. Let o > 0, P € G(n,m) and assume f € C'(P,Pt) satisfies
|f'll < aand f'(0) =0. Let g(z) :== z+ f(z) and ¥ := g(P) be the graph of f, then
for all x,y € P the following estimates hold:

1+ a?
177, — 71,05l < (@) = W)l < WHWTME — sl

Lastly there is an estimate for angles between planes, in a more generel setting.

Lemma 2.8. [8, Prop. 2.5| Let P, P, € G(n,m) and let (e, ...,e,) be some
orthonormal basis of P;. Assume that for each i = 1,...,m we have the estimate
dist(e;, Py) < 6 for some 0 € (0,1/+/2). Then there exists a constant C; = C}(m)
such that

<(Py, Py) < Cy6.

3. Equivalence of (RPC) and C*'-regularity

In this section we prove the main theorem. First we will show that (RPC) is
equivalent to Reifenberg-flatness with vanishing constant and a uniform convergence
of approximating planes. This allows us to use (RPC') and Reifenberg-flatness to
prove that every set, which satisfies (RPC) is an embedded C'-submanifold. We
will approach this by using a different characterization, namely writing > locally as
the graph of a C'-function. It turns out, that for an element z € ¥ the radius r
providing ¥ N B,(x) can be represented as a graph, can be given depending on the
ratio of decay of 0, ,€,,; and 7,;. Lastly we will show the other implication, using
that the representation as a graph of a smooth function already provides Reifenberg-
flatness.

Notice that we will fix the dimension m of a subset ¥ C R™ and say that ¥ is a
d-Reifenberg-flat set or satisfies (RPC') without mentioning the dimension.

Lemma 3.1. Assume ¥ C R" satisfies (RPC). Then for all x € ¥ we get
dist(z,y + P)) < w,(|z —y|)- |z —y| forall y € XN Bg,(x) and z€ XN B, (y),
where the function w,: R — R is given by

wx(r) =€ + Cméx,z for all r € [Tx,i-i-l? Tx,i)’

Note that w, is a piecewise constant function with lim,_,qw,(r) = 0. It is possible
for w, to be not monotonically decreasing, because (RPC') require this neither for
04, nor for e, ;.

Proof. Let x € ¥ and y € ¥ N By, () be fixed. For z € ¥ N B, (y) there exists
an ¢ € N with |z — y| € [rzi41,724). This yields
dist(z,y + P,) = |75, (2 — y)|

< ’(7?1%?, - W?(y,%,i)) (z — y)‘ + ’W#(y,r%i)(z —y)
< éerilz — Y|+ 0pires
< Eailz =yl + 62,iCalz — yl. O
The idea of Lemma 2.8 will frequently be used for Reifenberg-flat sets 3 while
P, and P, are the approximating planes of Definition 1.1 for either different or the

same radii and points of 3. The following lemma uses Lemma 2.8 to get an estimate
in this setting.
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Lemma 3.2. Let 21,29 € X C R", 0 < r; < 19, 61,00 € (O,%) and P, P, €
G(n,m) be given such that

,
|LU1 - LEQ‘ < 51
and
disty (30 By, (2;), (x5 + P) 0 Byy(w5)) < 0yry for j=1,2
If ) X
T2
01 +2-=6 —
1—2(51 ( 1+ T1 2) < \/57
then we get
2 D)
PP < 2— .
P, Py) < C'11 o5, (51 + 7’152)
Proof. Let (eq,...,e,) be an orthonormal basis of P;. Define

1— 26,

Yo =z, and y; :=x1+ rie; for i=1,...,m.

For all i =1,...,m there exists a z; € ¥ N B, (z1) with
|2i — yi| < i1

Note that for zg := yo = x¢, the point zy is also an element of ¥ N B, (z1) N B,.,(x2).
Further we get

1-2
51:% forall i=1,....,m.

lzi — 21| <z —wil + |yi — x| <01 +1
This leads to

2 2
Therefore for every i = 0,...,m there exists a w; € (29 + P2) N B,,(x2) with

1 1 )
lzi — x| < |zi— x|+ |ry—xe| <M (=4 =) =r <ry forall i=1,...,m.

|wi — Z7,| S 7’252.

Define g; := y; — yo and w; := w; —wg for i = 1,...,m. Then g;/|g;| = e; is obviously
an orthonormal basis of P, and w;/|y;| is an element of P,. The previous estimates
yield

Ui w;
‘ — — = | = =7 |¥% — Yo —wi+ wo
gl Mgl 19l
2 + + +
(1— 261 Y 0~ Y 0~ 20
<———(r101+0 0. 0.
_(1_251)T1(r11+ + 1209 + 1r209)
2 T2
< 01 +2—=6 forall i=1,...,m.
_1—251(1+ - 2) or all 2 ) , M
This is assumed to be strictly less than 1/v/2 and therefore Lemma 2.8 leads to
2 T2
AP, Py) < Ci(m) 01 +2—=0y | . O
1-— 251 T1

Now we will show that every set satisfying (RPC') is indeed Reifenberg-flat with
vanishing constant. Moreover, we will see that (RPC') is an even stronger assumption
and allows to approximate the set for a fixed point with the same plane at each scale.
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In fact, we will show the estimation for Reifenberg-flatness only for a ball around
x € Y. By a covering argument, we later see, that the estimate holds true for all
compact subsets of 3.

Lemma 3.3. Assume X C R" satisfies (RPC), then for all v € ¥ and k > kg,
where k, € N denotes the index with

1 N
Oz < roh for all k> k,,

xT
we get

1
sup  —disty (Z N B.(y), (y+ P,) N Br(y)) < sup(eg; +2C.0, ;)

y€BR, (x)nz T i>k
=10y, forall r<ry.

Note that the existence of 7% is an immediate result of d, ; tending to zero. The

value of k, and therefore the scale of the approximation depends highly on the point
x € X.

Proof. Let © € ¥ be fixed, y € ¥ N Bg,(x) and z € ¥ N B,(y) for a radius
r e (O,Tx’];z]. Then for y # z there exists an ¢ € N with r, ;41 < |2 —y| < r,; and
Lemma 3.1 leads to
1. 1
; dist <Z7 (y + Py) N Br(y)> S ;wx(|z - Z/|) ' |Z - y‘ S wx(‘z - Z/|) =&z + Cx(sm,z
Let k € N such that r, 11 <7 <71y, then this implies
1
sup — dist <z, (y+ P,)N B,(y)) < sup(egi + Cplyi)-
2€XNBr(y) T i>k
Moreover, we have k > /%m Using the definition of 7% we have
r— rx7k5x,k >r— er(SM > 0.
For z € (y + P,) N By, ,s,, (y) defining
Zi=y+ WP(y7Tz,k)(Z - y)?
leads to
12—yl = TP (=9 <z =yl <r—r1upbep <7 < 1ok
Hence there exists a w € ¥ N B,_, (y) with
‘2 - ’UJ‘ S Tw,k(sm,k-

Moreover,
lw—y| <|w—=Z2+Z—y| <repder+7r—repder =1
and therefore w € ¥ N B,(y). Using z —y € P, and Lemma 2.4, we get

dist (2,20 B,(y)) < |z~ w] < |z = 2 + | = wl = by, (= — )] +12 — ]
S 5w,k‘z - y| + Tx,k(sm,k S r (5m,k + Cméx,k) .

Now let z € (y + P,) N (B,(y) \ Br—r, .5, (y)), then there exists a 2’ € (y + P,) N
B,y 5., (y) such that

|Z/ — Z‘ < Tgc,kém,k-
Therefore we get a w € ¥ N B,(y) with

lw—z| <|w =2+ 1|2 — 2| <r(een + Cubur) + T2 00 <7 (ke + 20100 1) .
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Finally

1
. disty (Z N B, (y),(y+ P,) N Br(y)) < max {sup(sw- + Cy0si)s Ex ke + QC’xéx,k}

>k
S SUP(5m,z’ + 2Cm5x,2)7
i>k

which is independent of y € By, (z) and implies the postulated statement. U

Remark 3.4. Note that SM is monotonically decreasing and using the conver-
gence of 0, ; and €, ; we get Smk — 0 as k — oo. Lemma 3.3 then implies that > is
a 0-Reifenberg-flat set for all 6 > 0, i.e. it is Reifenberg-flat with vanishing constant.
Moreover, the plane which approximates 3 at the point y € ¥ with respect to the
0-Reifenberg-flatness can be fixed as y + P, for all small radii.

For a set ¥ C R™ which satisfies (RPC) and y € X the plane P, arises as a limit
of planes P(y,r,;). Up to this point, we did not mention that these planes might
also depend on z and that we should have writen P, but in fact, we are now ready
to show, that the P are the same for all x € ¥ with y € ¥ N Bg, (). Moreover,
we get an estimate for the angle between two planes P, and P,, whenever z is an
element of ¥ N By, () with |y — z| small enough.

Lemma 3.5. Assume ¥ C R" satisfies (RPC).
(1) For x, € ¥ we get

Py =P forall ye€ XN Bg,(x)N Bg, ().

(2) Forz € ¥, k >k, and y, z € ¥ N By, (x) with |z — y| <
get

Tz, k N i
5= and 0,1, < 17 we

22 ~ ~
AP, P) € ZCi{m)d = Colm)3r

Proof. (1) Let z,Z € ¥ and y € ¥ N Bg,(z) N Bg,(Z). The sequences ¢, and
£z converge to zero and hence for all € > 0 there exist an N; € IN such that

Eaes € < % for all k> Nj.

Moreover, there exists an Ny € N with Ny > N; and

e 1 €
Opp < mMing ——, — d d;:5 < for all k& > Ns.
* mm{2401 4} we ks ggeie, M 2
Define
k, o N2 fOI' 'z Ny S Tz Ny
o min{l € N | rz; <7, n,} for r:n, > s n,,
and

i:=min{l € N | r,; <7rzx}

Then we have k,7 > Ny and

Tai < Tik < Tpi-1-
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Let € be sufficiently small, i.e. 55 < % Then

2 Tz k
i (0 50 ) <400+ 20050)

€ € € 1
<4 2C, = —_
= (2401 * 4801@) 3¢, V2

Using Lemma 3.2 we get

2 Tz
<I(P(y77’z,i)ap(yﬂ”5,k)) < 011_725” <5x,i +2K’j5@,k> <

Wl ™

Finally
< (P2, P < <(P7, Py, rag)) + <Py, rai), P(y,r0)) + <<(P(y, rax), Py ) <e.
The limit ¢ — 0 implies
Py =P,
(2) For y,z € ¥ N By, (), k > k, and r < r,;, Lemma 3.3 leads to
distye (20 B,(y), (y+ P,) N Be(y)) < rd
and

disty, (z N B.(2), (2 + P.)N Br(z)> < 1o,

If [z — y| < "=* and d, < 7, then
22~ 1

2 - -
(O + 20, 1) < =01 < —
a5, ek 20 < ek < g

and for r; :== 1y := 71, and 0 := 09 1= Sxk Lemma 3.2 yields

22 ~
(P, P.) < gcl(m>5x,ka
which completes the proof. O

Lemma 3.6. For closed > C R", the following statements are equivalent:

(1) X satisfies (RPC).

(2) ¥ is Reifenberg-flat with vanishing constant and, for all compact subsets
K C ¥ and all x € K there exists a plane L, € G(n,m) such that

986161113 <Z(L(x, ), Lm) — 0,

for all L(z,r) € G(n, m) with

sup E disty (Z N B, (), (z + L(z,r)) N Br(:z)> — 0.
zeK T r—0
Note that the existence of planes L(z, ), which approximate ¥ with respect to
the Reifenberg-flatness such that their distances to > converges uniformly to zero
is already guaranteed by the Reifenberg-flatness with vanishing constant. Only the
existence of a limit-plane is an additional condition to the Reifenberg-flatness in
Lemma 3.6 (2). Obviously, L, and P, will coincide.
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Proof. (1) = (2): For fixed = € ¥ using Lemma 3.3 yields for k > k,

1 -
sup  — disty (Z NB,(y), (y+ P,)N Br(y)) < Oy forall r<rg.
yEXNBR, (x) T

For a compact set K C X we have

K c | Bg,(2)

zeK

and the compactness provides z1,...,xy € K with

N
K c | JBg,, (x:).
i=1
Let k € N be defined by k := max{k,,, ..., ks, }. Forgivend > 0andi e {1,...,N}
the convergence of d,, ) to zero guarantees that there is a j(x;,0) > k such that
Ou;s j(as0) < 0. This implies

1 -
sup  —disty (EﬂBr(y), (y+P,) ﬂBr(y)> < Oy (o) < 0 forall v < vy, e, .0)-
yEEﬂBRzZ_ (Z‘l) r

Now define ro = ro(6) := min{rs, jz,,6)s - - -+ Ten,j(zn,0) - Lhen we get

1
sup - disty (z N B,(y), (y + P,) N Br(y)>
yeK T

1
< max sup  —disty (Z NB,(y),(y+ P,)N Br(y)) <¢§ forall r <.
=lNyesnBg, () T

This holds true for every arbitrary 6 > 0, implying that 3 is a Reifenberg-flat set
with vanishing constant and fixed approximating plane.

Now let z € K and L(z,r) € G(n,m) be a plane, depending on z and r, such
that

%distq{ (2 N B, (z), (z + L(z,7)) N Br(:c)) =:0(x,7) — 0.

We have to show that L(x,r) converges to a limit plane L, € G(n, m) and in fact we
will show L, = P,. B

Foroy =xy =2, 1y =ry=r, PL=L(z,r), P, = Py, 6, = 6(x,7) and 0y = 0z (),
where k(r) is defined such that 7, )11 < 7 < 74 (), We have 61,9y < % for r small
enough, as well as

2
1—20(x,r)

1

(5(1’,7‘) + 2Sx,k(r)> < ﬁ’

Lemma 3.2 leads to

. . 2
}}_}I% <(L(z,r), Py) < lim Cy(m)

2 (50 + 20k ~ 0.
r—0 1 — 20, 1) ( ") o

(2) = (1): For x € ¥ define R, := 1, C;, > 1 arbitrary and a sequence
rei C (0,1] with ry;01 < 7y < Cyryipq and r,; —— 0. The compactness of
1— 00
(G(n,m),<(-,-)) implies that for y € 3 N By, (x) there exists a minimizer of
1

Tzk

L—

distre (S0 By, (v), (9 + L) N B, (9) ).
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Let P(y,7,x) denote this minimizer. Define

dpk =  sup disty <E N B.,, (), (y + P(y, rmk)) N B, (y ))

yEXNBR, (z) | &k
The Reifenberg-flatness with vanishing constant guarantees 9, — 0. Finally, the

assumptions imply that for all y € ¥ N Bg, (x) there exists a P =L, € G(n,m)
with
sup <I(P(y, T k)s Py) =: g, — 0. O
yEXNBR, (z) k—o0
¥ being a C'-submanifold, is equivalent to ¥ locally being a graph of a C!-
function. Therefore it is a necessary condition, that for each € X there exists a
plane P € G(n,m) such that the orthogonal projection 7, pyx is locally bijective
onto an open subset of x + P. Both, the injectivity and surjectivity will be results
of the Reifenberg-flatness of ¥. (RPC') guarantees for ¥ to be Reifenberg-flat with
vanishing constant, which allows us to use Lemma 3.8, stated for codimension 1 in
[2] and ensuring the surjectivity. Although the main argument of |2] does not depend
on the dimension, we will present the proof of Lemma 3.8 and 3.7, which is also part
of |2], in Appendix C to make sure, that this result still holds for higher codimension.
Lemma 3.7 yields a parameterization for Reifenberg-flat sets, which is often used
to achieve more results for Reifenberg-flat sets. Here we will need this parameteriza-
tion only to prove Lemma 3.8.

Lemma 3.7. There exists a o9 > 0 such that for every closed, m-dimensional
d-Reifenberg-flat set ¥ C R™ with § < 0y and z € ¥ there is a Ry = Ro(z,6,%) > 0
such that for all L € G(n,m) with

disty (Z N B.(z),(z+ L)N Br(x)> <rd for r < Ry

exists a continuous function

7: (x+ L) N B

15, () = XN B,(x)
with
IT(y) —y| < Cro < %r for all y € (x4 L) N B,.(z).
The constants dy and Ry can be set as §y < (48(3C1(m)+2))~! and Ry(x,d,%) > 0
small enough, such that

E inf  disty <2 NB,.(y),(y+L)N B,(y)) < forall ye XN Bg,(x).

T LeG(n,m)

Such an Ry(z,d,3) exists, because of the Reifenberg-flatness.

Lemma 3.8. For all closed, §-Reifenberg-flat sets > C R"™ with 0 < g, allx € X
and L € G(n,m) with

L disty (2N B.(2). (e + L) N B(x)) <6 for v < Ry,
.

we get
(x+ L)N Br(x) C Typr, (N B (2)),

where 6y and Ry are as stated in Lemma 3.7.
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We are now ready to prove Theorem 1.4 in two steps. First we will see that
if 3 satisfies (RPC), it is locally a graph of a C! function, i.e. it is an embedded
C'-submanifold. Finally we prove that every embedded C'-submanifold satisfies the
(RPC') condition.

Lemma 3.9. Assume ¥ C R" is closed and satisfies (RPC') with dimension m,
then for all x € ¥ there exist a radius 7, and a function u, € C*(P,, P;-) with

(Z N BT’x (l’)) — T = graph(u:c) N Bm (0)7
i.e. ¥ is an embedded, m-dimensional C*-submanifold of R™.

Note that the radius r, can be given explicitly by %TM for k € N-; such that
Oz k1 < min{(48(3Cy(m) 4 2))~", (6Ca(m) + 2C,)~'}. Therefore, the radius for the
neighbourhood, where ¥ can be represented as a C'-graph depends only on the
dimension of ¥ and the ratio of decay between the sequences ¢, ;, €, and 7, ;.

Proof. Let x be fixed and k& € N be sufficiently large, such that
Sw,k—l < min {50, (602 + QC }

Note that 0, ,_1 < min{dy, (6Cs(m) + 2C,)~'} already implies 0,; < 0gp_1 < C; !
for all 1+ > k, i.e. k > k,. The 9y stated in the remark after Lemma 3.7 already
guarantees 0y < 1—11 Moreover, we have for all r € (0,7, k]

1 . <
~ disty, (z N B, (y), (y+ P,) N B,,(y)) < byt < 6

forall y € XN B, ,(z) € XN B, ,  (r). This implies r,; < R0($,5x7k_1,2).
Therefore we have

N - 1
k > ]{Zx, Tek < Ro(SL’, 5w,k—17 2) and 5m,k—1 < min {ﬁ, (50, (602(77’1) -+ QCx)_l} .

Lemma 3.8 implies

(¥ + P,) N Bs(2) C mprp, (50 By ()

T:vk

Lemma 3.5 yields for r <
<Py, Py) < C’2(m)5m7k for all y € B,.(x).

For y # ' € ¥N B, (z), there exist an ¢ > k with 7, ;41 < |y —y| < r,; and therefore
y € ¥N B, ,(x)N B, (y). This implies

Because of 51, < 11,

75, (Y — ) < <P, Py — | + 75, (y = ¢)] < Co(m)dunly — /| + 0n it
) ) 1
< (CZ(m)égc,k + Cxém,i) ly =y <3ly =yl

Here we have used Sm < G < (6C5(m) 4 2C,)~t < (2C5(m) + 2C,)~". Then for
S =YNB(z) Nl (Bz(z)), the projection mp, |z, is injenctive and

Mot Pp|Sy - 21 — (ZL’—}—P)PIB%(ZL’)

is bijective. We move z to zero and let 3y := (X — ) N B,(0) N ﬂ;:m_m(B%(O)), then
the projection

Tp s, ¥ = PN B:(0)
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is also a bijection and invertible. Especially, for all y € ¥;, there exists exactly one
z=2(y) € P, N Bx(0) with
e, (y — ) = 2.
Moreover, we have
y=x+7p(y—z)+7p(y—z)=a+2+7p(y — ).
Defining

-1
f: PN B:(0) — Pr zesqp o <7TP‘"”|21>|PIHB§(O) (2),
then we get
mp,(y —x) = f(z) and f(0)=0,
because z(x) = 0.
For z,2 € P, N B (0) define
-1

(ﬂpz@l)_l (2) =:y and (sz‘il) () =:v.

Now we have

(res) )= (mns) )

=ly—v| <|re,(y —y)| + |75 (y — )]

1
<lz =2+ 5l =yl
This leads to
ly—y'| <20z =7,
which implies the continuity of (pr‘il)_l and therefore also of f.
For z € P, N B (0) the definition of f and Lemma 3.1 lead to

[f(2)] = |75, (y(2) — 2)] = dist(y(2), =z + Pr) < wally(2) — zl) - [y(2) — =],
where y(z) denotes the unique element of ¥; with 7p, (y(z) —z) = z. We further get
y(2) =z = [e+ 24+ f(z) —a|l = |2+ f(2)] < 2]+ [/ (2)]

< [zl + wa(ly(2) — 20) - ly(2) — =],
Note that w,(|y(z) — z|) < 0pp < & and therefore

—xl < =14,
y() = o] < 3o
Finally, this leads to

F(2)] < %wz(ly(Z) —x]) - 2] = o(lz]),

because y(2) o and w,(r) — 0. This yields the existence of Df(0) and
Z— r—

Df(0) = 0.
Let z € P, N Bz (0) and F' be defined as F'(z) = = + 2 + f(2), as well as

-1
Li=(Trires)  : Pe— Prey
Note that F(z) € B.(z) and

~ 1
< (Py, Prz)) < Cao(m)dy i < 5 < 1,
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then Lemma 2.5 implies, that L is well-defined. For z,z+ h € P, N Bg(O), we get
F(z4+h) — F(2) = L(h) + F(z+ h) — F(2) — L(h).
Using e := F(z + h) — F'(z) — L(h) leads to
mp(€) =mp (e + 2+ h+ fz4+h) =z — 2= f(z) = L(h))

=7p,(h+ f(z+h) = f(z) = L(h))
= h—=mp,(f(z+h)) = 7p.(f(2)) = 7p,(L(h)) = h —h =0,

since f(-) € P and mp, o L = idp,. This implies
el =[x ()] < < (P Pr) el + sy (€)] < Colm)bulel + b ()]

Transforming this inequality and using Cy(m)d, < & yield

el < gl (€)] = glmhy,, (F(z + b) = F() = L(B)

_ gmg(z)(nz +h) = F(2))] = g dist(F (= + h), F(2) + Preo)

< Swe[F(z 4 h) = FE)) - [F(z + b) = F(2)].

For the last inequality we used Lemma 3.1 and the fact that F'(2), F(z+h) € B, ,(x),
as well as F'(z + h) € B, ,(F(2)) for all h € P, such that z +h € P, N B,(0).
To estimate |F(z 4+ h) — F(z)| note

L(0) ~ Bl = Iy (ER) = e, (L] < < (Prco, P 1)) < S|
Therefore we get
2L < |bl < L)
Using these estimates yields
F(z+h) = F)| = |L(h) + ] < |()] + e
< SIHI+ Sue|F(= 4+ h) — FE) - [F(= 4+ 1) = F(2)]

The fact that F'(z 4+ h) € B, ,(F(z)) for 2+ h € P, N Bz(0) leads to

< 1
we(|F(z4+h) — F(2)|) < dpp < o
This implies
66
|F(z4+h) — F(2)| < 4—9|h|

Finally we get with the continuity of F’
[F(z+h) = F(z) = L(h)| = le] < gwx(lF(z +h) = F(2)]) - [F(z+h) - f(2)]
< 2we(|F (2 + h) = F(2)]) - [h] = o([h]).

This is the differentiability of F' with DF(z) = (7p,|p,,)”" and, equivalent to this,
the differentiability of f with Df(z) = DF(z) — id.
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To see that 2z — D f(2) is continuous, let a € P, N S™ ! and w, 2 € P, N B,(0),
then

((Df(2) = Df(w))a| = [(DF(z) = DF(w))a| = |mp,,(DF(2)a) = Tpp,, (DF(w)a)|
< |7ppe (DF(2)a) — 7, (DF(2)a)| + [, ., (DF(2)a — DF(w)a)|
< < (Pr(z), Prw)) |DF(2)al + T Ppy (DF(2)a — DF (w)a)|.
First we get
< (Pr(z), Prw)) |DF(2)al < 2Cy(m) oy 1| Df(2)a + al
and since D f(-)a € Pt
|7 bpy (DF(2)a = DF(w)a)| = [wpp,, (Df(2)a — Df(w)a)l
= (TP — TR )(Df(2)a — D f(w)a)
< Cy(m)os x| Df(2)a — Df(w)al.
In the case w = 0 we get Df(0) = 0 which leads to
|Df(2)al < 2C5(m)dui|Df(2)a + al + Cy(m)dy x| Df(2)al
< 3C,5(m)o, 1| Df(2)a) + 2C5(m)dy .
Using 3Cg(m)5~w,k < % yields
|IDf(2)al <1 and |DF(2)a| < 2.
5

Let € > 0 be arbitrary. There exists an ¢ € N such that Sm < e e Using the

continuity of F' yields the existence of an r’ > 0, such that for w € P, N B,(0) with
|z —w| <1, we get
|F(2) — F(w)| < %7’:(;71', for ¢ € Nx.
This allows to improve the estimate of the angle, using Lemma 3.5 yields
< (Pr(z)s Prw)) < Ca(m)d, ;.
Then the previous estimates imply
|Df(2)a — Df(w)a| < Cy(m)dy;|DF (2)al + Co(m)d, x| Df(2)a — Df(w)al
< 2Cy(m)5.s + é|Df(z)a _ Df(w)al.
Finally this gives
\Df(2)a— Df(w)a| < %C’g(m)gm <e.

Since we can choose £ > 0 arbitrary, this is the continuity of z — D f(z).
To finish the proof let ¢ € Cg°(P, N Br(0)) be a cut-off function with 0 < ¢ <1
and P1P.nBy (0) = 1. Define

otherwise.

f; P, — pzl: NN {@(Z)f(z) for z € PxﬂB%(o)’

Then for all z € P, N B we have f(2) = f(2). Moreover, for y € £ N B:(z) we have

r r
Tasr, (4) = 2l = |+ 7, (y — 2) — 2l < 3 <
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which implies
¥ N Br(x) =z + (graph(f) N B:(0)) = = + (graph(f) N Bg(O)) : O

To prove that every C'-submanifold satisfies (RPC) we will first state, that every
graph of a function with bounded Lipschitz-constant can be locally approximated by
planes, with respect to the Hausdorff-distance, i.e. it is Reifenberg-flat. The quality
of this approximation is given by the Lipschitz-constant.

Lemma 3.10. Let ¥ C R". Assume for x € ¥ exist a plane P € G(n,m), a
radius R > 0 and a function u,: P — P+ with u;(0) = 0, Lip(uyppe)) < @, such
that

(XN Br(x)) — x = graph(u,) N Br(0),
then for ally € XN Bx () we have

disty, (z N B.(y), (y+ P)N Br(y)> <ra forall re(0,R/2].
Proof. For all y € ¥ N B,.(z) and z(y) = 7p(y — =) we have
) =2+ 2(y) + ua (2(y)) -
Let r € (0, £] be fixed. For y € ¥ N Bg(m) and § € ¥.N B,.(y) we get with mp(y —
y)+yey+P)NB(y)
dist (?J, (y+P)n Br(y)) < |mp(5 = y)| = |7p (5 — 2) — 7y — )|
= |ua(2(9)) — u(2(y))| < ar.

y=x+mp(y— )+ 75y —

Note that

y+P=a+2(y) +u(z(y) + P =2 +u2(y) + P.
Using PN (B,(y) —y) C PN Bg(0) we can write ¥ N B,(y) = « + graph(u,) N B, (y).
Forx + Z+u,(2(y)) € y+P)NB_+_(y),ie. Z€ PNB__(z(y)) we have

14-a2 1+a?2

74 24 ue(2) =yl = |2+ ua(2) + 2(y) + ualz(y))|

= VIZ = 2(y)P + ua(2) — ua((y))?
<VI+a? [z —z(y)| <7

This implies
dist (m + 2+ ua(2(y)), B0 B,(y)) <o+ 2+ ug(2(y) — 7 — 5 — up(3)]

= Jus(2(y)) — 1s(3)] € ——

V1+a?

/ . ~ .
For 2/ € PN (B, (2(y)) \ Bw(z(y)) there exists a 2 € PN Bw(z(y)) with

1
2 -3 < (1 — ) T.
| | V1+a?
This leads to

dist (4 + 1. (2(%)), SN Buly) ) < \/<1 - ﬁ)Q + <¢%>2 r<ar.
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Finally this guarantees
disty (2 N B.(y),(y+ P)N Br(y)> < ar. O

Lemma 3.11. An embedded C'-submanifold Y. of R™ satisfies (RPC). More-
over, we get P, =T,>..

Proof. For all z € ¥ and o > 0 there is a radius R,(a) > 0 such that (X N
Bp, () (%)) — x is the graph of a Cl-function u,: 1,2 — 1,2+ with u,(0) = 0 and
Du,(0) = 0 as well as || Dug||cos, () < . Especially Lip(ug s, (a)) < a.

- Ry (o
Define R, := 1,1 := $R,(a). For y € ¥ N Bg,(x) let the plane P(y,r,;) be
defined by

P(y,ryq) :=T,%.
Lemma 3.10 implies for all y € ¥ N By, (x)

dist (S0 B,(9), (3 + Ply,720) 0 Boly)) < o forall 7 <.
Now define

For all € N.( we have

YN Bg,(x) C U BM(Q)
yeSNBR, ()

Then there exists an N € N and yy,...,yn € ¥ N Bg, (x) with
N
£ N Br, (@) C | Ba,, e (0))-
J=1 2
Define r) ; := 1, and recursively

, ) . Ryj (%) Thi1
r,; s= min min ’ ,— ,
’ Je{l N (@)} 2 2

as well as P(y, ;) := T, X for an arbitrary j € {1,..., N(i)} with y € Bz, ., (¥;)-
O

Using Lemma 3.10 for R = Ryj(égw-), we get for all y € B, (y;)

disty (Z N B, (y), (y + P(y, r;“)) N Br(y)) < 5;“-7" for all r < r;“

The By, (s (y;) cover ¥ N Bp, (x) and therefore we have
§\Vz,i

disty (ZﬂBr(y), (y+P(y, T;J))ﬂBr(y)) <6, forall r <7, ; and y € XNBg,(z).

This holds for all i € N. Moreover, for all § > 0 there exists an i € N with ¢, ;, < 9,
which implies that ¥ is Reifenberg-flat with vanishing constant. Note that it is
important, that the 77, ; are independent of y € ¥ N Bg, (z).

It remains to show that we can define a sequence of radii r,; which is controlled
by a constant C,, as well as the convergence of the planes P(y,r,;) to P, = T,X. To
see this, note that Lemma 2.7 implies

<(T,%, P(y,r,,) = <(T,2,T,,%) <6, forall ye XN Bg,(z).
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This yields
sup < (1,3, P(y,r,,;)) < 6,, — 0.

yEBRz (SC) 71— 00

Now let C, > 1 be fixed. For all i € N, there exists an [ = [(i) € Ng with

L./ ! 41,/
Cmrm,i—l—l < T(E,i S Cw Tm,i—l—l‘

— ! s/ .
It ry s =7y, and 4, s = 0, ; are defined, set recursively

1
R ; -
Tz,s+k = Cer,s for k € {1a R l(l)}> L A T:c,z'—i-l?
T

P(y,Tes1k) = P(y,72s) = P(y,7,;) for ke {l,...,0(i)}
and
Op stk i=0z; for ke {l,.... (1)}, Opstip)r1 = 5;“-“.
These definitions lead to
sup distye (S0 B (1), (0 + Py, 720)) 0B, (9)) < 07y forall s €N

yEBRm (:E)
with limg_, 0, s = 0 and
sup < (T,2, P(y,72,s)) < € = 0ps.
yEBRZ(Z‘)

/
z,1)

Moreover, if s € N such that 7, ; = r. ;, then the definition of 7, s leads to

et 0, for ke {0, max{0,1() — 1}},

Tx,s+k+1
! 1 ;
rejue  wigo GO
=—0 S —u = Co
T j+1(i)+1 ,r:c,i—i-l Cx
Finally these are all conditions required for ¥ to satisfy (RPC). U

4. Proof of Theorem 1.2

Unlikely Toro’s condition in (2), the integral condition postulated in Theorem 1.2
does not need a small bound but only to be finite. Note that the important part
of this condition is the decay of 0p, (,) near zero, i.e. if for x € ¥ there exists an

R, > 0 with
/Rx HBRx(:B)(T) dr < oo
0

,
then for all r, R with 0 < r < R, < R < oo we get

[ e < | Hlanolt) 4, / " lntolt) g, / (),
0 —Jo ’ 0 .

r r r T

Rxe R
g/ Mdrjt/ 10l7“<oo.
0

R, T
On the other hand, we can not expect R, to contain any information about the size
of the graph patches for >.

We will prove Theorem 1.2 by showing that each ¥, which has an finite integral
already satisfies (RPC).
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Proof of Theorem 1.2. Let C' > 1 be arbitrary. For every k& € N there exist an
k+1

ek € (Ry/C 2 | R,/C?) with

k
QBRZ(Z')(TSCJi‘) - /Rz/C2 QBRZ(QC)(T) dr - 1
rek eyt R, (C—é _ C—%)’

otherwise we would get

k k k
xR "7 Jrsett R, (C‘g —~ C_%> T -

R./C T R./C 2
k
_ /Rm/o? GBM (z) (r')

- k41 /
R./C % r

dr’,

which is a contradiction. Therefore, we have

Todal < Tok < Cryrrr and  lim 7y, = 0.
b b b k_)@ b

Moreover,
Re/C2 Qoo (7
U85, () (T2k) < Tak / Bree@)(7) dr
"R, (C—% - o—%) Rt
_ Rxcv—— ‘ /Rz/C2 QBRI @) (T) "
CRCTE (1) Jmgett T
- C: -/RZ/C2 HBRI(I)(H dr
C2—1 Re/C"E r .
Therefore

For 6,1 := 0B, (2)(T2k), this implies

Opp — 0.
7 k—oo

Then we get for all sufficiently large k € N

2

——(Gaps1 +2C0,4) < C(Oppp1 +2C0,) <
11— 25:{:,16-‘1-1

sl-

Let P(y,r,x) denote a plane which approximates ¥ at y € ¥.N Bg, (z) and scale 7, ,
corresponding to 0, 5. Then Lemma 3.2 leads to

Py, Tap), Py, Tapr1)) < CCy(m)(0p 41 + 2C6,1).
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For i € N we get

i—1

<(P(y7 Tm,k)v P(y7 Tx,k—l—i)) S <(P(y7 Tx,k—l—l)v P(y7 Tx,k—l—l-l—l))

1M

—_

Ci(m) Y (0gprir1 + 2005 j11) — 0,
l

IN
O}

Il
o

since ) 0, < oo. This yields the existence of a plane P, € G(n, m) such that
k=1

< (P(y, Tak)s Py) — 0.

k—o0

In particular, for all € > 0 there exist a J, € N such that
Py, o), Py) < forall k> J,
For i € N and k > max{i, J,} we get
<Z(P(y,rm7i), Py) < <I(P(y, re.i), Py, TM)) + <I(P(y,rm7k), Py)

k—i—1

< Z <[(P(y,rx,i+z),P(y>7’x7z’+l+1)) +e
1=0

< Z <I(P(y, Tx,i-l—l)a P(ya rx,i-l—l—i—l)) t+e.
=0

The limit ¢ — 0 yields

o0 o0

<I(Py> P(ya rx,i)) S Z <[(P(y> T:c,i—i—l)a P(y> T:c,i-i—l-‘rl)) S C’C’(m) Z(éx,l-‘rl + 2051‘,1)’
=0 =i

if > N and N € N such that
2
1 — 20, k11
Then

- 1
(5:c,k+1 + QC(Sx,k) < C(ax,k—i-l + QC(Sx,k) < % forall k> N.

o {GC(m) S (Spuq1 +206,;)  for k> N,
z,k - —

1 otherwise,
is independent of y € By, (x) with
< .
<(Py7 P(yv,rm,k>) > Exk m 0
This is the condition of (RPC') for C' = C, and Lemma 3.9 finishes the proof. U

Remark 4.1. An immediat result of the proof is that if there exist a constant
C > 0 and a monotonically decreasing sequence (7, x)r C (0, R,] with

Ter < Crypyr and klim Tzk =0
—00
such that
(o]
ZGBRx(m) (Tm,k> < 00,
k=1

then X is an embedded, m-dimensional C'-submanifold of R”. Moreover, the finite-
ness of the integral in Theorem 1.2 implies this condition.
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Appendix A. A Reifenberg-flat set with vanishing
constant without C'-regularity

Let

cos(2Fz
u: R =R, u(z):= Z Qk(?/E)

o]
k=

and

U:R—R2 Ulz) = <U(ZZ)).

Then ¥ := graph(u) = U(R) is Reifenberg-flat with vanishing constant as stated in
14].

Assume ¥ is a C'-submanifold of R?. Then for all x € ¥ and all a > 0 there
exists a radius r = r(x, @) > 0 and a C'-function f,: 7,3 — T3t such that

YN B,.(x) = (x + graph(f,)) N B,(x)
and

| fullco ey sna, ) m sty < o
Due to the symmetry of u, i.e. u(z) = u(—=z) for all z € R, we have for o = U(0)

T, X # {0} x R.
This implies that there exists an ' > 0 with
(R x {0}) N B (0) C mrxoy (T2yX N B, (0)) .

Without loss of generality let 7’ be small enough such that U(z) € B,(zg) for all
A BTI(O).
The representation as a graph of f,, yields the injectivity of

gt Rx{0})N By (0) = Rx {0}, t— 7Ry (77,2 (U(1) = U(0))).
Together with the continuity of g this implies that ¢ is monotonic. Then for —% =
to <ty <---<tp= %/ and t; := 7r, s(U(t;) — U(0)) for i = 0,...,k we get either

TRx{0} (t) < TRx{oy (t1) <+ < TR0y (t})

or

TRx{0} (tg) > TRx{0} (tll) > e > TRx{0} (t;f) .

Therefore we have Zle t; — i1 = [t}, — 5| and

EY () e »
<fxo(t;)) - <fx0(t;_1)) ' = ; Vita?. |t — tial

o (0 (-5)) - (v (3))|

which is independent of the partition of the intervall [—r'/2,7'/2]. This implies
U e BV([-r'/2,7"/2],R*) and u € BV ([—r'/2,7'/2]). Then u has to be differentiable
for almost all z € [—r'/2,r'/2] which is a contradiction to u being not differentiable
for all z € R.

k

k
> oIU(E) ~ Ultin) = Y

i=1

=Vi+a?-
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Appendix B. Counterexample for integral condition

The finiteness of the integral as well as of the sum in Theorem 1.2 respectively
Remark 4.1 imply that ¥ is a C'*-submanifold, but the following example will show,
that these conditions are not equivalent. Moreover, one can ask if C'-submanifolds
are characterized by

L (1)
/ P g < 00 forall zE N
0 re
for any o, 8 > 0. Note that as in Theorem 1.2 the upper bound of the integral can

be replaced by any R > 0 and the case @« = = 1 leads to the situation of Theorem
1.2. Using 6p, (r) <1 for all z € ¥ and r > 0 leads

168 1

/Mdrg ial7“<oo forall 0 <a <1,
0 re o T

which does not depend on ¥. Therefore, if such a condition exists, o has to be greater

or equal to one.

Moreover, the finiteness of the integral with & > 1 and § < 1 implies the finiteness
for a, 0 = 1. For a = 1 and fixed § > 1, the following example will provide a set
¥ C R?, which is a one-dimensional C'-submanifold, but yields neither a finite
integral nor a finite sum of its #-numbers.

Example B.1. Let § > 1 and

1

B
pe (0) ome g { (Sedm) B vemiO)

272
0 for y =0,
and
(fi]l fﬁ(y) dy - :H_El for y e (_007 %)7
02 log(2) # )
g RoR, 1o Jo Ts(y) dy for y € [~3,0),
’ fo“j fs(y) dy . foryel, 3h
fgﬁ fﬁ(y) dy + m_gl fOI‘ Y S (%7 OO)
\ log(2) 8

Then fz is a continuous function and gg is C*, but g € C7 for every o > 0. The set
¥ := graph(gp) is a C''-submanifold of R™. For all r < 2e™' < 1 we get

()]

O () =5 ()

r

and hence (gﬁfﬁ)) € XN B,(0) for all » < 2e7!. Due to the symmetry of gg, the
2

planes, which realise (0, ) have to be equal to ToX = R x {0}. For all small r we

Therefore,

IN
R
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[ el et ()
- % 5 <_10g1(£))ﬁ - i <_10g1(£))6'

For all R > 0 and monotonically decreasing sequences (7;)ien C (0, max{R,2e™1}]
and C' > 1 with

get

0(0,r) > =

r; <Cri; forall 1 €N

and therefore

Tlgci_lria
we get
1 -1 1 -1 1 -1
96 i > . B - .
5a0\") 2 5 1og(8) 7 B Toa(ptiy) ¥ log(%) — log(CY))

Finally

0P
ZZ:; Br() (i) 2 =] Z log(2) —|—log(CZ 1)

1
- 4ﬁ Z log(L) + (i — 1) log(C) >

Using the same argument of remark 4.1, this implies that also

eﬁ
/ Mdr:oo for R > 0.
0

r

Appendix C. Proof of Lemma 3.7 and Lemma 3.8
Proof of Lemma 3.7. (1) Notation: Define
So:=(z+ L)NB.(z), X,:=%NB.(z),
To: So — So; 2z 2,00 < (48(3C1(m) +
and Ry > 0 small enough, that for all r € (0, Ro] we get

1 [
Cinf sty (z N B.(y), (y+ L) N Br(y)> <6 forall ye XN By(z).
T LeG(n,m

2))”

For 7 € Ny let

o
! 12 - 43
For all j > 0 we get
. C | B,(2)
ZEX L
The compactness of X, implies the existence of a k; € N and aset Z; := {zj1,..., 2, }

with

2. C | B(2).

ZGZJ'
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Moreover, there exists a partition of unity {¢.}.cz, with
0<¢g,(y)<1forall yec R" and z¢€ Z,,
¢.(y)=0 forall y € R" and =z € Z; with |y — z| > 3r;,

Z 0.(y) =1 forall yeV;:={yeR"|dist(y,,) <r;}.

ZEZj

Note that V; C |.cz, Bsr,(2). Then the existence of this partition is an immediate

result of e.g. |3, p. 52].
For z € Z; let L(z,12r;) € G(n,m) denote a plane with

dlStH (Z N Berj (Z), (Z + L(Z, 127’J)) N Berj (Z)) S 127’j5.
The -Reifenberg-flatness of ¥ and the fact that
12r; <r < Ry

guarantees the existence of L(z,12r;). Now define

oi(y) ==y — Z ¢:(y) - Wf(z,mrj)(y —2)

ZEZJ'

and

7i(y) = (o5 0 t;1)(y)-

(2) For y € V; N B _oy(1465) (7) We get
dist (0,(y), 3,) < (36C1(m) + 24)r;0
and
o (y) —y| < dist(y, X,) + (36C1 (m) + 24)r;6 < (14 36C1(m)d + 246)r;.
Note that

1 1
r_er(1+65)Zr—6r<1+1—6) > (0 forall j & Ny.

Let y € V; N B, _a,(1165)(7) and Z;(y) :={z € Z; | |z — y| < 3r;}. Then we get

o) =y— Y @(y) Thrany (Y — 2).

2€Z;(y)
For z,2' € Z;(y), we have |z — 2| < 6r; = 122”. The definition of ¢, further yields
6 1
—0 <126 < —.
1-2 NG

Lemma 3.2 implies for 1 = 2,20 = 2/, 01 = 6 = 0, r1 = ro = 12r; and P, =
L(z,12r;), P, = L(2',12r;) that

<(L(z,12r;), L(2',12r;)) < 12C1(m)sd.
For fixed 2o € Z;(y) such that |2 — y| < 2r; define

Yy =y—- ﬂ-i_(zo,wrj)(y - ZO)
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and we get

i) =7 = | 3o (:0) Tz (U = 2)) = Tz (v — 20)
2€Z;(y)

= Z (Pz(y) ’ (Wi_(z,mrj)(y - Z) - ﬂ-i_(zo,l2rj)(y - ZO))

2€Z;(y)

= Z (Pz(y) ’ (Wi_(z,mrj)(y - Z) - ﬂ-i_(zo,l2rj)(y - Z) - 7Ti_(zo,127’j)(z o ZO))

#€Z;(y)

< Z (Pz(y) ’ (‘ﬂ-i—(z,wrj)(y - Z) o ﬂ-i_(zo,mrj)(y - Z) + )ﬂ-i_(zo,wrj)(z - zO)D
2€2;(y)

< Z 0. (y) - (1201 (m)d - 3r; + dist (2, z0 + L(20, 12rj))>
ZEZj(y)

< (36C; (m) + 12) 750,

In the last inequalities we used z € ¥NBig,, (20) and therefore dist(z, 20+L(z0, 127;)) <
12r;0, as well as the fact that Zzezj(y) ©.(y) = 1 for y € V; several times. § €

L(z0,12r;) N Bigy, (%) implies that there exists a w € ¥ N Biar, (20) C X, with
|7 — w| < 12rj0.
Using | — | < |y — o] + ly — z0l, we get
lw—z| <|w—-7g|+|g—z| <12r;0 + r —2r;(1 + 60) + 2r; = 7.
This implies w € >, and
dist (0(y), Xz) < [o;(y) — gl + |9 — w| < (36C1(m) + 24) 1;0.
Due to the definition of V; and the fact that >, is closed,for all y € V; we get a
w' € Y, with
dist (y, 3,) = |y — w'| < ;.
This yields
|20 — w'| < 3ry

and therefore

|'g - y| = ﬂ-i_(zo,urj)(y - ZO)’ < ’ﬂ-i_(zo,wrj)(y - ’LU,) + ‘ﬂ-i—(zo,urj)(w/ - ZO)
< |y — w'| + 12r;0.
Finally we get
lo;(y) —y| < dist (y, X)) + (36C1(m) + 24) ;0.

(3) For y € Sy N Bys(x) with 1" := 7 — (24 36C,(m)d + 240) >, r we get

75 (y) € Vjs1 N B, (2136C, (m)s+246) s, n (@) forall j € No.
Note that
ro1 1 15

= (2 5 + 246 L 2oy =2
r=r—(24+36C;(m)J + );rk>r 3 3( —|—4) 16T
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and
' <r—2r;(1+60).
For j =0 and y € Sp N B, (z) we have 75(y) = y and the Reifenberg-flatness yields

: r
dist (y,X,) <71 < YAt

This implies 79(y) =y € Vi N By (x).
Now we assume that the statement holds for j — 1 € Ny and let y € Sy N By (z).
We have

Tj—l(y) ev;n BT_(2+3601( )64-246) § (93)
k=

=
C V; N B,_y; (24360, (mys+248) () C V; N By_op, (1466) ().
Therefore step (2) implies
dist (7;(y), 3z) = dist (0;(75-1(y)), Xa) < (36C1(m) + 24)r;0 < 741,
which is 7;(y) € Vj41. Moreover, step (2) leads to
75 (y) — x| < [oj(751(y) — 731 ()] + |71 (y) — 2|

< (14 36C1 (m)d + 248)r; + 1 — (24 36C1 ()6 + 246) 7y,
k=j

<7 — (24 36C1(m)5 +246) > 7.
k=j+1
This is the postulated statement for j and inductively it holds for all 7 € Nj.
(4) 7; converges on Sy N B, () uniformly to a continuous function 7: For y €
SoN By(x) and i € N we get

17i(y) = Tica (V)] = |oi(Tica(v)) — Tica(y)]

If : =1, then
dist (10(y), 2z) < 1rd < (36C1(m) + 24)red

and for ¢ > 1 we get
dist (15_1(y), X;) = dist (0,1
because of 7;_5(y) € V;_;. Using r; =

() — 71 (y)] < % (36 (m) + 24) 1 16 for all i € N.

Let k,7 € Ny then

2(¥)), Lz) < (36C1(m) + 24)r;_10,

(Ti-
i r;_1 yields

k
bt
[Tk(y) = 73(y)] < Zm ~ T ()] < 7 (36C2(m) +24)6 Y rjpica
i=1
5 k-1
= 1 (36C1(m) + 24) 57"]24 —20

This is independent of y € Sy N B, (a:) and implies the uniform convergence of 7;
to a function 7. All 7; are continuous as compositions of continuous functions and
therefore 7 is as well.
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(5) |7(y) —y| < Cré and 7(Sp N B,(x)) C X0 We have 7(y) = lim;_,, 7;(y) for
all y € So N B,(x). Therefore, for all € > 0 there exists a J = J(¢) € N with
IT(y) —7j(y)| <e forall j>J and yeSyNBy(z).
For k € Ny there is a j > max{k: J} with

I7(y) — mely |<€+Z|n+1 iy |<€+Z|n+1 7).

The limit € — 0 yields

(36Cy (m) + 24) 67, - i 4

5)
4 ,
=0

WE

IT(y) =) < ) |mina(y) — ()| <

Ed

.

OJIU‘

(36Cy (m) + 24) or.

Especially for £k = 0 we get
5 5
-y <5 24 —
[7(y) =yl < 5 (36C1(m) +24) oro < T

We have 7;(y) € Vj4; for all j € Ny and therefore there is a w; € 3, with
‘Tj(y) — ’UJj| <Tjt1 for all VRS Ny.
This leads to
dist (7(9), £2) < Ir(y) — ()| + [73(0) — ]
)
< g (3601(771) + 24) 57”]' + Tji+1 ]—>—oo> 0,

which implies 7(Sy N B,/(x)) C 3, and finishes the proof. O

Proof of Lemma 3.8.  Assume there exists a { € (z + L) N Br(z) such that
Terrn(y) # & forall y € XN Br ( ). Using Lemma 3.7 leads to a continuous function

7 (+ L) N B, (x) J = %N B.(z) with

5)
() =yl < 147
Then for all z € (z + L) N Br(x) we get
IT(2) —z| < |7(2) — 2| + |z — 2| < ir—i— 1r< 17"
144 3 2

Therefore,
Terr (7(2)) # €& forall z € (x+ L) N Bz (x).
Let h: (z+ L)\ {§} = (z+ L) N OB~ (§) be defined by

h(z) ::£+%~ﬁ.

h is a continuous projection of (z + L)\ {£} onto (z + L) NdB~ (§). Define
p:=homyror: (x+L)NBx(§) = (x+L)NIB~(E).

Note that Br (£) C Bz(x), then we have § € o 7((x + L) N Bz (§) and ¢ is
continuous and well-defined.
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For z € (z+ L) N 0B~ (§) we get

(Tasr (7(2)) = 2| = |morn (7(2) = 2)[ < [7(2) — 2| < {7

Moreover,
|7 (T4 1.(7(2))) = Mo r(7(2))] = dist (o4(7(2)), 0B £, (€))
< rasn(r(2)) — 2l < o
which implies

10
< = - (£).
lo(2) — 2| < Vi forall z€ (z+ L)NIB~ (&)

Define ¢: LN B1(0) = L N 0B1(0) by
- 12 r
= 2 (o (1) ).
The continuity of ¢ implies that ¢ is also continuous and for z € L N B;(0) we get
Zi={z+§ € (x+ L)NIBL (), which leads to
1210 10

. 12 .
|g0(z)—z|:7|<p(z)—z|§7-m-r:E<1 for all z € L N0B;(0).

But this implies that

H:LNoB(0)x[0,1]=8™ ! x[0,1] = LNOB(0) = S™
(1 - O)@jsm-i(2) + t2
(1 =) Pjsm-1(2) + tz]

is a homotopy between idgm-1 and @jgm-1. The homotopy equivalence of the degree
of a map (see [4, 5.1.6 a]) leads to

H(z,t) =

deg(@Pjgm-1) = deg(idgm-1) = 1.
This is a contradiction to the continuous extension ¢ of @gm-1 on B*(0), because
this would by [4, 5.1.6 b] imply
deg(@|smfl> == O
Therefore, the assumed & can not exist. 0
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