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Abstract. In the main result of the paper we extend Rosenthal’s characterization of Banach

spaces with the Schur property by showing that for a quasi-complete locally convex space E whose

separable bounded sets are metrizable the following conditions are equivalent: (1) E has the Schur

property, (2) E and Ew have the same sequentially compact sets, where Ew is the space E with the

weak topology, (3) E and Ew have the same compact sets, (4) E and Ew have the same countably

compact sets, (5) E and Ew have the same pseudocompact sets, (6) E and Ew have the same

functionally bounded sets, (7) every bounded non-precompact sequence in E has a subsequence

which is equivalent to the unit basis of ℓ1 and (8) every bounded non-precompact sequence in E

has a subsequence which is discrete and C-embedded in Ew.

1. Introduction

A locally convex space (lcs for short) E is said to have the Schur property if E and
Ew have the same convergent sequences, where Ew is the space E endowed with the
weak topology σ(E,E ′). By the classical Schur theorem the Banach space ℓ1(Γ) has
the Schur property for every set Γ. The results of Rosenthal in [38] (see also §2 of [8])
show that a Banach space E has the Schur property if and only if every δ-separated
sequence in the closed unit ball of E has a subsequence equivalent to the unit basis
of ℓ1. Recall that a sequence {xn}n∈N is said to be δ-separated if ‖xi−xj‖ ≥ δ for all
distinct i, j ∈ N. Since any bounded sequence in E either is precompact or contains
a δ-separated subsequence for some δ > 0, following [26] the above characterization
of Banach spaces with the Schur property can be formulated in a more convenient
topological form.

Theorem 1.1. (Rosenthal) A Banach space E has the Schur property if and
only if every bounded non-precompact sequence in E has a subsequence which is
equivalent to the unit basis of ℓ1.

Another characterization of Banach spaces with the Schur property was obtained
recently by Dowling, Freeman, Lennard, Odell, Randrianantoanina and Turett in [15]:
A Banach space E has the Schur property if and only if every weakly compact subset
of E is contained in the closed convex hull of a weakly null sequence. A short proof of
this result is given by Johnson, Lillemets and Oja in [31]. For other characterizations
of Banach spaces with the Schur property see [7, 26, 36].

It is well known that a Banach space E has the Schur property if and only if
E and Ew have the same compact sets, and therefore, by the Eberlein–Šmulyan
theorem, if and only if E and Ew have the same sequentially compact sets if and only
if E and Ew have the same countably compact sets if and only if E and Ew have
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the same pseudocompact sets (the last equivalence follows from a result of Pták, see
[32, § 24.3(7)]). An analogous statement holds also for strict (LF )-spaces, see [32,
§ 24.3(9)]. Moreover, a remarkable result of Valdivia [40] (which states that Ew is a
µ-space for every quasi-complete space E) easily implies the following assertion: If
E and Ew have the same compact sets, then E and Ew have the same functionally
bounded subsets. Note that in this assertion one cannot replace compact sets by
convergent sequences even for complete spaces, see Proposition 3.5 below.

For a Tychonoff (= completely regular Hausdorff) space X and a property P,
denote by P(X) the set of all subspaces of X with P. Analogously to the corre-
sponding algebraic notion we shall say that a locally convex space E weakly respects
P if P(Ew) = P(E). So every lcs E weakly respects bounded sets, and the Schur
property means that E weakly respects the property S of being a convergent se-
quence. The following theorem extends Theorem 1.1 and is the main result of the
paper (recall that an lcs E is said to be quasi-complete if each closed bounded subset
of E is complete).

Theorem 1.2. Let E be a quasi-complete lcs whose separable bounded sets are
metrizable. Then the following assertions are equivalent:

(i) E has the Schur property;
(ii) E weakly respects sequential compactness;
(iii) E weakly respects compactness;
(iv) E weakly respects countable compactness;
(v) E weakly respects pseudocompactness;
(vi) E weakly respects functional boundedness;
(vii) every bounded non-precompact sequence in E has a subsequence which is

equivalent to the unit basis of ℓ1;
(viii) every bounded non-precompact sequence in E has a subsequence which is

discrete and C-embedded in Ew.

If (i)–(viii) hold, then every functionally bounded subset in Ew is relatively compact
in E.

Note that for any lcs E, (i) and (ii) are equivalent and conditions (iii)-(v) imply
the Schur property, see Proposition 2.2. However, in general the Schur property does
not imply the weak respecting compactness (see [42, Example 6 (p. 267)] and [14,
Example 19.19] or the more general Proposition 3.5 below), and hence the condition
of being metrizable for separable bounded sets in Theorem 1.2 is essential. We
prove Theorem 1.2 in Section 2 using (1) an extension of the Rosenthal ℓ1 theorem
obtained recently by Ruess [39], and (2) the aforementioned result of Valdivia [40].
As a corollary of Theorem 1.2 we provide numerous characterizations of the Schur
property for strict (LF )-spaces, see Corollary 2.13.

It is well known that every Banach space with the Schur property has the
Dunford–Pettis property. Being motivated by this result and the results of Albanese,
Bonet and Ricker [1] and Bonet and Lindström [5], in the last section we study
convergent sequences in duals of locally convex spaces with the Schur property and
Dunford–Pettis type properties and extend some results known for Banach spaces
and Fréchet spaces.

2. Proof of Theorem 1.2

A subset A of a Tychonoff space X is called functionally bounded in X if every
continuous real-valued function on X is bounded on A, and X is a µ-space if every
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functionally bounded subset of X has compact closure. Following [21], a topological
space X is a countably µ-space if every countable functionally bounded subset of X
has compact closure. Clearly, every µ-space is a countably µ-space, but the converse
is not true in general.

In what follows we consider the following families of compact type properties

P0 := {S, C,SC, CC,PC} and P := P0 ∪ {FB},

where S, C, SC, CC, PC or FB denote the property of being a convergent sequence
or being a compact, sequentially compact, countably compact, pseudocompact and
functionally bounded subset of a topological space, respectively.

Proposition 2.1. Let H be a subspace of an lcs E and P ∈ P0. If E weakly
respects P, then H weakly respects P as well.

Proof. Let K ∈ P(Hw). Denote by i : H → E the identity map. Then i is weakly
continuous. So K = i(K) ∈ P(Ew) (note that if K is pseudocompact, then i(K)
is also pseudocompact by [17, 3.10.24]). Hence K ∈ P(E). Therefore K ∈ P(H).
Thus H weakly respects P. �

It is clear that if an lcs E weakly respect compactness then it has the Schur
property. Next proposition shows that the Schur property is weaker than other
properties from P.

Proposition 2.2. Let (E, τ) be a locally convex space. Then:

(i) E has the Schur property if and only if it weakly respects sequential com-
pactness;

(ii) if E weakly respects countable compactness, then E has the Schur property;
(iii) if E weakly respects pseudocompactness, then E has the Schur property;
(iv) if E is a countably µ-space and weakly respects functional boundedness, then

E has the Schur property;
(v) if every functionally bounded subset of Ew has compact closure in E, then E

weakly respects all properties P ∈ P and Ew is a µ-space.

Proof. (i) Assume that (E, τ) has the Schur property and let A be a sequentially
compact subset of Ew. Take a sequence S = {an}n∈N in A. Then S has a weakly
convergent subsequence S ′. By the Schur property S ′ converges in τ . Hence A is
τ -sequentially compact. Thus E weakly respects sequential compactness.

Conversely, assume that (E, τ) weakly respects sequential compactness and let
{an}n∈N be a sequence weakly converging to an element a0 ∈ E. Set S := {an}n∈N∪
{a0}, so S is weakly compact. Being countable S is metrizable and hence weakly
sequentially compact. So S is sequentially compact in τ . We show that an → a0 in
τ . Suppose for a contradiction that there is a τ -neighborhood U of a0 which does
not contain an infinite subsequence S ′ of S. Then there is a subsequence {ank

}k∈N
of S ′ which τ -converges to an element g ∈ S. Clearly, g 6= a0 and ank

→ g in the
weak topology, and hence an 6→ a0 in σ(E,E ′), a contradiction. Therefore an → a0
in τ . Thus E has the Schur property.

(ii),(iii) Let {an}n∈N be a sequence weakly converging to an element a0 ∈ E.
Set S := {an}n∈N ∪ {a0}, so S is weakly compact. Hence S is σ(E,E ′)-countably
compact. So S is countably compact or pseudocompact in τ , respectively. As any
countable space is normal, in both cases S is countably compact in τ . We show
that an → a0 in τ . Suppose for a contradiction that there is a τ -neighborhood U of
a0 which does not contain an infinite subsequence S ′ of S. Then S ′ has a τ -cluster
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point g ∈ S and clearly g 6= a0. Note that g is also a cluster point of S ′ in the weak
topology. Hence g = a0, a contradiction. Therefore an → a0 in τ . Thus E has the
Schur property.

(iv) Let S = {an : n ∈ N} ∪ {a0} be a sequence in E which weakly converges
to a0. Since S is also functionally bounded in Ew, we obtain that S is closed and
functionally bounded in E. So S is compact in E because E is a countably µ-space.
As the identity map (S, τ |S) →

(

S, σ(E,E ′)|S
)

is a homeomorphism, an → a0 in E.
Thus E has the Schur property.

(v) Let A ∈ P(Ew). Then A is functionally bounded in Ew. Therefore its τ -
closure A is compact in E, so the identity map id :

(

A, τ |A
)

→
(

A, σ(E,E ′)|A
)

is a
homeomorphism. Hence Ew is a µ-space and A ∈ P(E). Thus E weakly respects
P. �

Recall that a locally convex space E is called semi-Montel if every bounded subset
of E is relatively compact, and E is a Montel space if it is a barrelled semi-Montel
space.

Proposition 2.3. A semi-Montel space E weakly respects all properties P ∈ P.

Proof. Let A ∈ P(Ew). Then A is a functionally bounded subset of Ew and
hence A is bounded in E. Therefore the closure A of A in E is compact and (v) of
Proposition 2.2 applies. �

Recall that a topological group G is called sequentially complete if every Cauchy
sequence has a limit point. A locally convex space E is called weakly sequentially
complete if the space Ew is sequentially complete. The following assertion is well
known for Banach spaces, we give its proof only for the sake of completeness and the
reader convenience.

Proposition 2.4. Let (E, τ) be an lcs with the Schur property. Then E is
sequentially complete if and only if it is weakly sequentially complete.

Proof. Assume that E is sequentially complete. Let {gn}n∈N be a Cauchy se-
quence in Ew. Then for any two strictly increasing sequences {mi}i∈N and {ki}i∈N
in N, the sequence {gmi

− gki}i∈N weakly converges to 0 ∈ E. By the Schur property
{gmi

− gki}i∈N converges to zero in τ . So {gn}n∈N is a Cauchy sequence in E and
hence it converges to some g ∈ E. Therefore gn → g in σ(E,E ′). Thus E is weakly
sequentially complete.

Conversely, let E be weakly sequentially complete. If {gn}n∈N is a Cauchy se-
quence in E, then it is a Cauchy sequence in σ(E,E ′) and hence weakly converges
to some g ∈ E. By the Schur property, gn → g in the original topology τ . Thus E is
sequentially complete. �

For a nonzero x = (xn) ∈ ℓ∞, we denote by supp(x) := {n ∈ N : xn 6= 0} the
support of x. For every n ∈ N, set en := (0, . . . , 0, 1, 0, . . . ), where 1 is placed in
position n. We shall consider the sequence {en : n ∈ N} also as the (standard) unit
basis of ℓ1. The span of a subset A of an lcs E is denoted by span(A).

We shall say that a sequence A = {an}n∈N of an lcs E is equivalent to the unit
basis {en : n ∈ N} of ℓ1 if there exists a linear topological isomorphism R from the
closure of span(A) onto a subspace of ℓ1 such that R(an) = en for every n ∈ N (we
do not assume that the closure of span(A) is complete).

Lemma 2.5. Let A = {an}n∈N be a sequence in an lcs E which is equivalent to
the unit basis of ℓ1. Then A is not weakly functionally bounded.
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Proof. It is well known that there exists an isometric isomorphism T from ℓ1 into
ℓ∞. We claim that the sequence S := {T (en) : n ∈ N} is not weakly functionally
bounded in ℓ∞. Indeed, suppose for a contradiction that S is weakly functionally
bounded in ℓ∞. Since (ℓ∞)w is a µ-space by [40], the weak closure K of S is a weakly
compact subset of ℓ∞. As (ℓ1)w is a closed subspace of (ℓ∞)w, we obtain that K
is compact in (ℓ1)w. Therefore K is norm compact by the Schur property of ℓ1, a
contradiction. Thus S is not weakly functionally bounded in ℓ∞.

Now let M be the closure of span(A) in E and let R be a linear topological
isomorphism of M onto a subspace of ℓ1 such that R(an) = en for every n ∈ N.
The injectivity of ℓ∞ (see Theorem 10.1.2 of [34]) implies that the operator T ◦ R
can be extended to a continuous operator Q from E to ℓ∞. Since Q is also weakly
continuous, the claim implies that A is not weakly functionally bounded in E. �

Following [22], a locally convex space E is said to have the Rosenthal property if
every bounded sequence in E has a subsequence which either (1) is Cauchy in the
weak topology, or (2) is equivalent to the unit basis of ℓ1.

Proposition 2.6. Let (E, τ) be a sequentially complete lcs with the Rosenthal
property. If E has the Schur property, then every functionally bounded subset A of
Ew is relatively sequentially compact in E.

Proof. We have to show that every sequence {an}n∈N ⊆ A has a convergent
subsequence in E. Clearly, A is a bounded subset of E. Hence, by the Rosenthal
property, {an}n∈N has a subsequence {bn}n∈N which either (1) is Cauchy in the weak
topology τw, or (2) is equivalent to the unit basis of ℓ1. The case (2) is not fulfilled
by Lemma 2.5, so {bn}n∈N is weakly Cauchy. Then, by Proposition 2.4, bn weakly
converges to a point b ∈ E, and hence, by the Schur property, bn → b in the original
topology τ . Thus A is relatively sequentially compact in E. �

Taking into account that every Banach space is sequentially complete and being
motivated by the Rosenthal property and the Eberlein–Šmulyan theorem, we denote
by RES the class of all sequentially complete locally convex spaces E with the Rosen-
thal property such that the closure A of every relatively sequentially compact subset
A of E is compact.

Theorem 2.7. If (E, τ) ∈ RES, then the following assertions are equivalent:

(i) E has the Schur property;
(ii) there is P ∈ P0 such that E weakly respects P;
(iii) E weakly respects FB and is a countably µ-space;
(iv) E weakly respects all P ∈ P and is a countably µ-space;
(v) E is a countably µ-space and every bounded non-functionally bounded se-

quence in E has a subsequence which is equivalent to the unit basis of ℓ1.

In these cases every weakly functionally bounded subset of E is relatively compact
in E and the space Ew is a µ-space.

Proof. (i) ⇒ (iv) Let A ∈ P(Ew) for some P ∈ P. Then A is a functionally
bounded subset of Ew. By Proposition 2.6, A is relatively sequentially compact
in E. As E ∈ RES we obtain that the τ -closure A of A is τ -compact, i.e., A is
relatively compact in E. Therefore the space Ew and hence also E are µ-spaces, and
A ∈ FB(E). Thus E weakly respects functional boundedness. If P ∈ P0 and A is
τ -compact, the identity map (A, τ |A) → (A, τw|A) is a homeomorphism and hence
A ∈ P(E). Thus E weakly respects P.
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(ii) ⇒ (i) follows from Proposition 2.2. The implications (i) ⇒ (ii), (iv) ⇒ (i)
and (iv) ⇒ (iii) are clear.

(iii) ⇒ (i) Let S be a convergent sequence in Ew with the limit point. Then
S ∈ FB(Ew), and hence S is functionally bounded in E. As E is a countably
µ-space, the closed countable subset S of E is compact. Since the identity map
(S, τ |S) → (S, τw|S) is a homeomorphism, we obtain that S is a convergent sequence
in E. Thus E has the Schur property.

(i),(iii) ⇒ (v) Let S = {gn}n∈N be a bounded non-functionally bounded sequence
in E. Observe that S is also not functionally bounded in Ew since E weakly respects
functional boundedness. Take a continuous real-valued function f on Ew which is
unbounded on S and take a subsequence S ′ = {gnk

}k∈N of S such that f(gnk
) → ∞.

We claim that S ′ does not have a weakly Cauchy subsequence S ′′. Indeed, otherwise,
the weak sequential completeness of E (see Proposition 2.4) would imply that S ′′

converges in τw. Hence f is bounded on S ′′ that is impossible since f(gnk
) → ∞.

Finally, the Rosenthal property implies that S has a subsequence which is equivalent
to the unit basis of ℓ1.

(v) ⇒ (i) Let S be a weakly convergent sequence in E with the limit point. Then
S is bounded. We claim that S is functionally bounded in E. Indeed, otherwise, S
would contain a subsequence S ′ which is equivalent to the unit basis of ℓ1. Therefore
S is not weakly functionally bounded by Lemma 2.5, a contradiction. Now since E is
a countably µ-space, the closed countable subset S of E is compact. As the identity
map (S, τ |S) → (S, τw|S) is a homeomorphism, we obtain that S is a convergent
sequence in E. Thus E has the Schur property. �

Being motivated by a result of Hernández and Macario [27, Theorem 3.2], we
prove the following sufficiently general result. Recall that a subset A of a topological
space (X, τ) is called C-embedded (C∗-embedded) if every continuous (respectively,
bounded) real-valued function f on (A, τ |A) can be extended to a continuous function
f on X.

Theorem 2.8. If an lcs (E, τ) is such that Ew is a µ-space, then the following
assertions are equivalent:

(i) E weakly respects compactness;
(ii) E weakly respects countable compactness and E is a µ-space;
(iii) E weakly respects pseudocompactness and E is a µ-space;
(iv) E weakly respects functional boundedness and E is a µ-space;
(v) E is a µ-space and every non-functionally bounded subset A of E has an

infinite subset B which is discrete and C-embedded in Ew.

If (i)–(v) hold, then every functionally bounded subset in Ew is relatively compact
in E.

Proof. (i) ⇒ (ii) Let A be a countably compact subset of Ew. As Ew is a µ-space,
the τw-closure A of A is compact in Ew. Therefore A is compact in E, and hence A
is relatively compact in E. Since the identity map (A, τ |A) → (A, τw|A) is a homeo-
morphism, we obtain that A is countably compact in E. Thus E respects countable
compactness. The same proof shows that every functionally bounded subset in Ew

is relatively compact in E, and in particular E is a µ-space.
(ii) ⇒ (iii) Let A be a pseudocompact subset of Ew. Then the closure K of A

in Ew is τw-compact because Ew is a µ-space. Therefore K is countably compact in
E. Being closed K also is compact in E since E is a µ-space. As the identity map
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(K, τ |K) → (K, τw|K) is a homeomorphism, we obtain that A is pseudocompact in
E. Thus E weakly respects pseudocompactness.

The implication (iii) ⇒ (iv) is proved analogously to (ii) ⇒ (iii).
(iv) ⇒ (v) Let A be a non-functionally bounded subset of E. As E weakly

respects functional boundedness it follows that A is not functionally bounded in Ew.
Let f be a continuous real-valued function on Ew which is unbounded on A. If we
take B as a sequence {an}n∈N in A such that |f(an+1)| > |f(an)| + 1 for all n ∈ N,
then B is discrete and C-embedded in Ew.

(v) ⇒ (i) Let K be a compact subset of Ew. Then K must be functionally
bounded in E. Since E is a µ-space and K is also closed in E we obtain that K is
compact in E. Thus E weakly respects compactness. �

We need also the following mild completeness type property. An lcs E is said to
have the cp-property if every countable precompact subset of E has compact closure.
Clearly, any complete lcs has the cp-property, and each lcs with the cp-property is a
countably µ-space.

Lemma 2.9. Let E be a locally convex space. Then:

(i) every functionally bounded subset A of E is precompact;
(ii) if E has the cp-property, then a separable subset B of E is functionally

bounded if and only if B is precompact.

Proof. (i) If A is not precompact, Theorem 5 of [3] implies that A has an infinite
uniformly discrete subset C, i.e., there is a neighborhood U of zero in E such that
c− c′ 6∈ U for every distinct c, c′ ∈ C. Thus, by Lemma 2.1 of [19], C and hence also
A are not functionally bounded, a contradiction.

(ii) follows from (i) and the cp-property. �

In [11, Lemma 3] Díaz extends the Rosenthal ℓ1 theorem to all Fréchet spaces.
A much more general result was obtained recently by Ruess in [39]. Recall that an
lcs E is locally complete if every closed disc in E is a Banach disc; every sequentially
complete lcs is locally complete by Corollary 5.1.8 of [35].

Theorem 2.10. (Ruess) Every locally complete lcs E whose every separable
bounded set is metrizable has the Rosenthal property.

Below we give some examples of locally convex spaces which belong to the class
RES and have the cp-property. An lcs (E, τ) is called an (LM)-space and write E =
lim−→En if there is a sequence {(En, τn)}n∈N of metrizable locally convex spaces such
that (En, τn) is continuously included in (En+1, τn+1), and τ is the finest Hausdorff
locally convex topology on E =

⋃

n En such that (En, τn) is continuously included
in (E, τ). If in addition all the spaces (En, τn) are Fréchet spaces and τn+1|En

= τn
holds for every n ∈ N, the space E is called a strict (LF )-space.

Proposition 2.11. A locally convex space (E, τ) belongs to RES and has the
cp-property if one of the following conditions holds:

(i) E is quasi-complete and every separable bounded subset of E is metrizable;
(ii) E is a strict (LF )-space (in particular, a Fréchet space);
(iii) E is the strong dual H ′

β of a quasinormable metrizable lcs H .

Proof. (i) Let A be a precompact subset of E. Then A is bounded, and since
E is quasi-complete, the closure A of A is complete. Therefore A is compact by
Theorem 3.4.1 of [34]. Thus E has the cp-property. The space E has the Rosenthal
property by Theorem 2.10. So to show that E belongs to the class RES we have
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to prove that the closure B of a relatively sequentially compact subset B of E is
compact. It is easy to see that B is functionally bounded in E. Therefore B is
precompact by (i) of Lemma 2.9. As we proved above, B is compact.

(ii) Let E = lim−→En, where all the En are Fréchet spaces. Note that, for every
n ∈ N, the space En is a closed subspace of E. Theorem 12.1.10 of [34] implies that
E is complete. By Theorem 12.1.7 of [34], any bounded subset of E sits in some En

and hence is metrizable. Now (i) applies.
(iii) The space E is quasi-complete by Proposition 11.2.3 of [30], and Theorem 2

(see also the diagram before this theorem) of [4] implies that every bounded subset
of E is metrizable. Now (i) applies. �

Now we are ready to prove the main result of the paper.

Proof of Theorem 1.2. As we showed in the proof of (i) in Proposition 2.11,
the quasi-complete space E is a µ-space and has the cp-property. Also the space
Ew is a µ-space by [40]. Now the theorem follows from Theorems 2.7 and 2.8 and
Lemma 2.9. �

Let X and Y be Tychonoff spaces. The space C(X, Y ) of all continuous functions
from X to Y endowed with the compact-open topology τk is denoted by Ck(X, Y ).
If Y = R, we set C(X) := C(X,R) and Ck(X) := Ck(X,R). The sets

[K; ε] := {f ∈ C(X) : |f(x)| < ε ∀x ∈ K},

where K is a compact subset of X and ε > 0, form a base at zero of τk.
Let E be an lcs over the field F of real numbers R or complex numbers C. We

denote by µ(E,E ′) the Mackey topology on E and set E ′

β := (E ′, β(E ′, E)), where
β(E ′, E) is the strong topology on E ′. If A is a subset of E, we denote by A◦ and
acx(A) the polar of A and the closed absolutely convex hull of A, respectively. The
Krein theorem [32, § 24.5(4)] states that if K is a weakly compact subset of E, then
acx(K) is weakly compact if and only if acx(K) is µ(E,E ′)-complete. We shall say
that E has the Krein property or is a Krein space if acx(K) is weakly compact for
every weakly compact subset K of E. Therefore E is a Krein space if (E, µ(E,E ′))
is quasi-complete. In particular, every quasibarrelled quasi-complete space is a Krein
space. By the definition of µ(E ′, E), the Mackey topology µ(E ′, E) on E ′ is always
weaker than the restriction τk|E′ of the compact-open topology τk of Ck(Ew,F) onto
E ′. Below we show that the equality µ(E ′, E) = τk|E′ characterizes Krein spaces.

Proposition 2.12. Let E be an lcs over F = R or C. Then:

(i) E is a Krein space if and only if (E ′, µ(E ′, E)) is a subspace of Ck(Ew,F);
(ii) if E is quasi-complete and weakly respects compactness, then (E ′, µ(E ′, E))

is a subspace of Ck(E,F);
(iii) if E is a quasi-complete Mackey space, then E weakly respects compactness

if and only if (E ′, µ(E ′, E)) is a subspace of Ck(E,F).

Proof. (i) Assume that E is a Krein space. Fix a weakly compact subset K of E.
Then acx(K) is also weakly compact by the Krein property. Therefore µ(E ′, E) ≥
τk|E′. Thus µ(E ′, E) = τk|E′ and hence (E ′, µ(E ′, E)) is a subspace of Ck(Ew,F).
Conversely, assume that (E ′, µ(E ′, E)) is a subspace of Ck(Ew,F). Fix a weakly
compact subset K of E. Then there exists an absolutely convex weakly compact
subset C of E such that C◦ ⊆ K◦. Therefore K ⊆ K◦◦ ⊆ C◦◦ = C. Thus acx(K) is
a weakly compact subset of E.
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(ii) If K is an absolutely convex weakly compact subset of E, then K is compact
in E. Therefore µ(E ′, E) ≤ τk|E′. Conversely, for every compact subset K of E, the
quasi-completeness of E implies that the closed absolutely convex hull of K is also
compact in E. Thus µ(E ′, E) ≥ τk|E′ and hence µ(E ′, E) = τk|E′.

(iii) The necessity follows from (ii). To prove sufficiency, let K be a weakly
compact subset of E. As E is a Krein space, the set K0 := acx(K) is also weakly
compact. By assumption there is a compact subset C0 of E such that C◦

0 ⊆ K◦

0 .
Since E is quasi-complete, we obtain that the set C := acx(C0) is also a compact
subset of E. Then K ⊆ K◦◦ ⊆ C◦◦

0 ⊆ C◦◦ = C. Therefore K being closed in E is a
compact subset of E. Thus E weakly respects compactness. �

The class of strict (LF )-spaces is one of the most important classes of locally
convex spaces. Below we apply Theorem 1.2 and Proposition 2.12 to characterize
strict (LF )-spaces with the Schur property.

Corollary 2.13. Let E = lim−→En be a strict (LF )-space over F = R or C. Then

the following assertions are equivalent:

(i) there is a P ∈ P such that E weakly respects P;
(ii) E weakly respects all P ∈ P;
(iii) every bounded non-precompact sequence in E has a subsequence which is

equivalent to the unit basis of ℓ1;
(iv) there is a P ∈ P such that all the spaces En weakly respect P;
(v) for every n ∈ N, the space En weakly respects all P ∈ P;
(vi) every non-precompact bounded subset of E has an infinite subset which is

discrete and C-embedded in Ew;
(vii) (E ′, µ(E ′, E)) is a subspace of Ck(E,F).

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (vi) follow from Theorem 1.2 and
(ii) of Proposition 2.11.

(iii) ⇒ (v) Fix n ∈ N and let S be a bounded non-precompact sequence in En. As
En is a closed subspace of E, there is a subsequence S ′ of S which is equivalent to the
unit basis of ℓ1. Clearly, the closure of span(S ′) in E is contained in En. Therefore
En respects all the properties P ∈ P by Theorem 1.2 and (ii) of Proposition 2.11.

(v) ⇒ (iv) is trivial. To prove the implication (iv)⇒(iii), let S be a bounded non-
precompact sequence in E. Then S ⊆ En for some n ∈ N. Applying Theorem 1.2 and
(ii) of Proposition 2.11 to the Fréchet space En, we obtain that S has a subsequence
S ′ which is equivalent to the unit basis of ℓ1. It remains to note that En is a closed
subspace of E.

Taking into account that E is a complete Mackey space (see [34, Theorem 12.1.10]
and [30, Corollary 8.8.11]), (ii) and (vii) are equivalent by (iii) of Proposition 2.12
and Theorem 1.2. �

Let K be an infinite compact space. Then the Banach space C(K) does not have
the Schur property since it contains an isomorphic copy of c0, see Theorem 14.26
of [18]. The next proposition (which, perhaps, is known but hard to find explicitly
stated) generalizes this result.

Proposition 2.14. For a Tychonoff space X, the space Ck(X) has the Schur
property if and only if X does not contain an infinite compact subset.

Proof. Let Ck(X) have the Schur property. Suppose for a contradiction that
X contains an infinite compact subset K. By Lemma 11.7.1 of [30], take a one-
to-one sequence {xn}n∈N in K and a sequence {Un}n∈N of open subsets of X such
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that xn ∈ Un for each n ∈ N and Un ∩ Um = ∅ for every distinct n,m ∈ N. For
every n ∈ N, take a continuous function fn : X → [0, 1] with support in Un and
such that fn(xn) = 1. We claim that fn weakly converges to zero. Indeed, fix a
regular Borel measure µ ∈ Mc(X) = Ck(X)′ with compact support. We can assume
that µ is positive. Since µ is finite and regular, observe that µ(Un) → 0. Then
0 ≤ µ(fn) ≤ µ(Un) → 0. This proves the claim. On the other hand, by construction
we have fn 6∈ [K; 1/3] for every n ∈ N. Therefore fn 6→ 0 in the compact-open
topology. Thus Ck(X) does not have the Schur property.

Conversely, if X does not contain infinite compact subsets, then the compact-
open topology τk coincides with the pointwise topology and hence

(

Ck(X)
)

w
=

Ck(X). Thus Ck(X) trivially has the Schur property. �

3. The Schur property and Dunford–Pettis type properties

In this section we give concrete constructions of Schur spaces and extend some
known results for Banach and Fréchet spaces to larger classes of locally convex spaces.

Recall that a Tychonoff space X is called an angelic space if (1) every relatively
countably compact subset of X is relatively compact, and (2) any compact subspace
of X is Fréchet–Urysohn. Note that any subspace of an angelic space is angelic, and
a subset A of an angelic space X is compact if and only if it is countably compact
if and only if A is sequentially compact, see Lemma 0.3 of [37]. Being motivated by
the last property we say that a Tychonoff space X is sequentially angelic if a subset
K of X is compact if and only if K is sequentially compact.

Recall that an lcs E has the Dunford–Pettis property ((DP ) property for short)
if every absolutely convex σ(E,E ′)-compact subset of E is precompact for the topol-
ogy τΣ′ of uniform convergence on the absolutely convex, equicontinuous, σ(E ′, E ′′)-
compact subset of E ′ (see §9.4 of [16]); E has the Grothendieck property if every
weak-∗ convergent sequence in E ′ is weakly convergent. Recall also (see [7]) that
a Banach space E has the ∗-Dunford–Pettis property (∗-(DP ) property) if given a
weakly null sequence {xn}n∈N in E and a weakly-∗ null sequence {χn}n∈N in E ′,
then limn χn(xn) = 0. Analogously we say that an lcs E has

• the sequential Dunford–Pettis property ((sDP ) property) if given weakly null
sequences {xn}n∈N and {χn}n∈N in E and E ′

β , respectively, then limn χn(xn) =
0;

• the ∗-sequential Dunford–Pettis property (∗-(sDP ) property) if given a weakly
null sequence {xn}n∈N in E and a weakly-∗ null sequence {χn}n∈N in E ′, then
limn χn(xn) = 0.

Clearly, the ∗-(sDP ) property implies the (sDP ) property, but the converse is not
true in general as the Banach space c0 shows. Any Banach space E with the ∗-(DP )
property contains an isomorphic copy of ℓ1, see [29, Proposition 4]. It is easy to see
that every Banach space E with the Schur property has the ∗-(sDP ) property, but
in general the converse is false (for example E = ℓ∞). Proposition 3.3 of [1] implies
that: (1) every barrelled space with the (DP )-property has the (sDP ) property, and
(2) if both E and E ′

β are sequentially angelic and E has the (sDP ) property, then E
has the (DP ) property. Moreover, if E is a strict (LF )-space, then E has the (DP )
property if and only if it has the (sDP )-property, see Corollary 3.4 of [1]. Banach
spaces with the ∗-(DP ) property are studied in [9].
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The next proposition generalizes the corresponding well known results for Banach
spaces. Recall that an lcs E is called c0-barrelled if every σ(E ′, E)-null sequence in
E ′ is equicontinuous.

Proposition 3.1. Let E be a locally convex space. Then:

(i) if E is c0-barrelled and has the Schur property, then E has the ∗-(sDP )
property;

(ii) if E ′

β has the Schur property, then E has the (sDP ) property;
(iii) if E is quasibarrelled and E ′

β has the (sDP ) property, then also E has the
(sDP ) property.

Proof. (i) Let {xn}n∈N be a weakly null sequence in E and {χn}n∈N be a weakly-
∗ null sequence in E ′

β . As E is c0-barrelled, there is a neighborhood U of zero in E
such that {χn}n∈N ⊆ U◦. By the Schur property, for each ε > 0 choose N ∈ N such
that xn ∈ εU for every n > N . Then |χn(xn)| ≤ ε for n > N . Thus χn(xn) → 0 and
E has the ∗-(sDP ) property.

(ii) Let {xn}n∈N and {χn}n∈N be weakly null sequences in E and E ′

β, respectively.
Since E ′

β has the Schur property, χn → 0 in the strong topology β(E ′, E) on E ′.
Clearly, S = {xn}n∈N is a bounded subset of E. Therefore for each ε > 0 there
is an N ∈ N such that |χn(x)| < ε for every x ∈ S and every n > N . Thus
limn χn(xn) = 0.

(iii) Let {xn}n∈N and {χn}n∈N be weakly null sequences in E and E ′

β , respectively.
Since E is quasibarrelled, it is a subspace of (E ′

β)
′

β by Theorem 15.2.3 of [34]. So
xn → 0 also in σ(E ′′, E ′′′). Now the (sDP ) property of E ′

β implies χn(xn) → 0. Thus
E has the (sDP ) property. �

Remark 3.2. Pethe and Thakare showed in [36] that the Banach dual E ′ of
a Banach space E has the Schur property if and only if E has the Dunford–Pettis
property and does not contain an isomorphic copy of ℓ1.

Proposition 3.3. Let E be an lcs with the (sDP ) property such that Ew is
sequentially angelic.

(i) Every σ(E ′, E ′′)-null sequence {χn}n∈N in E ′ converges to zero also in µ(E ′, E).
Consequently, every σ(E ′, E ′′)-sequentially compact subset of E ′ is also µ(E ′, E)-
sequentially compact.

(ii) If additionally E has the Grothendieck property, then
(

E ′, µ(E ′, E)
)

and
(

E ′, σ(E ′, E ′′)
)

have the same sequentially compact sets. Moreover, the space

H :=
(

E ′, µ(E ′, E)
)

has the Schur property.

Proof. (i) (cf. [14, 19.18(c)]) Suppose for a contradiction that χn 6→ 0 in µ(E ′, E).
Then there is a standard µ(E ′, E)-neighborhood [K; ε] = {χ ∈ E ′ : |χ(x)| < ε ∀x ∈
K} of zero in E ′, where K is an absolutely convex compact subset of Ew, which
does not contain a subsequence {χnk

}k∈N of {χn}n∈N. Therefore, for every k ∈ N

one can find xk ∈ K such that
∣

∣χnk
(xk)

∣

∣ ≥ ε. Since Ew is sequentially angelic, K is
sequentially compact and hence we can assume that xk weakly converges to x ∈ K.
Then the (sDP ) property implies

ε ≤
∣

∣χnk
(xk)

∣

∣ ≤
∣

∣χnk
(x)

∣

∣ +
∣

∣χnk
(xk − x)

∣

∣ → 0,

a contradiction.
(ii) By (i) we have to show only that every sequentially compact subset K of

(

E ′, µ(E ′, E)
)

is also σ(E ′, E ′′)-sequentially compact. Let S = {χn : n ∈ N} be a
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sequence in K. Then there is a subsequence S ′ = {χnk
: k ∈ N} of S which µ(E ′, E)-

converges to some χ ∈ K. Then χnk
→ χ in σ(E ′, E) and hence also in σ(E ′, E ′′) by

the Grothendieck property. Thus K is σ(E ′, E ′′)-sequentially compact.
To prove that H has the Schur property let S be a σ(E ′, E)-null sequence. Then

S is a σ(E ′, E ′′)-null sequence by the Grothendieck property. Therefore, by (i), S
converges to zero in µ(E ′, E). Thus H has the Schur property. �

Let E be a locally convex space. Recall that a subset A of E ′ is called E-limited
if

sup
{

|χ(xn)| : χ ∈ A
}

→ 0

whenever {xn}n∈N is a weakly null sequence in E. It is well known (see [25, Exer-
cise 3.12]) that a Banach space E has the Schur property if and only if the closed
unit ball of the dual space E ′ is an E-limited set. Below we generalize this result to
barrelled spaces.

Proposition 3.4. A barrelled space (E, τ) has the Schur property if and only if
every σ(E ′, E)-bounded subset of E ′ is an E-limited set.

Proof. Assume that E has the Schur property. Let A be a σ(E ′, E)-bounded
subset of E ′ and let {xn}n∈N be a σ(E,E ′)-null sequence in E. Since E is barrelled
there is a τ -neighborhood U of zero in E such that A ⊆ U◦. For every ε > 0, by
the Schur property, there is an N ∈ N such that xn ∈ εU for every n > N . Then
|χ(xn)| = ε

∣

∣χ
(

(1/ε)xn

)
∣

∣ ≤ ε for every χ ∈ A and n > N. Thus A is E-limited.
Conversely, assume that every σ(E ′, E)-bounded subset of E ′ is an E-limited set.

Let xn → 0 in σ(E,E ′) and let U be an absolutely convex closed τ -neighborhood of
zero in E. Then there is an N ∈ N such that |χ(xn)| ≤ 1 for every χ ∈ U◦ and n >
N. So xn ∈ U◦◦ = U for every n > N . Thus xn → 0 in τ and E has the Schur
property. �

Recall that a Tychonoff space X is called an F -space if every cozero-set A in X
is C∗-embedded. For numerous equivalent conditions for a Tychonoff space X being
an F -space see [24, 14.25]. In particular, the Stone–Čech compactification βΓ of a
discrete space Γ is a compact F -space.

In general the Schur property does not imply weak respecting compactness. Using
the non-reflexivity of Banach spaces C(K), it is shown in [42, Example 6 (p. 267)] or
[14, Example 19.19] that the space H =

(

E ′, µ(E ′, E)
)

, where E = ℓ∞(N) = C(βN),
has the Schur property but does not weakly respect compactness. Below we generalize
this result with a different proof.

Proposition 3.5. Let K be an infinite compact F -space, E = C(K) and set
H :=

(

E ′, µ(E ′, E)
)

. Then:

(i) H is a complete space and has the Schur property;
(ii) H does not weakly respect compactness.

Proof. (i) The space H is complete by Exercise 3.41 of [18]. The Banach space E
has the (sDP ) property by Theorem 13.43 of [18] and has the Grothendieck property
by Corollary 4.5.9 of [10]. Proposition 3.108 of [18] implies that Ew is angelic. Thus
H has the Schur property by (ii) of Proposition 3.3.

(ii) Consider the closed unit ball B∗ in E ′. The Alaoglu theorem implies that
B∗ is a weakly compact subset of H . Now assuming that B∗ is a compact subset
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of H we apply Grothendieck’s theorem [25, Theorem 3.11] to get that B∗ is E-
limited. Therefore E has the Schur property by Proposition 3.4. But this contradicts
Proposition 2.14. Thus H does not weakly respect compactness. �

Valdivia [41] and Domanski and Drewnowski [13] proved independently that a
Fréchet space E does not contain ℓ1 if and only if every µ(E ′, E)-null sequence in E ′

is strongly convergent to zero. In [39, Theorem 2.1] Ruess generalized this result.

Proposition 3.6 (Ruess). Let E be a locally complete lcs whose every separable
bounded set is metrizable. Then E does not contain an isomorphic copy of ℓ1 if and
only if every µ(E ′, E)-null sequence in E ′ is strongly convergent to zero.

It is well known (see [30, Proposition 11.6.2]) that an lcs E is Montel if and only if
it is a quasi-complete quasibarrelled (equivalently, barrelled see [35, Corollary 5.1.10])
space and every equicontinuous set in E ′ is relatively compact for β(E ′, E). It is
proved in [6] (see also [5, Theorem 9]) that a Fréchet space E is Montel if and only
if every σ(E ′, E)-convergent sequence in E ′ is β(E ′, E)-convergent. Using Proposi-
tion 3.6 we obtain a similar result for a wider class of locally convex spaces.

Proposition 3.7. Let E be an lcs whose every separable bounded set is metriz-
able. Then E is a Montel space if and only if the following three conditions hold:

(i) E is a quasi-complete quasibarrelled space;
(ii) every σ(E ′, E)-convergent sequence in E ′ is β(E ′, E)-convergent;
(iii) E has the Schur property.

Proof. Assume that E is a Montel space. Then E is a quasi-complete bar-
relled space by Proposition 11.6.2 of [30], and E and E ′

β have the Schur property by
Proposition 2.3. The reflexivity of E and the Schur property of E ′

β imply (ii).
Conversely, assume that (i)–(iii) hold. Since E is quasibarrelled it is sufficient to

show that E is semi-Montel. To this end, we have to prove that every closed bounded
subset A of E is compact. Since E is quasi-complete, it suffices to show that A is
precompact, see Theorem 3.4.1 of [34]. Suppose for a contradiction that A is not
precompact. Then, by Theorem 5 of [3], there is a neighborhood U of zero and a
sequence S = {an : n ∈ N} in A such that

(3.1) an − am 6∈ U for every n 6= m.

Proposition 3.6 and (ii) imply that E does not contain ℓ1. Therefore, by the Rosenthal
property (Proposition 2.11), S contains a weakly Cauchy subsequence {ank

: k ∈ N}.
In particular ank+1

− ank
→ 0 in the weak topology, and hence ank+1

− ank
→ 0 in

the topology of E by the Schur property. But this contradicts (3.1). Thus E is
semi-Montel. �

The next proposition extends (a) of Proposition 11 in [5] and has a similar proof.

Proposition 3.8. Let E be a c0-barrelled quasi-complete Mackey space whose
every bounded set is metrizable. If E has the Schur property, then also

(

E ′, µ(E ′, E)
)

has the Schur property. The converse holds if U◦ is σ(E ′, E)-sequentially compact
for every neighborhood U of zero in E, in particular, if E is separable.

Proof. It follows from Theorem 1.2 and Proposition 2.11 that E weakly re-
spects compactness. Now Proposition 2.12 implies that (E ′, µ(E ′, E)) is a subspace
of Ck(E,F), so µ(E ′, E) = τk|E′.

Let {χn : n ∈ N} be a σ(E ′, E)-null sequence in E ′. Then the c0-barrelledness of
E implies that the sequence S = {χn : n ∈ N}∪{0} is equicontinuous. So S ⊆ U◦ for
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some neighborhood U of zero in E. Since σ(E ′, E)|U◦ = τk|U◦ by Proposition 9.3.8
of [28], we obtain σ(E ′, E)|U◦ = µ(E ′, E)|U◦. Thus χn → 0 in µ(E ′, E).

Now assume that U◦ is σ(E ′, E)-sequentially compact for every neighborhood U
of zero in E and every σ(E ′, E)-convergent sequence in E ′ is µ(E ′, E)-convergent.
Suppose for a contradiction that E is not a Schur space. So there is a weakly null
sequence S = {xn : n ∈ N} in E such that xn 6→ 0 in E. Hence there exists an
absolutely convex closed neighborhood U of zero in E such that S \ U is infinite.
By passing to a subsequence we can assume that S ∩ U = ∅. For every n ∈ N

choose χn ∈ U◦ such that |χn(xn)| > 1. Since U◦ is σ(E ′, E)-sequentially compact,
by passing to a subsequence if needed, we can additionally assume that χn weakly
converges to some χ ∈ U◦. By the Schur property we obtain χn → χ in µ(E ′, E).
Since the set K = acx(S) is weakly compact by Theorem 5.1.11 of [35], it follows
that

An := sup
{

|(χn − χ)(x)| : x ∈ K
}

→ 0 at n → ∞.

Therefore

1 <
∣

∣χn(xn)
∣

∣ ≤
∣

∣(χn − χ)(xn)
∣

∣+
∣

∣χ(xn)
∣

∣ ≤ An +
∣

∣χ(xn)
∣

∣ → 0,

a contradiction. �
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