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Abstract. Let X be a metric space and write K(X) for the family of non-empty compact
subsets of X equipped with the Hausdorff metric. The lower and upper box dimensions, denoted
by dimB(E) and dimB(E), of a subset E of X are defined by

dimB(E) = lim inf
r↘0

logNr(E)

− log r
, dimB(E) = lim sup

r↘0

logNr(E)

− log r
,

where Nr(E) is the smallest number of closed balls with centres in E and radii equal to r that are
needed to cover E. In the 1980’s, Gruber proved that the box counting function

(∗) logNr(C)

− log r

of a typical compact set C ∈ K(X) diverges in the worst possible way as r ↘ 0. For example,
Gruber proved that dimB(C) = 0 and dimB(C) = N for a typical C ∈ K(RN ).

In this paper we prove that the box counting function (∗) of a typical compact set C ∈ K(X) is
spectacularly more irregular than suggested by Gruber’s result. In particular, we show the following
surprising result: not only is the box counting function (∗) of a typical compact set C ∈ K(X)

divergent as r ↘ 0, but it is so irregular that it remains spectacularly divergent as r ↘ 0 even after
being “averaged” or “smoothened out” using powerful averaging methods including, for example, all
higher order Hölder and Cesaro averages. As an application of our results we obtain strengthened
versions of Gruber’s result.

1. Introduction

Recall that a subset E of a metric space M is called co-meagre if its complement
is meagre, and we say that a typical element x ∈ M has property P if the set
E = {x ∈M | x has property P} is co-meagre, see Oxtoby [Ox] for more details.

Let (X, d) be a metric space and write K(X) for the set of non-empty compact
subsets of X, i.e.

K(X) =
{
C ⊆ X | C is compact and non-empty

}
.

We will always equip K(X) with the Hausdorff metric dH . It is well-known that if X
is complete, then K(X) is a complete metric space when equipped with the Hausdorff
metric.

The lower and upper box dimensions of a subset E of X, denoted by dimB(E)
and dimB(E), are defined by

dimB(E) = lim inf
r↘0

logNr(E)

− log r
, dimB(E) = lim sup

r↘0

logNr(E)

− log r
,
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where

Nr(E) = inf{|B| | B is a family of closed balls
with centres in E and radii equal to r that covers E}.

If dimB(E) = dimB(E), then we say that the box dimension of E exists and we denote
the common value of dimB(E) and dimB(E) by dimB(E). The reader is referred to
[Fa] for an excellent and detailed discussion of box dimensions.

The purpose of this paper is to investigate the box dimensions, and, in particular,
certain average box dimensions, of a typical element of K(X), i.e. of a typical compact
subset of X. Box dimensions of typical compact sets have been investigated earlier.
Indeed, in 1989, Gruber [Gr] proved the following result.

Theorem A. [Gr] Let X be a metric space. For s ≥ 0, write

Ks(X) = {C ∈ K(X) | dimB(C) ≥ s},

and put
∆(X) = sup{s ≥ 0 | Ks(X) = K(X)}.

For a typical compact set C ∈ K(X), we have

dimB(C) = 0, dimB(C) ≥ ∆(X).

In particular, by putting X = RN , we obtain the following corollary from Theo-
rem A.

Corollary B. [Gr] For a typical compact set C ∈ K(RN), we have

dimB(C) = 0, dimB(C) = N.

In this paper we investigate the box dimensions of a typical compact subsets
further. In particular, we study the following two problems.

(1) Average dimensions. Theorem A and Corollary B exhibit the same dichotomy,
namely, the lower box dimension of a typical compact set is as small as possible and
the upper box dimension of a typical compact set is (in many cases) as big as possible.
Other studies [MyRu,Ro] of typical compact sets show the same dichotomy. For
example, [Ro] proves that a typical compact metric space (belonging to the family of
all compact metric spaces equipped with the Gromov–Hausdorff metric) has lower box
dimension equal to 0 and upper box dimension equal to∞, and [MyRu] improves the
lower bound ∆(X) in Theorem A for the upper box dimension of a typical compact
subset of a metric space X. The purpose of this paper is to analyse this intriguing
dichotomy in more detail. In order to do so, we introduce the following notation.
Namely, for a subset E of a metric space X, we define the box counting function
fE : (0,∞)→ [0,∞] of E by

(1.1) fE(t) =
logNe−t(E)

− log e−t
=

logNe−t(E)

t
;

we note the function Nr(E) is often referred to as the box counting function of E—
however, the function fE(t) is more fundamental for this work, and we will therefore
refer to this function as the box counting function of E. Using this notation, the box
dimensions of E are now given by

(1.2) dimB(E) = lim inf
t→∞

fE (t), dimB(E) = lim sup
t→∞

fE(t),
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and Theorem A therefore shows that (in many cases) the box counting function fC(t)
of a typical compact set C ∈ K(X) diverges in the worst possible way as t → ∞.
In this paper we will prove that the behaviour of the box counting function fC(t)
of a typical compact set C ∈ K(X) is spectacularly more irregular than suggested
by this result and the analogous results in [MyRu,Ro]. Namely, there are standard
techniques, known as averaging systems, that (at least in some cases) can assign
limiting values to divergent functions (the precise definitions will be given below),
and the purpose of this paper is to show the following surprising result: not only
is the box counting function fC(t) of a typical compact set C divergent as t → ∞,
but it is so irregular that it remains spectacularly divergent as t → ∞ even after
being “averaged” or “smoothened out” using powerful averaging systems including,
for example, all higher order Hölder and Cesaro averages. Indeed, if X = RN , then
we show that for a typical compact set C ∈ K(Rn), all higher order lower Hölder
averages of the box counting function fC(t) are as small as possible, namely, equal
to 0, and all higher order upper Hölder averages of the box counting function fC(t)
are as big as possible, namely, equal to N . This is the statement of the special case
of our main results presented below.

Theorem 1.1. Special case of Theorem 2.2 and Theorem 3.1. For a compact
subset C of RN , we define the n’th order Hölder averages, denoted by Hn(C; t), of
the box counting function fC(t) of C inductively by

H0(C; t) = fC(t), Hn(C; t) =
1

t

ˆ t

1

Hn−1(C; s) ds,

for n ∈ N, and we define the lower and upper n’th order Hölder average box dimen-
sions of C by

dimH
B,n(C) = lim inf

t→∞
Hn(C; t), dim

H

B,n(C) = lim sup
t→∞

Hn(C; t).

A typical compact set C ∈ K(RN) now satisfies

dimH
B,n(C) = 0, dim

H

B,n(C) = N,

for all n ∈ N ∪ {0}.
We emphasise that Theorem 1.1 is merely a special case of the more general

results presented in Theorem 2.2 and Theorem 3.1. It is instructive to compare the
statement in Theorem 1.1 with Gruber’s Corollary B. While Corollary B shows the
box counting function fC(t) of a typical C ∈ K(RN) diverges in the worst possible
way, Theorem 1.1 shows that all higher order Hölder averages of fC(t) also diverge
in the worst possible way.

(2) Local dimensions. In general, the lower bound ∆(X) for the upper box
dimension dimB(C) of a typical compact set C ∈ K(X) in Theorem A is not sharp,
i.e., in general, it is not true that dimB(C) = ∆(X) for a typical compact set C ∈
K(X). Indeed, in general, it is not even true that there is a positive number D(X)
such that dimB(C) = D(X) for a typical compact set C ∈ K(X). For example, if we
let Q = [0, 1]2 denote the closed unit cube and I = [2, 3]× {0}, and put

X = Q ∪ I,
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then K(Q) and K(I) are non-empty and open subsets of K(X), and it follows easily
from Theorem A that

dimB(C) =

{
2 for a typical compact set C ∈ K(Q);
1 for a typical compact set C ∈ K(I).

In particular, this shows that there is no number D(X) such that dimB(C) = D(X)
for a typical compact set C ∈ K(X). Instead, we show that there is a “local dimension
function” ∆(X; ·) : X → R such that if X is an arbitrary separable metric space, then

dimB(C) ≥ sup
x∈X

∆(X;x)

for a typical compact set C ∈ K(X), see Corollary 2.6. More importantly, we
also show that for a large class of separable metric spaces X, the lower bound
supx∈X ∆(X;x) for the upper box dimension dimB(C) of a typical compact set
C ∈ K(X) is the exact value of dimB(C), i.e. we show that for a large class of
separable metric spaces X we have

dimB(C) = sup
x∈X

∆(X;x)

for a typical compact set C ∈ K(X), see Corollary 2.7. In fact, we prove more a
general version of this result involving average box dimensions defined using arbitrary
averaging systems, see Theorem 2.2 and Corollary 2.4.

2. Statements of results

2.1. Average dimension. We start by recalling the definition of an averaging
(or summability) system; the reader is referred to Hardy’s classical text [Ha] for a
systematic treatment of averaging systems.

Definition. Averaging system. An averaging system is a family Π = (Πt)t≥t0
with t0 > 0 such that:

(i) Πt is a finite Borel measure on [t0,∞);
(ii) Πt has compact support;
(iii) The Consistency Condition: If f : [t0,∞) → [0,∞) is a positive measurable

function and there is a real number a such that f(t) → a as t → ∞, then´
f dΠt → a as t→∞.

If f : [t0,∞) → [0,∞) is a positive measurable function, then we define lower and
upper Π-average of f by

AΠf = lim inf
t→∞

ˆ
f dΠt

and

AΠf = lim sup
t→∞

ˆ
f dΠt,

respectively.

Applying averaging systems to the box counting function fE(t) in (1.1) leads to
our key definition, namely, the definition of average box dimensions.

Definition. Average box dimension. Let X a metric space and let Π = (Πt)t≥t0
be an averaging system. For a subset E ofX, we define the lower and upper Π-average
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box dimensions of E by

dimΠ,B(E) = AΠfE = lim inf
t→∞

ˆ
logNe−s(E)

s
dΠt(s)

and

dimΠ,B(E) = AΠfE = lim sup
t→∞

ˆ
logNe−s(E)

s
dΠt(s),

respectively.

We note that box dimensions are, in fact, average box dimensions. Indeed, if X
a metric space and we let Π denote the average system defined by Π = (δt)t≥1 (where
δt denotes the Dirac measure concentrated at t), then clearly

(2.1) dimΠ,B(E) = dimB(E), dimΠ,B(E) = dimB(E)

for all subsets E of X. Below we list some basic properties (and lack of properties)
of average box dimensions.

Proposition 2.1. Basic properties of average dimensions. Let X a metric space
and let Π = (Πt)t≥t0 be an averaging system.

(1) dimΠ,B and dimΠ,B are monotone.
(2) dimΠ,B and dimΠ,B are finitely sub-stable.
(3) dimΠ,B and dimΠ,B are, in general, not finitely stable.

Recall, that if D : K(X) → R is a function, then D is called monotone if
D(A) ≤ D(B) for all A,B ∈ K(X) with A ⊆ B; D is called finitely sub-stable
if max(D(A), D(B)) ≤ D(A∪B) for all A,B ∈ K(X); and D is called finitely stable
if max(D(A), D(B)) = D(A ∪B) for all A,B ∈ K(X).

Proof. (1)–(2) These statements are clear.
(3) It is well-known that dimB (and hence, in particular, dimΠ,B) is not, in

general, finitely stable, see, for example, [Fa]. Finally, in Section 4 we present an
example showing that dimΠ,B is not, in general, finitely stable. �

Note that while dimΠ,B, in general, is not finitely stable, it is nevertheless true
(and well-known, see, for example [Fa]) that dimB is finitely stable.

2.2. Average box dimensions of typical compact sets: The main result.
We now state the main result in the paper, namely, Theorem 2.2 below. This result
shows that the behaviour of the box counting function fC(t) of a typical set compact
C ∈ K(X) is so irregular that remains divergent as t→∞ even after being “averaged”
using arbitrary averaging systems.

Theorem 2.2. Let X a metric space and let Π = (Πt)t≥t0 be an averaging
system. For x ∈ X and r, s > 0, write

K(X;x, r) =
{
C ∈ K(C) | C ⊆ B(x, r)

}
,

KΠ,s(X;x, r) =
{
C ∈ K(C) | C ⊆ B(x, r), dimΠ,B(C) ≥ s

}
,

and let

∆Π(X;x, r) = sup
{
s ≥ 0 | KΠ,s(X;x, r) = K(X;x, r)

}
,

∆Π(X;x) = sup
r>0

∆Π(X;x, r).



146 Lars Olsen

(1) For a typical C ∈ K(X), we have

dimΠ,B(C) = 0.

(2) If, in addition, X is separable, then for a typical C ∈ K(X), we have

dimΠ,B(C) ≥ sup
x∈C

∆Π(X;x).

The proof of Theorem 2.2 is given in Sections 5–7. Section 5 contains various
technical auxiliary results. The proof of Theorem 2.2.(1) is given in Section 6 and
the proof of Theorem 2.2.(2) is given in Section 7.

Below we present several corollaries and applications of Theorem 2.2. In par-
ticular, we consider the following two applications of Theorem 2.2. In Section 2.3
we study several special cases of Theorem 2.2 where the lower bound for the upper
average dimension of a typical compact set provides the exact value and/or can be
computed explicitly, and in Section 2.4 we apply Theorem 2.2 to the average system
Π = (δt)t≥1 leading to strengthened versions of Gruber’s Theorem A.

2.3. Average box dimensions of typical compact sets: Some corollaries.
We will now show that the lower bound for the upper average box dimension of a
typical compact set in Theorem 2.2 is sharp for a certain class of metric spaces. In
order to define this class of metric spaces, we introduce the following terminology.

Definition. Π-homogenous. Let Π = (Πt)t≥t0 be an averaging system. A metric
spaces X is called Π-homogenous if dimΠ,B(G) = dimΠ,B(X) for every non-empty
open subset G of X.

Before stating our next result, we first note that many natural spaces are Π-
homogenous.

Proposition 2.3. Let Π be an averaging system.
(1) If X ⊆ RN is quasi-self-similar from above, then X is Π-homogenous; recall,

that a metric space (X, d) is called quasi-self-similar from above if there are
constants R,m > 0 such that for all x ∈ X and all 0 < r < R there is
a function ϕ : X → B(x, r) such that if ρ > 0 and z ∈ X, then there is
ζ ∈ B(x, r) with B(ζ,m−1ρr) ⊆ ϕ(B(z, ρ)) ⊆ B(ζ,mρr), see [O’Ne, p. 238;
HaYa, Definition 1, p. 289].

(2) If X ⊆ RN is self-conformal and satisfies the Open Set Condition, then X is
Π-homogenous.

(3) If X ⊆ RN satisfies X ⊆ X◦−, then X is Π-homogenous.

Proof. (1) Let B be a ball in X. Since X is quasi-self-similar from above there
is a bi-Lipschitz function f from X into B. Since f is bi-Lipschitz, it is not difficult
to show that there is a constant c > 1 such that

(2.2) Nr(X) ≤ cN 1
c
r(f(X))

for all r > 0. Also, since f(X) is a subset of Euclidean space RN , it is not difficult
to see that there is a further constant k > 1 such that

(2.3) Nr(f(X)) ≤ kNcr(f(X))

for all r > 0. Combining (2.2) and (2.3), we conclude that

Nr(X) ≤ ckNr(f(X))
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for all r > 0. This clearly implies that dimΠ,B(X) ≤ dimΠ,B(f(X)), and using the
fact that B ⊆ X and f(X) ⊆ B, we therefore conclude that dimΠ,B(X) = dimΠ,B(B).

(2)–(3) These statement follow immediately from (1). �

The next result says that if X is a finite union of Π-homogenous spaces, then
the lower bound for the upper average box dimension of a typical compact set in
Theorem 2.2 is the exact value.

Corollary 2.4. Let (X, d) be a metric space withX =
⋃n
i=1 Xi where infx∈Xi,y∈Xj

d(x, y) > 0 for all i, j with i 6= j, and let Π = (Πt)t≥t0 be an averaging system. Assume
that the following three conditions are satisfied:

(i) Xi is Π-homogenous for all i;
(ii) Closed and bounded subsets of X are compact;
(iii) If n > 1, then assume, in addition, that dimΠ,B is finitely stable.

Then the following statements hold.
(1) For all C ∈ K(X), we have

0 ≤ dimΠ,B(C) ≤ dimΠ,B(C) ≤ sup
C∩Xi 6=∅

dimΠ,B(Xi).

In particular, if the box dimension of Xi exists for all i, then for all C ∈ K(X),
we have

0 ≤ dimΠ,B(C) ≤ dimΠ,B(C) ≤ sup
C∩Xi 6=∅

dimB(Xi).

(2) If, in addition, X is separable, then for a typical C ∈ K(X), we have

dimΠ,B(C) = 0, dimΠ,B(C) = sup
C∩Xi 6=∅

dimΠ,B(Xi).

In particular, if X is separable and the box dimension of Xi exists for all i,
then for a typical C ∈ K(X), we have

dimΠ,B(C) = 0, dimΠ,B(C) = sup
C∩Xi 6=∅

dimB(Xi).

Proof. (1) It is clear that 0 ≤ dimΠ,B(C) ≤ dimΠ,B(C) and it follows from
(iii) that dimΠ,B(C) = dimΠ,B(

⋃
C∩Xi 6=∅C ∩ Xi) = supC∩Xi 6=∅ dimΠ,B(C ∩ Xi) ≤

supC∩Xi 6=∅ dimΠ,B(Xi).
(2) It clearly suffices to show that if C ∈ K(X), then

(2.4) sup
C∩Xi 6=∅

dimΠ,B(Xi) ≤ sup
x∈C

∆Π(X;x).

To prove (2.4) it clearly suffices to show that:

(2.5) if i = 1, . . . , n and x ∈ Xi, then dimΠ,B(Xi) ≤ ∆Π(X;x).

We will now prove (2.5). We therefore fix i and x ∈ Xi. For brevity write
s = dimΠ,B(Xi), and note that in order to prove the inequality s ≤ ∆Π(X;x), it
suffices to show that:

(2.6) there is r > 0 such that s ≤ ∆Π(X;x, r).

In order to prove prove (2.6), it is clearly sufficient to show that:

(2.7) there is r > 0 such that KΠ,s(X;x, r) = K(X;x, r).

We will now prove (2.7). First note that we may choose 0 < r < mini 6=j dist(Xi,

Xj). We now claim that KΠ,s(X;x, r) = K(X;x, r). In order to prove this we fix a
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compact set K with K ⊆ B(x, r) and δ > 0. We must now find C ∈ KΠ,s(X;x, r)

with dH(K,C) < δ. First choose a finite subset E of B(x, r) such that dH(K,E) < δ
3
.

Next, fix y ∈ E and note that since y ∈ E ⊆ B(x, r), there is a point xy ∈ B(x, r)
with d(y, xy) <

δ
3
where d denotes the metric in X. Finally, since xy ∈ B(x, r),

we can choose ry > 0 such that B(xy, 2ry) ⊆ B(x, r) and 2ry <
δ
3
. Now put C =⋃

y∈E B(xy, ry), and note that it follows from Condition (ii) that C is compact. Since
E is non-empty we can find y0 ∈ E. We now have B(xy0 , ry0) ⊆ B(x, r) ⊆ Xi, and
we therefore conclude from Condition (i) and the definition of C that

C =
⋃
y∈E B(xy, ry) ⊆

⋃
y∈E B(xy, 2ry) ⊆ B(x, r) ⊆ B(x, r),

dimΠ,B(C) ≥ dimΠ,B(
⋃
y∈E B(xy, ry)) ≥ dimΠ,B(B(xy0 , ry0)) = dimΠ,B(Xi),

whence C ∈ KΠ,s(X;x, r). We also have

dH(K,C) ≤ dH(K,E) + dH(E,
⋃
y∈E{xy}) + dH(

⋃
y∈E{xy},

⋃
y∈E B(xy, ry))

< δ
3

+ δ
3

+ δ
3

= δ.

This completes the proof of (2.7). �

IfX is a subset of a Euclidean space, then the statement in Corollary 2.4 simplifies
considerably; this is the statement of the next corollary.

Corollary 2.5. Let X be a subset of RN and let Π = (Πt)t≥t0 be an averaging
system. Assume that X is Π-homogenous. Then the following statements hold.

(1) For all C ∈ K(X), we have

0 ≤ dimΠ,B(C) ≤ dimΠ,B(C) ≤ dimΠ,B(X).

In particular, if the box dimension of X exists then for all C ∈ K(X), we
have

0 ≤ dimΠ,B(C) ≤ dimΠ,B(C) ≤ dimB(X).

(2) For a typical C ∈ K(X), we have

dimΠ,B(C) = 0, dimΠ,B(C) = dimΠ,B(X).

In particular, if the box dimension of X exists, then for a typical C ∈ K(X),
we have

dimΠ,B(C) = 0, dimΠ,B(C) = dimB(X).

Proof. This follows immediately from Corollary 2.4. �

2.4. Box dimensions of typical compact sets. Since the average dimensions
associated with the average system Π = (δt)t≥1 equal the usual box dimensions (see
(2.1)), applying Theorem 2.2 to the average system Π = (δt)t≥1 leads to a strength-
ened version of Gruber’s result in Theorem A; this is the content of Corollary 2.6
below.

Corollary 2.6. Let X a metric space For x ∈ X and r, s > 0, write

K(X;x, r) = {C ∈ K(C) | C ⊆ B(x, r)},

Ks(X;x, r) = {C ∈ K(C) | C ⊆ B(x, r), dimB(C) ≥ s},
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and let

∆(X;x, r) = sup{s ≥ 0 | Ks(X;x, r) = K(X;x, r)},
∆(X;x) = sup

r>0
∆(X;x, r).

For a typical C ∈ K(X), we have

dimB(C) = 0.

If, in addition, X is separable, then for a typical C ∈ K(X), we have

dimB(C) ≥ sup
x∈C

∆(X;x).

Proof. Let Π denote the average system defined by Π = (δt)t≥1. Since dimΠ,B(E)

= dimB(E) and dimΠ,B(E) = dimB(E) for all subsets E of X (see (2.1)), the desired
statement follows immediately from applying Theorem 2.2 to Π = (δt)t≥1. �

Note that if ∆(X) denotes the number in Theorem A and ∆(X;x) denotes the
number in Corollary 2.6, then clearly

sup
x∈C

∆(X;x) ≥ ∆(X)

for all compact subsets C of X, and Corollary 2.6 is therefore a strengthening of
Theorem A. It is also instructive to apply Corollary 2.4 to the average system Π =
(δt)t≥1. This leads to exact formulas for the box dimensions of typical compact
subsets of finite unions of homogenous subsets of RN , and is the content of the next
result.

Corollary 2.7. Let (X, d) be a subset ofRN withX =
⋃n
i=1Xi where infx∈Xi,y∈Xj

d(x, y) > 0 for all i, j with i 6= j. Assume that dimB(G) = dimB(Xi) for all i and all
non-empty open subsets G of Xi. Then the following statements hold.

(1) For all C ∈ K(X), we have

0 ≤ dimB(C) ≤ dimB(C) ≤ sup
C∩Xi 6=∅

dimB(Xi).

(2) If, in addition, X is separable, then for a typical C ∈ K(X), we have

dimB(C) = 0, dimB(C) = sup
C∩Xi 6=∅

dimB(Xi).

Proof. Let Π denote the average system defined by Π = (δt)t≥1. Since dimΠ,B(E)

= dimB(E) and dimΠ,B(E) = dimB(E) for all subsets E of X (see (2.1)) and the
upper box dimension is finitely stable (see [Fa]), the desired statement follows imme-
diately from applying Corollary 2.4 to Π = (δt)t≥1. �

As above, we note that Corollary 2.7 is a strengthening of Gruber’s Theorem A.
Corollary 2.7 is, in fact, in many cases strictly stronger than Gruber’s Theorem A.
For example, if we let Q = [0, 1]2 and I = [2, 3] × {0}, and put X = Q ∪ I, then it
follows from Gruber’s Theorem A that

dimB(C) ≥ 1

for a typical C ∈ K(X), whereas Corollary 2.7 provides the exact value for the upper
box dimension dimB(C) of a typical compact set C ∈ K(X), namely, Corollary 2.7
shows that

dimB(C) =

{
2 if C ∩Q 6= ∅;
1 if C ∩Q = ∅
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for a typical C ∈ K(X).
In Sections 3–4, we present several applications of Theorem 2.2 to two classical

averaging methods Π, namely, Hölder and Cesaro averages.

3. Hölder and Cesaro averages of the box
dimension of a typical compact set

Two of the most commonly used averaging method are Hölder averages and
Cesaro averages. We will now define these average methods and apply them to the
box counting function fC(t) of a compact set C. We first recall the definitions of
the Hölder and Cesaro averages. For a > 0 and a measurable function f : (a,∞) →
[0,∞), we define Mf : (a,∞)→ [0,∞) by

(Mf)(t) =
1

t

ˆ t

a

f(s) ds.

For a positive integer n, we now define the lower and upper n’th order Hölder averages
of f by

Hnf = lim inf
t→∞

(Mnf)(t), Hnf = lim sup
t→∞

(Mnf)(t).

The Cesaro averages are defined as follows. First, we define If : (a,∞)→ [0,∞) by

(If)(t) =

ˆ t

a

f(s) ds.

For a positive integer n, we now define the lower and upper n’th order Cesaro averages
of f by

Cnf = lim inf
t→∞

n!

tn
(Inf)(t), Cnf = lim sup

t→∞

n!

tn
(Inf)(t).

It is well-known that the Hölder and Cesaro averages satisfy the following inequalities,
namely,

lim inf
t→∞

f(t) = H0f ≤ H1f ≤ H2f ≤ . . . ≤ H2f ≤ H1f ≤ H0f = lim sup
t→∞

f(t),

lim inf
t→∞

f(t) = C0f ≤ C1f ≤ C2f ≤ . . . ≤ C2f ≤ C1f ≤ C0f = lim sup
t→∞

f(t).
(3.1)

It is also well-known that the Hölder and Cesaro averages are averaging methods in
the sense of the definition in Section 2.1. Indeed, if we for a positive integer n, define
the averaging method ΠH

n = (ΠH
n,t)t≥a by

ΠH
n,t(B) =

1

(n− 1)! t

ˆ
[a,t]∩B

(log t− log s)n−1 ds

for Borel subsets B of [a,∞), then

Hnf = lim inf
t

ˆ
f dΠH

n,t, Hnf = lim sup
t

ˆ
f dΠH

n,t,

see, for example, [Ja, p. 675]. Similarly, if we for a positive integer n, define the
averaging method ΠC

n = (ΠC
n,t)t≥a by

ΠC
n,t(B) =

n

tn

ˆ
[a,x]∩B

(t− s)n−1 ds

then
Cnf = lim inf

t

ˆ
f dΠC

n,t, Cnf = lim sup
t

ˆ
f dΠC

n,t,
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see, for example, [Ha, pp. 110–111].
Using Hölder and Cesaro averages we can now introduce average Hölder and

Cesaro box dimensions by applying the definitions of the Hölder and Cesaro averages
to the function fE(t) =

logNe−t (E)

t
. This is the content of the next definition.

Definition. Average Hölder and Cesaro box dimensions. Let X be a metric
space. For a subset E of X, we define the lower and upper n’th order average Hölder
box dimension of E, denoted by dimH

B,n(E) and dim
H

B,n(E), as the lower and upper
n’th order Hölder average of the function fE(t) for t ≥ 1, i.e. we put

dimH
B,n(E) = HnfE, dim

H

B,n(E) = HnfE.

Similarly, we define the lower and upper n’th order average Cesaro box dimension of
E, denoted by dimC

B,n(E) and dim
C

B,n(E), by

dimC
B,n(E) = CnfE, dim

C

B,n(E) = CnfE.

The higher order average Hölder and Cesaro box dimensions form a double infinite
hierarchy in (at least) countably infnite many levels, namely, we have (using (3.1))

dimB(E) = dimH
B,0(E) ≤ dimH

B,1(E) ≤ . . .

≤ dim
H

B,1(E) ≤ dim
H

B,0(E) = dimB(E),

dimB(E) = dimC
B,0(E) ≤ dimC

B,1(E) ≤ . . .

≤ dim
C

B,1(E) ≤ dim
C

B,0(E) = dimB(E).

(3.2)

As an application of Corollary 2.5, we will now show that if X is a Π-homogenous
subset of RN , then the behaviour of a typical compact set C ∈ K(X) is so irregular
that not even the hierarchies in (3.2) formed by taking Hölder and Cesaro averages
of all orders are sufficiently powerful to “smoothen out” the behaviour of the box
counting function fC(t) as t→∞.

Theorem 3.1. Let X be a subset of RN . Assume that X is ΠH
n -homogenous

and ΠC
n -homogenous for all n ∈ N ∪ {0}. Then a typical compact set C ∈ K(X)

satisfies:

dimH
B,n(C) = 0, dim

H

B,n(C) = dim
H

B,n(X), dimC
B,n(C) = 0, dim

C

B,n(C) = dim
C

B,n(X),

for all n ∈ N∪{0}. In particular, if, in addition, the box dimension of X exists, then
a typical compact set C ∈ K(X) satisfies:

dimH
B,n(C) = dimC

B,n(C) = 0, dim
H

B,n(C) = dim
C

B,n(C) = dimB(X),

for all n ∈ N ∪ {0}.
Proof. This statement follows immediately from Corollary 2.5. �

4. An example

In order to illustrate the above definitions and concepts, we present and elaborate
on a simple and concrete example from [AAOPRR] of a (compact) subset X of R and
compute its box dimensions and its 1’st order Hölder average box dimensions. We
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construct the set X as follows. For i = 0, 1, 2, 3, 4, define the map Si : [0, 1] → [0, 1]
by Si(x) = 1

5
x+ i

5
. Let N1 = 1 and Nn = 2n−2 for n ≥ 2, and write

Σn =

{
{i1 . . . iNn | ij ∈ {0, 4} for all j} if n is even;
{i1 . . . iNn | ij ∈ {0, 2, 4} for all j} if n is odd,

i.e. Σn is the family of all finite strings i = i1 . . . iNn of length Nn with entries ij from
{0, 2, 4} if n is odd, and with entries ij from {0, 4} if n is even. For i = i1 . . . iNn ∈ Σn,
we write Si = Si1 ◦ · · · ◦ SiNn

. The set X is now defined by

(4.1) X =
⋂
n

⋃
i1∈Σ1,...,in∈Σn

Si1 ◦ · · · ◦ Sin([0, 1]).

The box dimensions of X and the 1’st order Hölder average box dimensions of X are
given by the following formulas from [AAOPRR].

Theorem 4.1. [AAOPRR] Let X be given by (4.1) and write a = log 2
log 5

and
b = log 3

log 5
. Then we have

dimB(X) = 2
3
a+ 1

3
b ≈ 0.51465,

dimH
B,1(X) = 2

2
3

3
a+

(
1− 2

2
3

3

)
b ≈ 0.54930,

dim
H

B,1(X) =
(

1− 2
2
3

3

)
a+ 2

2
3

3
b ≈ 0.56398,

dimB(X) = 1
3
a+ 2

3
b ≈ 0.59863.

It is instructive to present some numerical calculations illustrating the oscillatory
behaviour in the definitions of the dimensions dimB(X), dimH

B,1(X), dim
H

B,1(X) and
dimB(X). Write rn = 5−n and put πn = logNrn (X)

− log rn
. Since log rn+1

log rn
→ 1, it follows from

[Fa] that

(4.2) dimB(X) = lim inf
n

πn, dimB(X) = lim sup
n

πn,

and it follows from [AAOPRR] that

(4.3) dimH
B,1(X) = lim inf

n

1

n

n∑
i=1

πi, dim
H

B,1(X) = lim sup
n

1

n

n∑
i=1

πi.

Below we sketch the graphs of the sequences (πn)n and ( 1
n

∑n
i=1 πi)n illustrating their

oscillatory behaviour.
Finally, we show that dim

H

B,1 is not finitely stable. Specifically, we show that
there is a subset Y of R such that

(4.4) dim
H

B,1(X ∪ Y ) > max(dim
H

B,1(X), dim
H

B,1(Y ))

Indeed, let Y be any subset of [2, 3] such that the box dimension dimB(Y ) of Y exists
and equals dim

H

B,1(X). Next, write τn = logNrn (Y )
− log rn

, and note that since dist(X, Y ) =

1 > 0, an argument very similar to the proof of (4.3) shows that dim
H

B,1(X ∪
Y ) = lim supn

1
n

∑n
i=1 max(πi, τi). Finally, since τn → dimB(Y ) = dim

H

B,1(X) =

lim supm
1
m

∑m
i=1 πi and dimB(Y ) = dim

H

B,1(Y ), it now follows from the identity
dim

H

B,1(X ∪ Y ) = lim supn
1
n

∑n
i=1 max(πi, τi), using arguments similar to those in

[AAOPRR], that (4.4) holds. This concludes the example.
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Figure 4.1. The figure on the left shows the points (n, πn) for n ∈ {1, 2, 3, . . . , 213}, and the
figure on the right shows the points ( logn

log 2 , πn) for n ∈ {1, 2, 3, . . . , 2
13}. The two horizontal dashed

lines intersect the vertical axis at dimB(X) = lim infn πn = 2
3a + 1

3b ≈ 0.51465 and dimB(X) =

lim supn πn = 1
3a+

2
3b ≈ 0.59863, respectively.

Figure 4.2. The figure on the left shows the points (n, 1
n

∑n
i=1 πi) for n ∈ {1, 2, 3, . . . , 213},

and the figure on the right shows the points ( logn
log 2 ,

1
n

∑n
i=1 πi) for n ∈ {1, 2, 3, . . . , 213}. The two

horizontal dashed lines intersect the vertical axis at dimH
B,1(X) = lim infn

1
n

∑n
i=1 πi =

2
2
3

3 a+ (1−
2

2
3

3 )b ≈ 0.54930 and dim
H

B,1(X) = lim supn
1
n

∑n
i=1 πi = (1− 2

2
3

3 )a+ 2
2
3

3 b ≈ 0.56398, respectively.

5. Proof of Theorem 2.2: Preliminary results

In this section we collect some basic notation and a technical auxiliary lemma
that will be used extensively in Sections 6–7. We first recall the definition of an
r-covering set and the r-covering number Nr(E) of a subset E of a metric space.
Below we will write |Λ| for the cardinality of a set Λ.

Definition. r-covering set and Nr(E). Let (X, d) be a metric space. Fix r > 0
and E ⊆ X. We say that a subset Λ of X is an r-covering subset of E provided
Λ ⊆ E and or all x ∈ E, there is y ∈ Λ such that d(x, y) ≤ r. For r > 0 and E ⊆ X,
we define the r-covering number Nr(E) of E by

Nr(E) = inf{|Λ| | Λ is an r-covering subset of E}.

Next, we define the dual notion, namely, we provide the definition of an r-packing
set and the r-packing number Mr(E) of a subset E of a metric space.

Definition. r-separated set and Mr(E). Let (X, d) be a metric space. Fix r > 0
and E ⊆ X. We say the a subset Λ of X is an r-separated subset of E provided
Λ ⊆ E and for all x, y ∈ Λ with x 6= y, we have d(x, y) ≥ r. For r > 0 and E ⊆ X,
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we define the r-packing number Mr(E) of E by

Mr(E) = sup{|Λ| | Λ is an r-separated subset of E}.
The next results list some of the fundamental properties of the covering number

Nr(E) and the packing number Mr(E); these properties will be used extensively in
Sections 6–7.

Lemma 5.1. Let X be a metric space and r > 0.
(1) The function Nr : K(X)→ R is lower semi-continuous.
(2) The function Mr : K(X)→ R is upper semi-continuous.
(3) Nr(E) ≤Mr(E) for all subsets E of X.

Proof. This follows from [Gr, p. 152]. �

6. Proof of the lower bound: Theorem 2.2.(1)

The purpose of this section is to prove Theorem 2.2.(1). We first prove two
auxiliary lemmas. The first lemma (i.e. Lemma 6.1) is standard and is a version of
the reverse Fatou’s lemma.

Lemma 6.1. The reverse Fatou’s Lemma [St, Theorem 3.2.3]. Let (M, E , µ)
be a measure space and let (ϕn)n be a sequence of positive measurable functions
ϕn : M → [0,∞]. If

´
supn ϕn dµ <∞, then lim supn

´
ϕn dµ ≤

´
lim supn ϕn dµ.

Lemma 6.2. Let X be a metric space and let Π = (Πt)t≥t0 be an averaging
system. Let c ∈ R and t ≥ t0. Then the set{

C ∈ K(X)

∣∣∣∣ ˆ logMe−s(C)

s
dΠt(s) < c

}
is open in K(X).

Proof. Write

F = K(X) \
{
C ∈ K(X)

∣∣∣∣ ˆ logMe−s(C)

s
dΠt(s) < c

}
=

{
C ∈ K(X)

∣∣∣∣ ˆ logMe−s(C)

s
dΠt(s) ≥ c

}
.

We must now prove that F is closed. In order to show this, we fix a sequence (Cn)n
in F and C ∈ K(X) with Cn → C. We must now prove that C ∈ F , i.e. we must
show that

(6.1)
ˆ

logMe−s(C)

s
dΠt(s) ≥ c.

For brevity define functions ϕ, ϕn : [t0,∞)→ [0,∞) by ϕ(s) =
logMe−s (C)

s
and ϕn(s) =

logMe−s (Cn)

s
.

Claim 1. We have
´

supn ϕn dΠt <∞.

Proof of Claim 1. The measure Πt has compact support, and we can there-
fore choose T0 ≥ t0, such that supp Πt ⊆ [t0, T0]. Next, note that for all n and
all s ∈ [t0, T0] we have ϕn(s) =

logMe−s (Cn)

s
≤ logMe−s (X)

s
≤ logM

e−T0
(X)

t0
. Finally,

since supp Πt ⊆ [t0, T0], we now conclude that
´

supn ϕn dΠt =
´ T0

t0
supn ϕn dΠt ≤

logM
e−T0

(X)

t0
Πt([t0, T0]) <∞ This completes the proof of Claim 1.
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Claim 2. We have c ≤
´

lim supn ϕn dΠt.

Proof of Claim 2. Since Cn ∈ F , we conclude that c ≤
´ logMe−s (Cn)

s
dΠt(s) =´

ϕn dΠt for all n, whence

(6.2) c ≤ lim sup
n

ˆ
ϕn dΠt.

We also note that it follows from Claim 1 and Lemma 6.1 (i.e. the reverse Fatou’s
Lemma) that

(6.3) lim sup
n

ˆ
ϕn dΠt ≤

ˆ
lim sup

n
ϕn dΠt.

The desired result now follows from (6.2) and (6.3). This completes the proof of
Claim 2.

Claim 3. For all s ≥ t0, we have lim supn ϕn(s) ≤ ϕ(s).

Proof of Claim 3. This follows from the fact that Mr : K(X) → R is upper
semi-continuous for all r > 0 by Lemma 5.1. This completes the proof of Claim 3.

Finally, we deduce from Claim 2 and Claim 3 that

c ≤
ˆ

lim sup
n

ϕn dΠt ≤
ˆ
ϕdΠt =

ˆ
logMe−s(C)

s
dΠt(s).

This proves (6.1). �

We now turn towards the proof of Theorem 2.2.(1).

Proof of Theorem 2.2.(1). Since clearly dimΠ,B(C) ≥ 0, it suffices to prove that
the set

U = {C ∈ K(X) | dimΠ,B(C) > 0}
is meagre. For u > 0, write

Uu = {C ∈ K(X) | dimΠ,B(C)) > u},

and note that
U =

⋃
u∈Q, u>0

Uu.

It therefore suffices to show that Uu is meagre for all u ∈ Q with u > 0.
We therefore fix u ∈ Q with u > 0. Next, in order to show that Uu is meagre,

we note that it suffices to show that there is a countable family (Gk)k of open and
dense subsets of K(X) with ∩kGk ⊆ K(X) \ Uu. We will now construct the sets Gk.
For t ≥ t0, let

Lt =

{
C ∈ K(X)

∣∣∣∣ ˆ logMe−s(C)

s
dΠt(s) < u

}
,

and for a positive integer k, put

Gk =
⋃
t≥k

Lt.

Below we show that the family (Gk)k consists of open and dense subsets of K(X)
with

⋂
kGk ⊆ K(X) \ Uu; this is the contents of the following three claims.

Claim 1. The set Gn is open in K(X).
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Proof of Claim 1. Indeed, since it follows from Lemma 6.2 that Lt is open for
all t ≥ t0, we immediately conclude that Gk =

⋃
t≥k Lt is open. This completes the

proof of Claim 1.

Claim 2. The set Gk is dense in K(X).

Proof of Claim 2. Let C ∈ K(X) and let r > 0. We must now find K ∈ K(X)
such that dH(C,K) < r andK ∈ Gn. It is clear that we can choose a finite, and hence
compact, subsetK ofX such that dH(C,K) < r. We now show thatK ∈ Gk. Indeed,
since K is finite, we conclude that logMe−t (K)

t
→ 0 as t → ∞, and the consistency

condition therefore implies that
´ logMe−s (K)

s
dΠt(s) → 0 as t → ∞. We conclude

immediately from that there is a real number t ≥ n such that
´ logMe−s (K)

s
dΠt(s) ≤ u,

and so K ∈ Lt ⊆ Gn. This completes the proof of Claim 2.

Claim 3. We have
⋂
nGn ⊆ K(X) \ Uu.

Proof of Claim 3. Let C ∈
⋂
nGn. Hence for each positive integer n, we can find

tn ≥ n such that C ∈ Ltn , whence
´ logMe−s (C)

s
dΠtn(s) < u for all positive integers n,

and so lim inft→∞
´ logMe−s (C)

s
dΠt(s) ≤ lim infn

´ logMe−s (C)

s
dΠtn(s) ≤ u. It follows

immediately from this and Lemma 5.2 that dimΠ,B(C) = lim inft→∞
´ logNe−s (C)

s
dΠt(s)

≤ lim inft→∞
´ logMe−s (C)

s
dΠt(s) ≤ u, whence C ∈ K(X) \ Uu. This completes the

proof of Claim 3.

Combining Claims 1, 2 and 3, we now conclude that Uu is meagre. �

7. Proof of the upper bound: Theorem 2.2.(2)

The purpose of this section is to prove Theorem 2.2.(2). Recall that the notation
K(X;x, r), KΠ,s(X;x, r), ∆Π(x, r) and ∆Π(x) is defined in the statement of The-
orem 2.2. In addition, we will use the following notation throughout this section.
Namely, if (X, d) is a metric space and E,F ⊆ X, the we write

dist(E,F ) = inf
x∈E, y∈F

d(x, y).

We first prove three auxiliary lemmas.

Lemma 7.1. Let X be a metric space and let Π = (Πt)t≥t0 be an averaging
system. Let x, y ∈ X and ρ, σ > 0 and assume that B(x, ρ) ⊆ B(y, σ).

(1) Let s ≥ 0. If KΠ,s(X; y, σ) = K(X; y, σ), then KΠ,s(X;x, ρ) = K(X;x, ρ).
(2) We have ∆Π(x, ρ) ≥ ∆Π(y, σ).

Proof. (1) Let C ∈ K(X;x, ρ) and r > 0. We must now find K ∈ KΠ,s(X;x, ρ)
such that dH(C,K) < r. We first prove the following claim.

Claim 1. There is L ∈ K(X) such that L ⊆ B(x, ρ) and dH(C,L) < r
2
.

Proof of Claim 1. Let d denote the metric in X. Since C ∈ K(X;x, ρ), we
conclude that C ⊆ B(x, ρ). It follows from this that for each x ∈ C, we can choose
yx ∈ B(x, r) such that d(x, yx) <

r
2
. It is clear that C ⊆

⋃
x∈C B(yx,

r
2
), and it

therefore follows from the compactness of C that there is a finite (and hence compact)
subset E of C such that C ⊆

⋃
x∈E B(yx,

r
2
). Now put L = {yx |x ∈ E}, and note

that it follows from the construction of L that L ⊆ B(x, ρ) and dH(C,L) < r
2
. This

completes the proof of Claim 1.
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Let L ∈ K(X) be the set from Claim 1. Next, note that

l = dist(L,X \B(x, ρ)) > 0.

Since also L ⊆ B(x, ρ) ⊆ B(y, σ) ⊆ B(y, σ), we conclude that L ∈ K(X; y, σ) =

KΠ,s(X; y, σ), and we can therefore choose K ∈ KΠ,s(X; y, σ) with

dH(L,K) < min( r
2
, l

2
).

We now claim that

K ∈ KΠ,s(X;x, ρ),(7.1)
dH(C,K) < r.(7.2)

Proof of (7.1). K ∈ KΠ,s(X;x, ρ). We first show that K ⊆ B(x, r). Indeed, since
dH(L,K) < min( r

2
, l

2
) ≤ l

2
= 1

2
dist(L,X \ B(x, ρ)), we deduce that K ⊆ B(x, ρ) ⊆

B(x, ρ). Next, we show that dimΠ,B(K) ≥ s. However, this follows from the fact
that K ∈ KΠ,s(X; y, σ). This completes the proof of (7.1).

Proof of (7.2). dH(C,K) < r. This follows from the fact that dH(C,K) ≤
dH(C,L) + dH(L,K) < r

2
+ r

2
= r. This completes the proof of (7.2).

Finally, the desired statement follows from (7.1)–(7.2).

(2) This statement follows immediately from (1). �

Lemma 7.2. Let X be a metric space and let Π = (Πt)t≥t0 be an averaging
system. Let c ∈ R and t ≥ t0. Then the set{

C ∈ K(X)

∣∣∣∣ ˆ logNe−s(C)

s
dΠt(s) > c

}
is open in K(X).

Proof. Write

F = K(X) \
{
C ∈ K(X)

∣∣∣∣ ˆ logNe−s(C)

s
dΠt(s) > c

}
=

{
f ∈ K(X)

∣∣∣∣ ˆ logNe−s(C)

s
dΠt(s) ≤ c

}
.

We must now prove that F is closed. In order to show this, we fix a sequence (Cn)n
in F and C ∈ K(X) with Cn → C. We must now prove that f ∈ F , i.e. we must
show that

(7.3)
ˆ

logNe−s(C)

s
dΠt(s) ≤ c.

For brevity define functions ϕ, ϕn : [t0,∞)→ [0,∞) by ϕ(s) =
logNe−s (C)

s
and ϕn(s) =

logNe−s (C)

s
.

Claim 1. We have
´

lim infn ϕn dΠt ≤ c.

Proof of Claim 1. Since Cn ∈ F , we conclude that
´
ϕn dΠt =

´ logNe−s (C)

s
dΠt(s) ≤

c for all n, whence

(7.4) lim inf
n

ˆ
ϕn dΠt ≤ c.
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We also note that it follows from Fatou’s lemma that

(7.5)
ˆ

lim inf
n

ϕn dΠt ≤ lim inf
n

ˆ
ϕn dΠt.

The desired result now follows from (7.4) and (7.5). This competes the proof of
Claim 2.

Claim 2. For all s ≥ t0, we have ϕ(s) ≤ lim infn ϕn(s).

Proof of Claim 2. This follows from the fact that map Nr : K(X) → R is lower
semi-continuous for all r > 0 by Lemma 5.1. This completes the proof of Claim 2.

Finally, we deduce from Claim 1 and Claim 2 thatˆ
logNe−s(C)

s
dΠt(s) =

ˆ
ϕdΠt ≤

ˆ
lim inf

n
ϕn dΠt ≤ c .

This proves (7.3). �

Lemma 7.3. Let X be a metric space. If C1, . . . , Cn, K1, . . . , Kn ∈ K(X) and
L ∈ K(X) ∪ {∅}, then

dH(L ∪
⋃
iCi, L ∪

⋃
iKi) ≤ maxi dH(Ci, Ki).

Proof. This follows easily from the definition of the Hausdorff metric. �

We now turn towards the proof of Theorem 2.2.(2). The proof of Theorem 2.2.(2)
is based on Proposition 7.4 and Proposition 7.5 presented below.

Proposition 7.4. Let X be a metric space and let Π = (Πt)t≥t0 be an averaging
system. Let (xn)n be a sequence of points from X and let (rn)n be sequence of
positive real numbers.

(1) For n ∈ N, let

Tn = {C ∈ K(X) | for all i = 1, . . . , n, we have

dimΠ,B(C ∩B(xi, 5rn)) ≥ ∆Π(xi, rn)}.

Then the set Tn is co-meagre in K(X).
(2) Let

T = {C ∈ K(X) | for all n ∈ N and for all i = 1, . . . , n, we have

dimΠ,B(C ∩B(xi, 5rn)) ≥ ∆Π(xi, rn)}.

Then the set T is co-meagre in K(X).

Proof. (1) Let d denote the metric in X. We must prove that the set

U = K(X) \ Tn = {C ∈ K(X) | there is an i = 1, . . . , n such that

dimΠ,B(C ∩B(xi, 5rn)) < ∆Π(xi, rn)}
is meagre.

For u > 0, write

Uu = {C ∈ K(X) | there is an i = 1, . . . , n such that

dimΠ,B(C ∩B(xi, 5rn)) < ∆Π(xi, rn)− u}.
Since

U =
⋃

u∈Q, u>0

Uu,
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it clearly suffices to show that Uu is meagre for all u ∈ Q with u > 0. We therefore
fix u ∈ Q with u > 0, and note that it suffices to show that there is a countable
family (Gk)k of open and dense subsets of K(X) with ∩kGk ⊆ K(X) \ Uu.

For i = 1, . . . , n and t ≥ t0, let

Λt,i =

{
C ∈ K(X)

∣∣∣∣ ˆ logNe−s(C)

s
dΠt(s) > ∆Π(xi, rn)− u

}
,

and for t1, . . . , tn ≥ t0, put

Lt1,...,tn = {C0 ∪ C1 ∪ . . . ∪ Cn | C0 ∈ K(X) ∪ {∅}, C0 ⊆ X \
⋃n
i=1B(xi, rn),

for all i = 1, . . . , n, we have Ci ∈ Λti,i,
for all i = 1, . . . , n, we have Ci ⊆ B(xi, 5rn)}.

Finally, for a positive integer k, put

Gk =
⋃

t1,...,tn≥k

Lt1,...,tn .

Below we show that the family (Gk)k consists of open and dense subsets of K(X)
with

⋂
kGk ⊆ Cu(X) \ Uu; this is the contents of the following four claims.

Claim 1. The set Lt1,...,tn is open in K(X).

Proof of Claim 1. Let C ∈ Lt1,...,tn . We must now find r > 0 such that B(C, r) ⊆
Lt1,...,tn . We first note that since C ∈ Lt1,...,tn , there are sets C0, C1, . . . , Cn with

C = C0 ∪ C1 ∪ . . . ∪ Cn
such that

C0 ∈ K(X) ∪ {∅},

C0 ⊆ X \
⋃n
i=1B(xi, rn),

for all i = 1, . . . , n, we have Ci ∈ Λti,i,
for all i = 1, . . . , n, we have Ci ⊆ B(xi, 5rn).

Let

d0 =

{
dist(C0,∪ni=1B(xi, rn)) if C0 6= ∅;
∞ if C0 = ∅.

and note that if C0 6= ∅, then C0 ⊆ X \
⋃n
i=1 B(xi, rn) and C0 is compact, whence

d0 = dist(C0,
⋃n
i=1 B(xi, rn)) > 0. Also, since Ci ∈ Λti,i for all i = 1, . . . , n and Λti,i

is open (by Lemma 7.2), we conclude that there is a positive number ρi > 0 such
that B(Ci, ρi) ⊆ Λti,i. Finally, since Ci ⊆ B(xi, 5rn) for all i = 1, . . . , n and Ci is
compact, we conclude that di = dist(Ci, X \B(xi, 5rn)) > 0. Now put

r = min
i=1,...,n

(d0

4
, ρi

4
, di

4
, rn

8
).

We claim that

(7.6) B(C, r) ⊆ Lt1,...,tn .

We will now prove (7.6). We therefore let K ∈ B(C, r). We must now prove that
K ∈ Lt1,...,tn , i.e. we must show that there are sets K0, K1, . . . , Kn with

(7.7) K = K0 ∪K1 ∪ . . . ∪Kn
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such that

K0 ∈ K(X) ∪ {∅},(7.8)

K0 ⊆ X \ ∪ni=1B(xi, rn),(7.9)
for all i = 1, . . . , n, we have Ki ∈ Λti,i,(7.10)
for all i = 1, . . . , n, we have Ki ⊆ B(xi, 5rn).(7.11)

Since Ci is compact and Ci ⊆
⋃
x∈Ci

B(x, r), we can find a finite subset Ei of Ci such
that

Ci =
⋃
x∈Ei

B(x, r) ⊆
⋃
x∈Ei

B(x, r)

for i = 0, 1, . . . , n. Now put

Ki = K ∩
⋃
x∈Ei

B(x, 2r)

We now show that the sets K0, K1, . . . , Kn satisfy (7.7)–(7.11).

Proof of (7.7). K = K0∪K1∪. . .∪Kn. It is clear that K0∪K1∪. . .∪Kn ⊆ K and
it therefore suffices to prove that K ⊆ K0 ∪K1 ∪ . . . ∪Kn. We therefore fix x ∈ K.
Since dH(C,K) < r, there is a point y ∈ C such that d(x, y) < r. Also, since y ∈ C,
there is an index i = 0, 1, . . . , n such that y ∈ Ci ⊆

⋃
z∈Ei

B(z, r). We conclude from
this that x ∈

⋃
z∈Ei

B(z, 2r) ⊆
⋃
z∈Ei

B(z, 2r), and so x ∈ K ∩
⋃
z∈Ei

B(z, 2r) = Ki.
This completes the proof of (7.7).

Proof of (7.8). K0 ∈ K(X) ∪ {∅}. If K0 = ∅, then the assertion is clear, so
we may assume that K0 6= ∅. In this case K0 is compact since K is compact and⋃
z∈E0

B(z, 2r) is closed (because E0 is finite), whence K0 ∈ K(X). This completes
the proof of (7.8).

Proof of (7.9). K0 ⊆ X \
⋃n
i=1B(xi, rn). If K0 = ∅, then the assertion is clear, so

we may assume that K0 6= ∅. In this case K0 = K∩
⋃
x∈E0

B(x, 2r) ⊆
⋃
x∈C0

B(x, 2r)

where 2r < d0

2
= 1

2
dist(C0,

⋃n
i=1B(xi, rn)), and so K0 ⊆ X \

⋃n
i=1 B(xi, rn). This

completes the proof of (7.9).

Proof of (7.10). For all i = 1, . . . , n, we have Ki ∈ Λti,i. We first note that Ki

is compact. Indeed, this is clear since K is compact and
⋃
z∈Ei

B(z, 2r) is closed
(because Ei is finite). Next, we prove that Ki 6= ∅. In order to prove this we first
choose a point x ∈ Ei, and note that since x ∈ Ei ⊆ Ci ⊆ C and dH(C,K) < r,
we can find a point y ∈ K such that d(x, y) < r. We conclude from this that
y ∈ K ∩

⋃
z∈Ei

B(z, r) ⊆ K ∩
⋃
z∈Ei

B(z, 2r) = Ki, and so Ki 6= ∅.
Next, we show that Ki ∈ Lti,i. We first show that

(7.12) C ∩B(x, r) 6= ∅ and K ∩B(x, 2r) 6= ∅

for all i = 1, . . . , n and for all x ∈ Ei. Indeed, it is clear that C∩B(x, r) 6= ∅ because
x ∈ Ei ⊆ Ci ⊆ C and x ∈ B(x, r), and since dH(C,K) < r and x ∈ Ei ⊆ Ci ⊆ C, we
deduce that there is a point y ∈ K such that d(x, y) < r, whence y ∈ K ∩ B(x, 2r).
This completes the proof of (7.12).



Average box dimensions of typical compact sets 161

It follows from (7.12) that C ∩ B(x, r), K ∩ B(x, 2r) ∈ K(X) for all i = 1, . . . , n
and for all x ∈ Ei, and Lemma 7.3 therefore implies that

dH(Ci, Ki) = dH

(⋃
x∈Ei

C ∩B(x, r),
⋃
x∈Ei

K ∩B(x, 2r)
)

≤ max
x∈Ei

dH(C ∩B(x, r), K ∩B(x, 2r)) ≤ max
x∈Ei

2r = 2r < ρi.
(7.13)

Finally, we deduce from (7.13) that Ki ∈ B(Ci, ρi) ⊆ Λti,i. This completes the
proof of (7.10).

Proof of (7.11). For all i = 1, . . . , n, we have Ki ⊆ B(xi, 5rn). We have Ki =

K ∩ ∪x∈Ei
B(x, 2r) ⊆ ∪x∈Ci

B(x, 2r) where 2r < di
2

= 1
2

dist(Ci, X \ B(xi, 5rn)). This
clearly implies that Ki ⊆ B(xi, 2rn) ⊆ B(xi, 2rn). This completes the proof of (7.11).

The statement in Claim 1 follows from (7.7)–(7.11). This completes the proof of
Claim 1.

Claim 2. The set Gk is open in K(X).

Proof of Claim 2. This follows immediately from Claim 1. This completes the
proof of Claim 2.

Claim 3. The set Gk is dense in K(X).

Proof of Claim 3. Let C ∈ K(X) and let r > 0. We must now find K ∈ Gk

such that dH(C,K) < r, i.e. we must show that there are sets K0, K1, . . . , Kn and
numbers t1, . . . , tn with t1, . . . , tn ≥ k such that if we put

K = K0 ∪K1 ∪ . . . ∪Kn,

then

K0 ∈ K(X) ∪ {∅},(7.14)

K0 ⊆ X \
⋃n
i=1B(xi, rn),(7.15)

for all i = 1, . . . , n, we have Ki ∈ Λti,i,(7.16)
for all i = 1, . . . , n, we have Ki ⊆ B(xi, 5rn),(7.17)

and

(7.18) dH(C,K) < r.

Fix i = 1, . . . , n. Since ∆Π(xi, rn) > ∆Π(xi, rn)− u
2
, we conclude that

KΠ,∆Π(xi,rn)−u
2
(X;xi, rn) = KΠ(X;xi, rn),

and we can therefore find a compact set Ci ∈ KΠ,∆Π(xi,rn)−u
2
(X;xi, rn) with

(7.19) dH(Ci, C ∩B(xi, rn)) < r.

Also, since Ci ∈ KΠ,∆Π(xi,rn)−u
2
(X;xi, rn), we have

Ci ⊆ B(xi, rn),(7.20)

dimΠ,B(Ci) ≥ ∆Π(xi, rn)− u
2
.(7.21)

It follows from (7.21) that

lim sup
t

ˆ
logNe−s(Ci)

s
dΠt(s) ≥ dimΠ,B(Ci) ≥ ∆Π(xi, rn)− u

2
> ∆Π(xi, rn)− u,
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and we can therefore find ti ≥ k with

(7.22)
ˆ

logNe−s(Ci)

s
dΠti(s) > ∆Π(xi, rn)− u.

Next, put

K0 = C ∩
(
X \

⋃n
i=1B(xi, 2rn)

)
,

and for i = 1, . . . , n, put

Si = C ∩
(
B(xi, 4rn) \B(xi, rn)

)
and

Ki = Ci ∪ Si .
Finally, let

K = K0 ∪K1 ∪ . . . ∪Kn.

We now show that the sets K0, K1, . . . , Kn and the numbers t1, . . . , tn satisfy (7.14)–
(7.18).

Proof of (7.14). K0 ∈ K(X)∪{∅}. We divide the proof into two cases depending
on whether K0 is empty or not. If K0 = ∅, then the assertion is clear. Assume now
that K0 6= ∅. In this case K0 is compact since K is compact and X \

⋃n
i=1B(xi, 2rn)

is closed, whence K0 ∈ K(X). This completes the proof of (7.14).

Proof of (7.15). K0 ⊆ X \
⋃n
i=1 B(xi, rn). We have K0 = C∩(X \

⋃n
i=1B(xi, 2rn))

⊆ X \
⋃n
i=1 B(xi, rn). This completes the proof of (7.15).

Proof of (7.16). For all i = 1, . . . , n, we have Ki ∈ Λti,i. We first note that Ki is
compact. Indeed, since C is compact and B(xi, 4rn)\B(xi, rn) is closed, we conclude
that Si is compact. This clearly implies that Ki = Ci ∪ Si is compact. Next, we
observe that Ki 6= ∅. However, this follows immediately from the fact that Ki ⊇ Ci
and Ci 6= ∅ (because Ci ∈ KΠ,∆Π(xi,rn)−u

2
(X;xi, rn) ⊆ K(X)). We therefore conclude

that Ki ∈ K(X).
Finally, we show that Ki ∈ Λti,i. Since Ki ⊇ Ci, we conclude from (7.22) that

ˆ
logNe−s(Ki)

s
dΠti(s) ≥

ˆ
logNe−s(Ci)

s
dΠti(s) > ∆Π(xi, rn)− u.

This completes the proof of (7.16).

Proof of (7.17). For all i = 1, . . . , n, we have Ki ⊆ B(xi, 5rn). We have Ki =

Ci ∪ Si = Ci ∪ (C ∩ (B(xi, 4rn) \ B(xi, rn))) ⊆ B(xi, rn) ∪ B(xi, 4rn) ⊆ B(xi, 5rn).
This completes the proof of (7.17).

Proof of (7.18). dH(C,K) < r. Since X = (X \
⋃n
i=1B(xi, 2rn))∪

⋃n
i=1B(xi, 4rn),

we conclude that C = (C ∩ (X \
⋃n
i=1B(xi, 2rn))) ∪

⋃n
i=1(C ∩B(xi4rn)), whence

dH(C,K) = dH((C ∩ (X \
⋃n
i=1B(xi, 2rn))) ∪

⋃n
i=1(C ∩B(xi4rn)), K0 ∪

⋃n
i=1Ki).

However, since K0 = C ∩ (X \
⋃n
i=1B(xi, 2rn)), the above expression for dH(C,K)

simplifies to

(7.23) dH(C,K) = dH(K0 ∪
⋃n
i=1(C ∩B(xi, 4rn)), K0 ∪

⋃n
i=1Ki).
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Since C ∩B(xi, 4rn), Ki ∈ K(X) for i = 1, . . . , n and K0 ∈ K(X)∪{∅}, we conclude
from (7.23) and Lemma 7.3 that

dH(C,K) ≤ dH(K0 ∪
⋃n
i=1(C ∩B(xi, 4rn)), K0 ∪

⋃n
i=1Ki)

≤ max
i=1,...,n

dH(C ∩B(xi, 4rn), Ki).
(7.24)

Since clearly C ∩ B(xi, 4rn) = (C ∩ B(xi, rn)) ∪ (C ∩ (B(xi, 4rn) \ B(xi, rn))), we
conclude from (7.24) that

dH(C,K) ≤ max
i=1,...,n

dH(C ∩B(xi, 4rn), Ki)

= max
i=1,...,n

dH((C ∩B(xi, rn)) ∪ (C ∩ (B(xi, 4rn) \B(xi, rn))), Ci ∪ Si).
(7.25)

Using the fact that Si = C ∩ (B(xi, 4rn) \B(xi, rn)), it follows from (7.25) that

dH(C,K) ≤ max
i=1,...,n

dH((C ∩B(xi, rn)) ∪ Si, Ci ∪ Si)

Next, since C ∩B(xi, rn), Ci ∈ K(X) for i = 1, . . . , n and Si ∈ K(X) ∪ {∅}, we now
deduce from the above and Lemma 7.3 that

dH(C,K) ≤ max
i=1,...,n

dH((C ∩B(xi, rn)) ∪ Si, Ci ∪ Si)

≤ max
i=1,...,n

dH(C ∩B(xi, rn), Ci).
(7.26)

Finally, since dH(C ∩B(xirn), Ci ) < r for all i = 1, . . . , n (by (7.19)), it follows from
(7.26) that dH(C,K) < r. This completes the proof of (7.18).

The statement in Claim 3 follows from (7.14)–(7.18). This completes the proof
of Claim 3.

Claim 4. We have
⋂
kGk ⊆ K(X) \ Uu.

Proof of Claim 4. Let C ∈
⋂
kGk. Hence for each positive integer k, we can

find real numbers tk,1, . . . , tk,n with tk,1, . . . , tk,n ≥ k such that C ∈ Ltk,1,...,tk,n . In
particular, this implies that there are sets Ck,0, Ck,1, . . . , Ck,n with

C = Ck,0 ∪ Ck,1 ∪ . . . ∪ Ck,n

such that

Ck,0 ∈ K(X) ∪ {∅},

Ck,0 ⊆ X \
⋃n
i=1B(xi, rn),

for all i = 1, . . . , n, we have Ck,i ∈ Λtk,i,i,
for all i = 1, . . . , n, we have Ck,i ⊆ B(xi, 5rn).

Since Ck,i ∈ Λtk,i,i, we have
ˆ

logNe−s(Ck,i)

s
dΠtk,i(s) > ∆Π(xi, rn)− u .
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This implies that for all i = 1, . . . , n, we have

dimΠ,B(C ∩B(xi, 5rn)) = lim sup
t

ˆ
logNe−s(C ∩B(xi, 5rn))

s
dΠt(s)

≥ lim sup
t

ˆ
logNe−s(Ck,i)

s
dΠt(s) [since C ∩B(xi, 5rn)) ⊇ Ck,i](7.27)

≥ lim sup
k

ˆ
logNe−s(Ck,i)

s
dΠtk,i(s)

≥ ∆Π(xi, rn)− u.
We conclude immediately from (7.27) that C 6∈ Mu. This completes the proof of
Claim 4.

Combining Claim 2, Claim 3 and Claim 4, we now conclude that Mu is meagre.

(2) This statement follows from (1) since T =
⋂
n Tn. �

Proposition 7.5. Let X be a metric space and let Π = (Πt)t≥t0 be an averaging
system. Let (xn)n be a sequence of points from X, and let (rn)n be sequence of
positive real numbers. Write

T = {C ∈ K(X) | for all n ∈ N and for all i = 1, . . . , n, we have

dimΠ,B(C ∩B(xi, 5rn)) ≥ ∆Π(xi, rn)},
and

S = {C ∈ K(X) | dimΠ,B(C) ≥ sup
x∈C

∆Π(x)},

If (xn)n is dense in X and rn → 0, then T ⊆ S.

Proof. Let C ∈ T and ε > 0. First choose x0 ∈ C such that

(7.28) ∆Π(x0) ≥ sup
x∈C

∆Π(x)− ε.

Next, choose r0 > 0 such that

(7.29) ∆Π(x0, r0) ≥ ∆Π(x0)− ε.
Finally, since the sequence (xn)n is dense in X, we can choose i0 such that xi0 ∈
B(x0,

r0
2

), and since rn → 0, we can choose n0 such that i0 ≤ n0 and rn0 ≤ r0
2
. Since

i0 ≤ n0 and C ∈ T , we have

(7.30) dimΠ,B(C) ≥ dimΠ,B(C ∩B(xi0 , 5rn0)) ≥ ∆Π(xi0 , rn0).

Also, since B(xi0 , rn0) ⊆ B(x0,
r0
2

+ rn0) ⊆ B(x0,
r0
2

+ r0
2

) = B(x0, r0), it follows from
Lemma 7.1 that

(7.31) ∆Π(xi0 , rn0) ≥ ∆Π(x0, r0).

Combining (7.28)–(7.31) yields

dimΠ,B(C) ≥ ∆Π(xi0 , rn0) ≥ ∆Π(x0, r0) ≥ ∆Π(x0)− ε ≥ sup
x∈C

∆Π(x)− 2ε.

Finally, letting ε↘ 0 gives the desired result. �

We can now prove Theorem 2.2.(2).

Proof of Theorem 2.2.(2). Let the sets S and T be defined as in the statement
of Proposition 7.5. It follows from Proposition 7.4 that T is co-meagre and since X
is separable, it follows from Proposition 7.5 that T ⊆ S. We conclude from this that
S is co-meagre. This clearly implies the statement in the theorem. �
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