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Abstract. Let X be a metric space and write K(X) for the family of non-empty compact
subsets of X equipped with the Hausdorff metric. The lower and upper box dimensions, denoted
by dimg(F) and dimp(E), of a subset E of X are defined by

log N,.(E — . log N,.(E
dimg(F) = lim inf L()7 dimp(F) = lim sup L()
B ™o0 —logr N0 —logr

b

where N,.(FE) is the smallest number of closed balls with centres in E and radii equal to r that are
needed to cover E. In the 1980’s, Gruber proved that the box counting function

) log N,(C)

—logr
of a typical compact set C' € K(X) diverges in the worst possible way as r \, 0. For example,
Gruber proved that dim;(C) = 0 and dimp(C) = N for a typical C € K(RY).

In this paper we prove that the box counting function (x) of a typical compact set C € K(X) is
spectacularly more irregular than suggested by Gruber’s result. In particular, we show the following
surprising result: not only is the box counting function (x) of a typical compact set C' € K(X)
divergent as r N\, 0, but it is so irregular that it remains spectacularly divergent as r \, 0 even after
being “averaged” or “smoothened out” using powerful averaging methods including, for example, all
higher order Holder and Cesaro averages. As an application of our results we obtain strengthened
versions of Gruber’s result.

1. Introduction

Recall that a subset E of a metric space M is called co-meagre if its complement
is meagre, and we say that a typical element x € M has property P if the set
E = {x € M | x has property P} is co-meagre, sce Oxtoby [Ox| for more details.

Let (X, d) be a metric space and write IC(X) for the set of non-empty compact
subsets of X, i.e.

K(X)={C C X | C is compact and non-empty }

We will always equip (X)) with the Hausdorff metric dy. It is well-known that if X
is complete, then IC(X) is a complete metric space when equipped with the Hausdorff
metric.
The lower and upper box dimensions of a subset £ of X, denoted by dimy(FE)
and dimg(F), are defined by
log N,.(E)

dimg(F) = liminf —————, dimp(F) = limsup g—r(),
™0 —logr N0 —logr
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where

N,.(F) = inf{|B] | B is a family of closed balls

with centres in E and radii equal to r that covers E}.

If dim,(E) = dimp(E), then we say that the box dimension of E exists and we denote
the common value of dimy(E) and dimp(E) by dimp(E). The reader is referred to
|[Fa] for an excellent and detailed discussion of box dimensions.

The purpose of this paper is to investigate the box dimensions, and, in particular,
certain average box dimensions, of a typical element of (X)), i.e. of a typical compact
subset of X. Box dimensions of typical compact sets have been investigated earlier.
Indeed, in 1989, Gruber |Gr| proved the following result.

Theorem A. [Gr| Let X be a metric space. For s > 0, write
KJ(X) = {C € K(X) | dimy(C) > s},
and put

A(X) = supfs > 0| Ka(X) = K(X)}.
For a typical compact set C' € K(X), we have
dimp(C) =0, Tmp(C) > A(X).

In particular, by putting X = R”, we obtain the following corollary from Theo-
rem A.

Corollary B. |Gr| For a typical compact set C' € K(RY), we have
dimgz(C) =0, dimp(C) = N.

In this paper we investigate the box dimensions of a typical compact subsets
further. In particular, we study the following two problems.

(1) Average dimensions. Theorem A and Corollary B exhibit the same dichotomy,
namely, the lower box dimension of a typical compact set is as small as possible and
the upper box dimension of a typical compact set is (in many cases) as big as possible.
Other studies [MyRu,Ro| of typical compact sets show the same dichotomy. For
example, [Ro| proves that a typical compact metric space (belonging to the family of
all compact metric spaces equipped with the Gromov—Hausdorff metric) has lower box
dimension equal to 0 and upper box dimension equal to oo, and [MyRu| improves the
lower bound A(X) in Theorem A for the upper box dimension of a typical compact
subset of a metric space X. The purpose of this paper is to analyse this intriguing
dichotomy in more detail. In order to do so, we introduce the following notation.
Namely, for a subset E of a metric space X, we define the box counting function
fe: (0,00) = [0,00] of E by

B log Ne—t(E) . log Ne—t(E)

(11) folt) = et = S,

we note the function N,(E) is often referred to as the box counting function of E—
however, the function fg(t) is more fundamental for this work, and we will therefore
refer to this function as the box counting function of E. Using this notation, the box
dimensions of F are now given by
(1.2) dimy,(E) = liminf f (1), dimg(E) = lim sup fi (1),

—00

t—o0
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and Theorem A therefore shows that (in many cases) the box counting function fc(t)
of a typical compact set C' € K(X) diverges in the worst possible way as t — oc.
In this paper we will prove that the behaviour of the box counting function fc(¢)
of a typical compact set C' € K(X) is spectacularly more irregular than suggested
by this result and the analogous results in [MyRu,Ro|. Namely, there are standard
techniques, known as averaging systems, that (at least in some cases) can assign
limiting values to divergent functions (the precise definitions will be given below),
and the purpose of this paper is to show the following surprising result: not only
is the box counting function fo(t) of a typical compact set C' divergent as ¢t — oo,
but it is so irregular that it remains spectacularly divergent as ¢t — oo even after
being “averaged” or “smoothened out” using powerful averaging systems including,
for example, all higher order Holder and Cesaro averages. Indeed, if X = RY, then
we show that for a typical compact set C' € K(R™), all higher order lower Holder
averages of the box counting function fo(t) are as small as possible, namely, equal
to 0, and all higher order upper Hélder averages of the box counting function fo(t)
are as big as possible, namely, equal to N. This is the statement of the special case
of our main results presented below.

Theorem 1.1. Special case of Theorem 2.2 and Theorem 3.1. For a compact
subset C' of RY, we define the n’th order Hélder averages, denoted by H,(C;t), of
the box counting function fo(t) of C' inductively by

Ho(C:t) = folt), Hgaw:%/ﬁaAWwM&

for n € N, and we define the lower and upper n’th order Hélder average box dimen-
sions of C' by

dimf ,(C) = limint H,(C;1), dimy,,,(C) = lim sup H,(C; ).

t—o00

A typical compact set C' € K(R") now satisfies

—H

dl—mg,n<c) = 07 dlmB,n(C) = N7

for alln € N U {0}.

We emphasise that Theorem 1.1 is merely a special case of the more general
results presented in Theorem 2.2 and Theorem 3.1. It is instructive to compare the
statement in Theorem 1.1 with Gruber’s Corollary B. While Corollary B shows the
box counting function fo(t) of a typical C' € K(RY) diverges in the worst possible
way, Theorem 1.1 shows that all higher order Holder averages of fo(t) also diverge
in the worst possible way.

(2) Local dimensions. In general, the lower bound A(X) for the upper box
dimension dimp(C) of a typical compact set C' € K(X) in Theorem A is not sharp,
i.e., in general, it is not true that dimp(C) = A(X) for a typical compact set C' €
K(X). Indeed, in general, it is not even true that there is a positive number D(X)
such that dimp(C) = D(X) for a typical compact set C' € K(X). For example, if we
let Q = [0,1]? denote the closed unit cube and I = [2, 3] x {0}, and put

X=QuUlI,
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then K(Q) and KC(I) are non-empty and open subsets of K(X), and it follows easily
from Theorem A that

ﬁB(C) = {

2 for a typical compact set C' € K(Q);
1 for a typical compact set C' € IC(I).

In particular, this shows that there is no number D(X) such that dimp(C) = D(X)
for a typical compact set C' € K(X). Instead, we show that there is a “local dimension
function” A(X;+): X — R such that if X is an arbitrary separable metric space, then
dimp(C) > sup A(X; z)
reX
for a typical compact set C' € K(X), see Corollary 2.6. More importantly, we
also show that for a large class of separable metric spaces X, the lower bound
sup,cx A(X;z) for the upper box dimension dimg(C) of a typical compact set
C € K(X) is the exact value of dimg(C), i.e. we show that for a large class of
separable metric spaces X we have
dimp(C) = sup A(X; )
zeX
for a typical compact set C' € KC(X), see Corollary 2.7. In fact, we prove more a
general version of this result involving average box dimensions defined using arbitrary
averaging systems, see Theorem 2.2 and Corollary 2.4.

2. Statements of results

2.1. Average dimension. We start by recalling the definition of an averaging
(or summability) system; the reader is referred to Hardy’s classical text [Ha| for a
systematic treatment of averaging systems.

Definition. Averaging system. An averaging system is a family IT = (II;);>y,
with g > 0 such that:
(i) II; is a finite Borel measure on [ty, 00);
(i) II; has compact support;
(iii) The Consistency Condition: If f: [ty,00) — [0,00) is a positive measurable
function and there is a real number a such that f(t) — a as t — oo, then
[ fdll; = a as t — .

If f: [to,00) — [0,00) is a positive measurable function, then we define lower and
upper Il-average of f by

Apf =lim inf/det
t—o0

and

Anf = limsup/fdl_[t,
t—00

respectively.

Applying averaging systems to the box counting function fg(t) in (1.1) leads to
our key definition, namely, the definition of average box dimensions.

Definition. Average box dimension. Let X a metric space and let IT = (I1;);>y,
be an averaging system. For a subset F of X, we define the lower and upper Il-average
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box dimensions of E by
log N.-s(E)

and ow N (E
dimy g(E) = A fp = lim sup/Oge—s() dll;(s),
t—o00 S
respectively.

We note that box dimensions are, in fact, average box dimensions. Indeed, if X
a metric space and we let II denote the average system defined by II = (d;)¢>1 (where
d; denotes the Dirac measure concentrated at t), then clearly

(2.1) dimy, 5(E) = dim,(E), i (E) = dinip(E)

for all subsets E of X. Below we list some basic properties (and lack of properties)
of average box dimensions.

Proposition 2.1. Basic properties of average dimensions. Let X a metric space
and let 11 = (I1;);>4, be an averaging system.

(1) dimy 5 and dimp,p are monotone.
(2) dimy 5 and dimy,p are finitely sub-stable.
(3) dimy; p and dimyy, p are, in general, not finitely stable.

Recall, that if D: £(X) — R is a function, then D is called monotone if
D(A) < D(B) for all A,B € K(X) with A C B; D is called finitely sub-stable
if max(D(A), D(B)) < D(AUB) for all A, B € K(X); and D is called finitely stable
if max(D(A),D(B)) = D(AUB) for all A, B € K(X).

Proof. (1)—(2) These statements are clear.

(3) It is well-known that dimp (and hence, in particular, dimy p) is not, in
general, finitely stable, see, for example, [Fa|. Finally, in Section 4 we present an
example showing that dimy; p is not, in general, finitely stable. 0J

Note that while dimy 5, in general, is not finitely stable, it is nevertheless true
(and well-known, see, for example [Fa|) that dimp is finitely stable.

2.2. Average box dimensions of typical compact sets: The main result.
We now state the main result in the paper, namely, Theorem 2.2 below. This result
shows that the behaviour of the box counting function fo(¢) of a typical set compact
C € K(X) is so irregular that remains divergent as t — oo even after being “averaged”
using arbitrary averaging systems.

Theorem 2.2. Let X a metric space and let 11 = (Il;);>, be an averaging
system. For x € X and r,s > 0, write

K(X;2,r)={Cek()|CCBEN},

Kis(X;2,7) = {(J e K(C) | € C B(w, 1), dimp 5(C) > s} ,
and let
An(X;z,r) = sup{s >0 | m:K(X;x,r)},
An(X;x) =sup Ap(X;z, 7).

r>0
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(1) For a typical C' € K(X), we have
dimy; 5(C') = 0.
(2) If, in addition, X is separable, then for a typical C' € K(X), we have
dimp 5(C) > sup An(X;z).

The proof of Theorem 2.2 is given in Sections 5-7. Section 5 contains various
technical auxiliary results. The proof of Theorem 2.2.(1) is given in Section 6 and
the proof of Theorem 2.2.(2) is given in Section 7.

Below we present several corollaries and applications of Theorem 2.2. In par-
ticular, we consider the following two applications of Theorem 2.2. In Section 2.3
we study several special cases of Theorem 2.2 where the lower bound for the upper
average dimension of a typical compact set provides the exact value and/or can be
computed explicitly, and in Section 2.4 we apply Theorem 2.2 to the average system
IT = (6;)>1 leading to strengthened versions of Gruber’s Theorem A.

2.3. Average box dimensions of typical compact sets: Some corollaries.
We will now show that the lower bound for the upper average box dimension of a
typical compact set in Theorem 2.2 is sharp for a certain class of metric spaces. In
order to define this class of metric spaces, we introduce the following terminology.

Definition. II-homogenous. Let IT = (II;);>4, be an averaging system. A metric
spaces X is called II-homogenous if dimp 5(G) = dimp g(X) for every non-empty
open subset G of X.

Before stating our next result, we first note that many natural spaces are II-
homogenous.

Proposition 2.3. Let II be an averaging system.

(1) If X C RY is quasi-self-similar from above, then X is I[I-homogenous; recall,
that a metric space (X, d) is called quasi-self-similar from above if there are
constants R,m > 0 such that for all x € X and all 0 < r < R there is
a function p: X — B(x,r) such that if p > 0 and z € X, then there is
¢ € B(z,r) with B(¢,m™'pr) C »(B(z,p)) € B(¢,mpr), see |O’'Ne, p. 238;
HaYa, Definition 1, p. 289].

(2) If X C RY is self-conformal and satisfies the Open Set Condition, then X is
[T-homogenous.

(3) If X C RY satisfies X C X°~, then X is II-homogenous.

Proof. (1) Let B be a ball in X. Since X is quasi-self-similar from above there
is a bi-Lipschitz function f from X into B. Since f is bi-Lipschitz, it is not difficult
to show that there is a constant ¢ > 1 such that

(22) N,(X) < e, (f(X))

for all 7 > 0. Also, since f(X) is a subset of Euclidean space R", it is not difficult
to see that there is a further constant £ > 1 such that

(2.3) N.(f(X)) < kN (f(X))
for all » > 0. Combining (2.2) and (2.3), we conclude that
N,(X) < ckN,(f(X))
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for all 7 > 0. This clearly implies that dimy g(X) < dimy g(f(X)), and using the
fact that B C X and f(X) C B, we therefore conclude that dimy g(X) = dimy; 5(B).
(2)—(3) These statement follow immediately from (1). O

The next result says that if X is a finite union of II-homogenous spaces, then
the lower bound for the upper average box dimension of a typical compact set in
Theorem 2.2 is the exact value.

Corollary 2.4. Let (X, d) be a metric space with X = | J;_; X; whereinf ¢ x, yex,
d(z,y) > 0 foralli, j withi # j, and let Il = (II;);>,, be an averaging system. Assume
that the following three conditions are satisfied:

(i) X; is II-homogenous for all i;
(ii) Closed and bounded subsets of X are compact;
(iii) If n > 1, then assume, in addition, that dimy g is finitely stable.
Then the following statements hold.
(1) For all C' € K(X), we have
0 S di_mH’B(C') S man(C) S sup ﬁn73(Xi).
CNX;#2
In particular, if the box dimension of X; exists for all i, then for all C € K(X),
we have

0 < dimy; 5(C) < dimpp(C) < sup  dimp(X;).
CNX,;#9

(2) If, in addition, X is separable, then for a typical C' € K(X), we have

di_mmB(C') = 0, HEB(C’) = sup HH,B(.X}).
CNX;#2

In particular, if X is separable and the box dimension of X; exists for all 1,
then for a typical C € KC(X), we have

di_mH’B(C') = O, mH,B(C) = sup dlmB(Xl)
CQX,L#@

Proof. (1) It is clear that 0 < dimp z(C) < dimy(C) and it follows from
(111) that @‘[73(0) = ml—[,B(UCmXﬁé@C N Xz) = supCmXﬁéz ﬁ]‘[,B(C N XZ) S
SUPcx, 2o dimi, p(X;).

(2) It clearly suffices to show that if C' € (X)), then

(2.4) sup dimp 5(X;) < sup Ap(X; ).
CNX,;#9 zeC

To prove (2.4) it clearly suffices to show that:
(25) if 1 = 1, N and z € Xz'7 then di_mH,B(Xi) < AH(X,.T)

We will now prove (2.5). We therefore fix i and # € X;. For brevity write
s = dimp p(X;), and note that in order to prove the inequality s < Ap(X;x), it
suffices to show that:

(2.6) there is 7 > 0 such that s < Ap(X;x,r).
In order to prove prove (2.6), it is clearly sufficient to show that:
(2.7) there is r > 0 such that K (X;z,7) = K(X; 2, 7).

We will now prove (2.7). First note that we may choose 0 < 7 < min;; dist(Xj,
X;). We now claim that I ¢(X;z,r) = K(X;z,r). In order to prove this we fix a
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compact set K with K C B(z,r) and 6 > 0. We must now find C € Ky 4(X;2,r)
with dp (K, C) < é. First choose a finite subset E of B(z,r) such that dy (K, E) < 3.

Next, fix y € E and note that since y € £ C B(z,r), there is a point z, € B(x,r)

with d(y,z,) < ¢ where d denotes the metric in X. Finally, since z, € B(z,r),

we can choose r, > 0 such that B(z,,2r,) € B(z,r) and 2r, < 2. Now put C' =

Uyer B(zy,y), and note that it follows from Condition (ii) that C'is compact. Since
E is non-empty we can find yo € E. We now have B(xy,,r,,) C B(z,r) C X;, and
we therefore conclude from Condition (i) and the definition of C' that

C= UyeEB<$yaTy) - UyeE B(zy,2r,) C B(z,r) C B(z,r),
dimp p(C) > dim,p(Uyep Blzy, 1)) > dimp(B(2y,,7y,)) = dim (X)),

whence C' € Ky (X;x,r). We also have

dH(K> C) < dH(K> E) + dH<Ev UyeE{xy}) + dH(UyeE{xy}a UyeE B(l’y, 7ny))
é ) é
< 3 -+ 3 + 3= 0.
This completes the proof of (2.7). O

If X is a subset of a Euclidean space, then the statement in Corollary 2.4 simplifies
considerably; this is the statement of the next corollary.

Corollary 2.5. Let X be a subset of RN and let TI = (Il;);>4, be an averaging
system. Assume that X is [I-homogenous. Then the following statements hold.

(1) For all C' € K(X), we have
0 < dimy 5(C) < dimy,p(C) < dimpp(X).

In particular, if the box dimension of X exists then for all C € K(X), we
have

0 S @H73(C) S ﬁ]‘[?B(C) S dlmB(X)
(2) For a typical C € K(X), we have
di_mH’B(C) - 07 (:h_m1f[7B(C) - dlmH,B(X)

In particular, if the box dimension of X exists, then for a typical C € K(X),
we have

dimy; 5(C) =0, dimp (C) = dimp(X).

Proof. This follows immediately from Corollary 2.4. U

2.4. Box dimensions of typical compact sets. Since the average dimensions
associated with the average system II = (d;);>1 equal the usual box dimensions (see
(2.1)), applying Theorem 2.2 to the average system II = (d;);>; leads to a strength-
ened version of Gruber’s result in Theorem A; this is the content of Corollary 2.6
below.

Corollary 2.6. Let X a metric space For x € X and r,s > 0, write

K(X;z,r)={C e K(C)|C C B(z,r)},
Ks(X;z,r)={C e K(C)|CC B(z,r), dimg(C) > s},
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and let
A(X;z,r)=sup{s >0 | Ks(X;2,7) = K(X;2,7)},
A(X;x) =sup A(X;z, 7).
r>0
For a typical C' € K(X), we have

dimp(C) =0.
If, in addition, X is separable, then for a typical C' € K(X), we have
dimp(C) > sup A(X; z).
zeC
Proof. Let I denote the average system defined by IT = (d;)¢>1. Since dimy 5(F)
= dimgz(F) and dimy p(E) = dimp(F) for all subsets F of X (see (2.1)), the desired
statement follows immediately from applying Theorem 2.2 to II = (J;)¢>1. U

Note that if A(X) denotes the number in Theorem A and A(X;x) denotes the

number in Corollary 2.6, then clearly

sup A(X;x) > A(X)

zeC
for all compact subsets C' of X, and Corollary 2.6 is therefore a strengthening of
Theorem A. It is also instructive to apply Corollary 2.4 to the average system II =
(04);>1. This leads to exact formulas for the box dimensions of typical compact
subsets of finite unions of homogenous subsets of RV, and is the content of the next
result.

Corollary 2.7. Let (X, d) be asubset of RN with X = |JI_; X; whereinf,ex, yex,
d(x,y) > 0 for all i, j with i # j. Assume that dimp(G) = dimp(X;) for all i and all
non-empty open subsets G of X;. Then the following statements hold.

(1) For all C' € K(X), we have

0 S dl_IIlB(O) S HB(C) S sup MB<XI)
CNX;#9
(2) If, in addition, X is separable, then for a typical C' € K(X), we have
dimg(C) =0, dimp(C) = sup dimp(X;).
CNX,;#2

Proof. Let II denote the average system defined by IT = (d;)¢>1. Since dimy 5(F)
= dimgz(E) and dimy p(E) = dimp(E) for all subsets E of X (see (2.1)) and the
upper box dimension is finitely stable (see [Fa|), the desired statement follows imme-
diately from applying Corollary 2.4 to II = (6;)>1. O

As above, we note that Corollary 2.7 is a strengthening of Gruber’s Theorem A.
Corollary 2.7 is, in fact, in many cases strictly stronger than Gruber’s Theorem A.
For example, if we let @ = [0,1]*> and I = [2,3] x {0}, and put X = Q U I, then it
follows from Gruber’s Theorem A that

dimp(C) > 1

for a typical C' € K(X), whereas Corollary 2.7 provides the exact value for the upper
box dimension dimp(C) of a typical compact set C' € K(X), namely, Corollary 2.7
shows that

2 ifCNQ # 9,

ﬁB(C):L ifONQ=o
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for a typical C' € K(X).
In Sections 3-4, we present several applications of Theorem 2.2 to two classical
averaging methods II, namely, Hélder and Cesaro averages.

3. Holder and Cesaro averages of the box
dimension of a typical compact set

Two of the most commonly used averaging method are Holder averages and
Cesaro averages. We will now define these average methods and apply them to the
box counting function fo(t) of a compact set C. We first recall the definitions of
the Holder and Cesaro averages. For a > 0 and a measurable function f: (a,c0) —
[0, 00), we define M f: (a,00) — [0,00) by

Mp@ = [ Fe)ds

For a positive integer n, we now define the lower and upper n’th order Holder averages
of f by -
H,f= li{ninf(M”f)(t), H,f = limsup(M"f)(t).
—00

t—o0
The Cesaro averages are defined as follows. First, we define I f: (a,00) — [0, 00) by

un@—/ﬂ@w

For a positive integer n, we now define the lower and upper n’th order Cesaro averages

of f by
!

| —
an:liminf&(["f)(t), Cnf:limsupz(lnf)(t).
t—oo (™ t—oo L7
It is well-known that the Holder and Cesaro averages satisfy the following inequalities,
namely,

liminf f(t) = Hof < H,f < Hyf < ... < Hyof < H,f < Hof = limsup f(¢),

t—o00 t—o0

3.1 _ _ _

S lind £(0) = Cuf < Cf < Cof <. SCaf <Tuf < Tof = limsup ()
00 t—o00

It is also well-known that the Holder and Cesaro averages are averaging methods in
the sense of the definition in Section 2.1. Indeed, if we for a positive integer n, define
the averaging method I/ = (II7,);>4 by

1
7 (B) = —/ (logt —log s)" ' ds
! (n—1)t [a,t)nB
for Borel subsets B of [a, c0), then
H. f= limtinf/fdl_[ﬁt, H,.f = limsup/fdﬂgt,
t
see, for example, [Ja, p. 675]. Similarly, if we for a positive integer n, define the
averaging method 11§ = (IIS,)i>a by
n

Hg’t(B) = t_”/ (t — s)”_1 ds
la,z]NB

then
an:hmtinf/fdﬂit, an:hmsup/fdnit,
t
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see, for example, [Ha, pp. 110-111].
Using Holder and Cesaro averages we can now introduce average Holder and
Cesaro box dimensions by applying the definitions of the Hélder and Cesaro averages

to the function fg(t) = w

Definition. Awverage Holder and Cesaro box dimensions. Let X be a metric
space. For a subset F of X, we define the lower and upper n’th order average Holder

. This is the content of the next definition.

box dimension of F, denoted by dl_ngn(E) and di_mgm(E), as the lower and upper
n’th order Holder average of the function fg(t) for t > 1, i.e. we put

dim¥ (E)=H,fs, dimy,(E)=H,[s

Similarly, we define the lower and upper n’th order average Cesaro box dimension of
E, denoted by dim§ (E) and dimy, , (E), by

dim§, (E) = C, fp, dimy,(E) = Cpfp.

The higher order average Holder and Cesaro box dimensions form a double infinite
hierarchy in (at least) countably infnite many levels, namely, we have (using (3.1))

(3.2)

As an application of Corollary 2.5, we will now show that if X is a II-homogenous
subset of R, then the behaviour of a typical compact set C € K(X) is so irregular
that not even the hierarchies in (3.2) formed by taking Holder and Cesaro averages
of all orders are sufficiently powerful to “smoothen out” the behaviour of the box
counting function fo(t) as t — oc.

Theorem 3.1. Let X be a subset of RY. Assume that X is 11 -homogenous
and T1S-homogenous for all n € N U {0}. Then a typical compact set C' € K(X)
satisfies:

dim® (C) =0, dimyy,(C) = dimy ,(X), dim§,(C) =0, dim},,(C) = dimy,(X),

for alln € NU{0}. In particular, if, in addition, the box dimension of X exists, then
a typical compact set C' € IC(X) satisfies:

H C

dl—mg,n(c) = dl—mg,n(c) = 07 ﬁB,n(C) = ﬁB,n(O) = dlmB(X)7
for all n € N U {0}.

Proof. This statement follows immediately from Corollary 2.5. O

4. An example

In order to illustrate the above definitions and concepts, we present and elaborate
on a simple and concrete example from [AAOPRR] of a (compact) subset X of R and
compute its box dimensions and its 1’st order Holder average box dimensions. We
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construct the set X as follows. For i = 0,1,2,3,4, define the map S;: [0,1] — [0,1]
by S;(x) = %az +¢. Let Ny =1and N, = 272 for n > 2, and write

5 o_ {iv...in, | 1; €{0,4} for all j}  if nis even;
" {iy...in, | i; € {0,2,4} for all j} if nis odd,
i.e. X, is the family of all finite strings i = ¢; ... %, of length NN,, with entries 7; from
{0,2,4} if n is odd, and with entries ¢; from {0,4} if nis even. Fori=1i;...in, € ¥,,
we write S; = S 0+ 0S5, . The set X is now defined by

(4.1) xX= U Syo--08,(0,1).

n ij€Xq,..., in€Xn

The box dimensions of X and the 1’st order Hélder average box dimensions of X are
given by the following formulas from [AAOPRR/.

Theorem 4.1. [AAOPRR] Let X be given by (4.1) and write a = 122 and
log 3 ¢

b= 2.
ogb

Then we have

dimp (X) = (1 %3) o+ 2 b~ 0.56398,
dimp(X) = $a + 2b~ 0.59863.

It is instructive to present some numerical calculations illustrating the oscillatory
behaviour in the definitions of the dimensions dim (X)), dimg (X)), dimgl(X ) and

dimp(X). Write r, = 57" and put 7, = % Since lolgg—"“ — 1, it follows from
[Fa| that
(4.2) dimy(X) = liminfr,, dimg(X) = limsup 7,

n

and it follows from [AAOPRR] that

: S R
(4.3) dl_mEI’l(X) :hn}llnfﬁz:m, dlmBl( —hmsup Zm

n

Below we sketch the graphs of the sequences (), and (X Y7 | 7r,~)n 111ustrating their
oscillatory behaviour.

Finally, we show that di_mg1 is not finitely stable. Specifically, we show that
there is a subset Y of R such that
(4.4) dim (X UY) > max(dimy , (X), dimy, , (Y))
Indeed, let Y be any subset of [2, 3] such that the box dimension dimpg(Y") of Y exists

and equals dimg,l(X ). Next, write 7, = %, and note that since dist(X,Y) =

1 > 0, an argument very similar to the proof of (4.3) shows that ﬁ;l(X U

Y) = limsup, 1 3"  max(m;, ;). Finally, since 7, — dimp(Y) = Mgl(){) =

limsup,, - > m and dimg(Y) = di_mgvl(Y), it now follows from the identity
di_mgvl(X UY) = limsup, - >, max(m;, 7;), using arguments similar to those in
[AAOPRR], that (4.4) holds. This concludes the example.
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0 1000 2000 3060 4000 5000 6000 7060 8000 9000 0 2 4 6 8 10 12 14

Figure 4.1. The figure on the left shows the points (n,7,) for n € {1,2,3,...,2!3} and the
figure on the right shows the points (llzig,ﬂn) for n € {1,2,3,...,213}. The two horizontal dashed
lines intersect the vertical axis at dimp(X) = liminf, 7, = 2a + $b &~ 0.51465 and dimp(X) =

lim sup,, 7, = %a + %b ~ 0.59863, respectively.

0.70 - - 0.70

0 1000 2000 3060 4000 5000 6000 7060 8000 9000 0 2 4 6 8 10 12 14

Figure 4.2. The figure on the left shows the points (n, 2 Y7 ;) for n € {1,2,3,...,213},

‘n

and the figure on the right shows the points (11‘;?2’, LSt m) forno€ {1,2,3,...,2'3}. The two

2
horizontal dashed lines intersect the vertical axis at dimgﬁl(X ) =liminf, 237" m = Za+ (1 -
2
3

2 - 2
22)b ~ 0.54930 and dimIB{,l(X) =limsup, + 3" | m = (1 — &5 )a + 21b ~ 0.56398, respectively.

5. Proof of Theorem 2.2: Preliminary results

In this section we collect some basic notation and a technical auxiliary lemma
that will be used extensively in Sections 6-7. We first recall the definition of an
r-covering set and the r-covering number N, (F) of a subset E of a metric space.
Below we will write |A| for the cardinality of a set A.

Definition. r-covering set and N,.(E). Let (X, d) be a metric space. Fix r > 0
and £ C X. We say that a subset A of X is an r-covering subset of F provided
A C E and or all z € E, there is y € A such that d(z,y) <r. Forr >0 and F C X,
we define the r-covering number N,.(F) of E by

N,.(E) = inf{|A] | A is an r-covering subset of E'}.

Next, we define the dual notion, namely, we provide the definition of an r-packing
set and the r-packing number M, (E) of a subset E of a metric space.

Definition. r-separated set and M,(E). Let (X, d) be a metric space. Fix r > 0
and £ C X. We say the a subset A of X is an r-separated subset of E provided
A C E and for all z,y € A with = # y, we have d(z,y) > r. For r > 0 and F C X,
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we define the r-packing number M, (E) of E by
M, (E) = sup{|A| | A is an r-separated subset of E}.

The next results list some of the fundamental properties of the covering number
N, (E) and the packing number M, (F); these properties will be used extensively in
Sections 6-7.

Lemma 5.1. Let X be a metric space and r > 0.

(1) The function N,: K(X) — R is lower semi-continuous.

(2) The function M,: K(X) — R is upper semi-continuous.
(3) N.(E) < M,(FE) for all subsets E of X.

Proof. This follows from [Gr, p. 152]. O

6. Proof of the lower bound: Theorem 2.2.(1)

The purpose of this section is to prove Theorem 2.2.(1). We first prove two
auxiliary lemmas. The first lemma (i.e. Lemma 6.1) is standard and is a version of
the reverse Fatou’s lemma.

Lemma 6.1. The reverse Fatou’s Lemma [St, Theorem 3.2.3|. Let (M, &, u)
be a measure space and let (p,), be a sequence of positive measurable functions
¢n: M — [0,00]. If [sup, ¢, du < oo, then limsup,, [ ¢, dp < [limsup, ¢, dp.

Lemma 6.2. Let X be a metric space and let I1 = (Il;);>4, be an averaging
system. Let ¢ € R and t > ty,. Then the set

/ log M,-.(C)

S

{CeIC(X)

dll;(s) < c}

is open in K(X).
Proof. Write

F:K(X)\{CeK(X)‘/w

/ log M, (C)

dll;(s) < c}

S

= {C € K(X)

dlly(s) > c} .

We must now prove that F'is closed. In order to show this, we fix a sequence (C,,),
in F and C € K(X) with C,, - C. We must now prove that C' € F, i.e. we must
show that

(6.1) /M dll;(s) > c.

s

: . log M__s(C)
For brevity define functions ¢, ¢, [to,00) — [0,00) by ¢(s) = ——<——
log M_—s(Ch)

and @, (s) =

Claim 1. We have fsupn Yn dll; < oo.

Proof of Claim 1. The measure II; has compact support, and we can there-
fore choose Ty > to, such that suppIl; C [tg,Tp]. Next, note that for all n and
log M,—s(Cn) _ logM,—o(X) _ logM, 1, (X)

S — S — to
since suppIl; C [tg, Tp], we now conclude that f sup,, ¢n dll; = ftfo sup,, pn dll; <

Mﬂt([to, To]) < oo This completes the proof of Claim 1.

all s € [ty, Ty] we have p,(s) =

Finally,

to
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Claim 2. We have ¢ < [ limsup,, ¢, dIl,.

Proof of Claim 2. Since C,, € F', we conclude that ¢ < [ _IOgMe;s(Cn) dlL(s) =
f n dll; for all n, whence

(6.2) ¢ < lim sup/gpn dll;.

We also note that it follows from Claim 1 and Lemma 6.1 (i.e. the reverse Fatou’s
Lemma) that

(6.3) limsup/gpn dll, < /limsup on dl;.

The desired result now follows from (6.2) and (6.3). This completes the proof of
Claim 2.

Claim 3. For all s > t, we have limsup,, p,(s) < ¢(s).

Proof of Claim 3. This follows from the fact that M,: K(X) — R is upper
semi-continuous for all » > 0 by Lemma 5.1. This completes the proof of Claim 3.

Finally, we deduce from Claim 2 and Claim 3 that
log M.-s(C
c < /limsupgon dll, < /godl'[t = /Og—()dﬂt(s).
n S
This proves (6.1). O
We now turn towards the proof of Theorem 2.2.(1).

Proof of Theorem 2.2.(1). Since clearly dimy; z(C) > 0, it suffices to prove that
the set

U ={C € K(X) | dimy 5(C) > 0}
is meagre. For u > 0, write

U, = {C € K(X) | ditny, 5(0)) > u},

v= J U

ueQ, u>0

It therefore suffices to show that U, is meagre for all u € Q with u > 0.

We therefore fix u € Q with v > 0. Next, in order to show that U, is meagre,
we note that it suffices to show that there is a countable family (Gy) of open and
dense subsets of IC(X) with NGy C K(X) \ U,. We will now construct the sets Gy.

For t > ty, let
log M-
Lt:{CEK(X)’/MdHt(S)<U}7

and for a positive integer k, put

and note that

@:Uu

t>k

Below we show that the family (Gj), consists of open and dense subsets of K(X)
with (), Gx € K(X) \ U,; this is the contents of the following three claims.

Claim 1. The set G,, is open in K(X).
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Proof of Claim 1. Indeed, since it follows from Lemma 6.2 that L, is open for
all t > ¢y, we immediately conclude that G = |J,, L; is open. This completes the
proof of Claim 1. -

Claim 2. The set Gy, is dense in K(X).

Proof of Claim 2. Let C' € K(X) and let r > 0. We must now find K € K(X)
such that dy (C, K) < rand K € G,,. It is clear that we can choose a finite, and hence

compact, subset K of X such that dgy(C, K) < r. We now show that K € Gj. Indeed,

log M_—¢ (K)

since K is finite, we conclude that — 0 as t — oo, and the consistency

condition therefore implies that [ Mdﬂt( ) = 0 as t — oo. We conclude
immediately from that there is a real number ¢ > n such that [ % dll;(s) <
and so K € Ly C G,,. This completes the proof of Claim 2.

Claim 3. We have (), G,, € K(X) \ U,.

Proof of Claim 3. Let C' € ), G,,. Hence for each positive integer n, we can find
t, > n such that C' € L;,, whence [ M dIl,, (s) < u for all positive integers n,
and so liminf; o [ Mdﬂt( ) < hm inf,, [ Mdﬂtn( ) < u. It follows
immediately from this and Lemma 5.2 that dimy; 5(C) = liminf, o, [ M dIl;(s)
< lim inft_,OOIWdHt(s) < u, whence C' € K(X) \ U,. This completes the
proof of Claim 3.

Combining Claims 1, 2 and 3, we now conclude that U, is meagre. 0

7. Proof of the upper bound: Theorem 2.2.(2)

The purpose of this section is to prove Theorem 2.2.(2). Recall that the notation
K(X;z,r), Kns(X;z,r), An(z,r) and Ap(z) is defined in the statement of The-
orem 2.2. In addition, we will use the following notation throughout this section.
Namely, if (X, d) is a metric space and E, F' C X, the we write

dist(E, F) = IE}J%GF d(x,y).

We first prove three auxiliary lemmas.

Lemma 7.1. Let X be a metric space and let 11 = (Il;);>4, be an averaging
system. Let x,y € X and p,o > 0 and assume that B(x,p) C B(y, o).

(1) Let s > 0. If Ky s(X;y,0) = K(X;y,0), then Ki +(X;z, p) = K(X;, p).
(2) We have Ap(z,p) > An(y, o).

Proof. (1) Let C' € K(X;x,p) and r > 0. We must now find K € K +(X;z,p)
such that dy(C, K) < r. We first prove the following claim.

Claim 1. There is L € K(X) such that L C B(z,p) and dgz(C, L) < 5.

Proof of Claim 1. Let d denote the metric in X. Since C € K(X;z,p), we

conclude that C' C B(x, p). It follows from this that for each x € C, we can choose
Y. € B(x,r) such that d(z,y,) < §. It is clear that C C (J,.o B(Ys, 5), and it
therefore follows from the compactness of C' that there is a finite (and hence compact)
subset E of C' such that C' C |J,.p5 B(¥s, 5). Now put L = {y, |z € E}, and note
that it follows from the construction of L that L C B(z,p) and dy(C, L) < 5. This

completes the proof of Claim 1.
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Let L € IC(X) be the set from Claim 1. Next, note that
[ =dist(L, X \ B(z,p)) > 0.

Since also L C B(z,p) C B(y,0) € B(y,0), we conclude that L € K(X;y,0) =
Kns(X;y,0), and we can therefore choose K € Ky 4(X;y,0) with

dy(L, K) < min(%, 1).
We now claim that

(7.1) K € Kns(X;z,p),
(72) dH(C, K) <.

Proof of (7.1). K € Kns(X;z,p). We first show that K C B(z,r). Indeed, since
dy(L,K) < min(%, 1) < L = 1dist(L, X \ B(z,p)), we deduce that K C B(x,p) C
B(z,p). Next, we show that dimp p(K) > s. However, this follows from the fact

that K € Ki,5(X;y,0). This completes the proof of (7.1).

Proof of (7.2). dy(C,K) < r. This follows from the fact that dy(C, K) <
du(C, L) +dg(L, K) < § + § = r. This completes the proof of (7.2).

Finally, the desired statement follows from (7.1)—(7.2).
(2) This statement follows immediately from (1). O

Lemma 7.2. Let X be a metric space and let 11 = (Il;);>, be an averaging
system. Let ¢ € R and t > ty,. Then the set

/M I (s) > c}

S

{C € K(X)

is open in K(X).
Proof. Write

F = K(X)\ {c € K(X) ‘ /wdm(s) > c}

:{feIC(X)’ /wdﬂt(s)éc}.

We must now prove that F' is closed. In order to show this, we fix a sequence (C,,),
in F'and C € K(X) with C;, — C. We must now prove that f € F, i.e. we must
show that

(7.3) /M dll;(s) <.

S

For brevity define functions ¢, ¢, : [tg, 00) — [0, 00) by ¢(s) = w

log N —s (©)
B .

Claim 1. We have flim inf,, o, dIl; < c.

Proof of Claim 1. Since C,, € F, we conclude that [ ¢, dIl; = [ M dll(s) <
c for all n, whence

and pp(s) =

(7.4) lim inf/gon dll; <ec.
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We also note that it follows from Fatou’s lemma that

(7.5) /lim inf ¢, dII; < liminf / ©p, dI1;.

The desired result now follows from (7.4) and (7.5). This competes the proof of
Claim 2.

Claim 2. For all s > ty, we have ¢(s) < liminf, ¢,(s).

Proof of Claim 2. This follows from the fact that map N,: £(X) — R is lower
semi-continuous for all » > 0 by Lemma 5.1. This completes the proof of Claim 2.

Finally, we deduce from Claim 1 and Claim 2 that

log N,
[ ) = [pan < [imint e, < c.

s
This proves (7.3). O

Lemma 7.3. Let X be a metric space. If Cy,...,Cy,, Ky,..., K, € K(X) and
L e K(X)uU{o}, then

dH(L U UZC,, Lu Usz) S max; dH(Cl, Kz)
Proof. This follows easily from the definition of the Hausdorff metric. O

We now turn towards the proof of Theorem 2.2.(2). The proof of Theorem 2.2.(2)
is based on Proposition 7.4 and Proposition 7.5 presented below.

Proposition 7.4. Let X be a metric space and let I = (I1;);>4, be an averaging
system. Let (x,), be a sequence of points from X and let (r,), be sequence of
positive real numbers.

(1) Forn € N, let
T, ={C e K(X) | foralli =1,...,n, we have
di_mHyB(C' N B(l’l, 57’n)) Z AH($i,’I“n)}.

Then the set T), is co-meagre in K(X).
(2) Let

T={CeK(X)]| foralln e N and for all i =1,...,n, we have
dimyg 5 (C' N By, 50)) > A, )}
Then the set T' is co-meagre in K(X).
Proof. (1) Let d denote the metric in X. We must prove that the set
U=KX)\T,={Ce€ K(X) | thereis an i = 1,...,n such that
dim,5(C N B(w;, 5r,)) < An(wi,ra)}

is meagre.
For w > 0, write

U,={C € K(X) | there is an ¢ = 1,...,n such that
mH,B(C N B(x;, 5ry,)) < An(xg, ry) — u}.

v= J U,

ueQ, u>0

Since
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it clearly suffices to show that U, is meagre for all u € Q with u > 0. We therefore

fix u € Q with u > 0, and note that it suffices to show that there is a countable

family (Gy)x of open and dense subsets of K(X) with NGy, C K(X) \ U,,.
Fori=1,...,nand t > tg, let

/w dll;(s) > An(xi, ) — u} ’

S

Am:{CGMX)

and for tq,...,t, > tg, put
Lt1 tn — {O() U Ol U...uU Cn | Co € K:(X) U {@}7 O() g X \ U?ZIB(.I'Z',T”),
forall e =1,...,n, we have C; € Ay, ,,
for all i = 1,...,n, we have C; C B(x;, 5r,)}.

,,,,,

Finally, for a positive integer k, put
Gk‘ = U Lt1 ..... tn-
t1y.eey tn>k

Below we show that the family (Gj)x consists of open and dense subsets of K(X)
with (), G € Cy(X) \ U,; this is the contents of the following four claims.
Claim 1. The set Ly, ;, is open in K(X).

+.- We must now find r > 0 such that B(C,r) C

-----

-----

Ly, .+.. We first note that since C' € Ly, 4, there are sets Cy, C4, ..., C,, with
C=CyUCiU...uQC,
such that
Co € K(X)U{a},
Co € X\ U1 B(wi, ),
forall e =1,...,n, we have C; € Ay, ,,
foralli=1,...,n, we have C; C B(x;, 5ry).
Let

g dist(Co, Ul B(x;,ry,)) if Cy # 2
" it Co = 2.

and note that if Cy # @, then Cy € X \ U, B(z;,7,) and Cp is compact, whence
do = dist(Co, U, B(z4,7r)) > 0. Also, since C; € Ay, ; for alli =1,...,n and Ay,
is open (by Lemma 7.2), we conclude that there is a positive number p; > 0 such
that B(C;, pi) C Ay, ;. Finally, since C; C B(x;,5ry,) for alli = 1,...,n and C; is
compact, we conclude that d; = dist(C;, X \ B(x;,5r,)) > 0. Now put

i=1,...,
We claim that
(7.6) B(C,r) C L.t
We will now prove (7.6). We therefore let K € B(C,r). We must now prove that
K € Ly, 4,, i.e. we must show that there are sets Ky, K3, ..., K, with

(7.7) K=KyUK,U...UK,
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such that

(7.8) Ky e K(X)U{@},

(79) Ko g X \ U?:lB(l’i,Tn),

(7.10) for alli = 1,...,n, we have K; € Ay, ;,
(7.11) for all i = 1,...,n, we have K; C B(x;,5r,).

Since C; is compact and C; C |J
that

vec, B(x,7), we can find a finite subset E; of C; such

C; = U B(z,r) C U B(x,r)

J?QEZ' Z‘GEi

fort=0,1,...,n. Now put

Ki=Kn U B(z,2r)

zeFE;

We now show that the sets Ky, K1, ..., K, satisfy (7.7)—(7.11).

Proofof (7.7). K = KoUK U...UK,. It is clear that KoUK;U...UK,, C K and
it therefore suffices to prove that K C KoU K; U ... U K,,. We therefore fix x € K.
Since dy(C, K) < r, there is a point y € C' such that d(x,y) < r. Also, since y € C,
there is an index ¢ = 0,1,...,n such that y € C; C |, B(z,7). We conclude from
this that x € (J,cp, (2,27‘) C U.eg, B(z,2r), and so z € K NJ,cp, B(z,2r) = K.
This completes the proof of (7.7).

Proof of (7.8). Ky € K(X)U{@}. If K, = @, then the assertion is clear, so
we may assume that Ky # &. In this case K is compact since K is compact and
U.cm, B(z,2r) is closed (because Ej is finite), whence Ky € K(X). This completes
the proof of (7.8).

Proof of (7.9). Ko € X\U}_, B(w;, 7). If Ky = @, then the assertion is clear, so
we may assume that Ko # @. In this case Ko = KN, g, B(z,2r) C U,eq, B(z,2r)

where 2r < d—2° = %dist(C’o,U?zl B(z;,ry)), and so Ko € X \ U, B(z;,7,). This
completes the proof of (7.9).

Proof of (7.10). For all i = 1,...,n, we have K; € A;,;. We first note that K
is compact. Indeed, this is clear since K is compact and (.. B(z,2r) is closed
(because E; is finite). Next, we prove that K; # @. In order to prove this we first
choose a point = € F;, and note that since z € F; C C; C C and dy(C,K) < r,
we can find a point y € K such that d(z,y) < r. We conclude from this that
y € KNU.,ep, B(z,7) € KNU,cp B(2,2r) = K;, and so K; # &.

Next, we show that K; € L;, ;. We first show that

(7.12) CNB(x,r)#@ and KNB(x,2r)# o

foralli=1,...,n and for all x € E;. Indeed, it is clear that C'N B(z,r) # & because
r € E; CC; CCandx € B(x,r), and since dy(C, K) <rand z € E; CC; C C, we
deduce that there is a point y € K such that d(z,y) < r, whence y € K N B(x, 2r).
This completes the proof of (7.12).
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It follows from (7.12) that C' N B(z,r), K N B(x,2r) € K(X) foralli =1,...,n
and for all x € E;, and Lemma 7.3 therefore implies that

Ay (Cy, ;) = dy (UmeEZC N B, 1), Uyep, K N B, 27«))
(7.13)

< maEXdH(C N B(x,r), KN B(z,2r)) < m%XQT =2r < p;.
reEL; rEL;

Finally, we deduce from (7.13) that K; € B(C;, p;) C Ay, ;. This completes the
proof of (7.10).

Proof of (7.11). For all i = 1,...,n, we have K; C B(x;,5r,). We have K; =
K NUgep, B(x,2r) C Uzee, B(x, 2r) where 2r < % = %dist(Ci,X \ B(x;,5ry)). This
clearly implies that K; C B(z;,2r,) C B(x;,2r,). This completes the proof of (7.11).

The statement in Claim 1 follows from (7.7)—(7.11). This completes the proof of
Claim 1.

Claim 2. The set Gy is open in K(X).

Proof of Claim 2. This follows immediately from Claim 1. This completes the
proof of Claim 2.

Claim 3. The set Gy, is dense in K(X).

Proof of Claim 3. Let C' € K(X) and let r > 0. We must now find K € G
such that dy(C, K) < r, i.e. we must show that there are sets Ky, K1,..., K, and
numbers tq,...,t, with t1,...,%, > k such that if we put

K=K UK U...UK,,

then
(7.14) Ky € K(X)Uu{go},
(7.15) Ko C X\ U~ ,B(z;,ry),
(7.16) forall i =1,...,n, we have K; € Ay, ;,
(7.17) foralli=1,...,n, we have K; C B(z;,5r,),
and
(7.18) dy(C,K) <.
Fix i =1,...,n. Since Aq(z;,7,) > An(z;, ) — 5, we conclude that

ICH,AH(xi,rn)—%(X; T, Tn) = /CH(X; xz’,’f’n)a

and we can therefore find a compact set C; € /CHAH(IZ.’T”)_%(X s X, Ty) With

(7.19) dy(C;,C N B(xg,ry)) <.
Also, since C; € /CHAH(J;Z.M)_%(X; x;,Tyn), we have
(7.20) Ci C B(wi, ),
(7.21) dimy p(Cy) > An(wi,m) — %

It follows from (7.21) that

log N.—s(C; _
lim sup/ Oge—@ dIl;(s) > dimm,p(Cs) > An(zs, ™) — 5 > An(zs,m) — u,
s

t
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and we can therefore find ¢; > k& with

(7.22) /w dlly, (s) > An(zi,rn) — u.

Next, put
K[) =CnN (X \ U?:lB(xia 2Tn)>7

and for i = 1,...,n, put

and
K,=C;US;.
Finally, let
K=KyUK,U...UK,.

We now show that the sets Ky, K, ..., K, and the numbers ¢y, ..., t, satisfy (7.14)—
(7.18).

Proof of (7.14). Ko € K(X)U{@}. We divide the proof into two cases depending
on whether K is empty or not. If Ky = &, then the assertion is clear. Assume now
that Ko # @. In this case K| is compact since K is compact and X \ J;_, B(z;, 2r,,)
is closed, whence Ky € K(X). This completes the proof of (7.14).

Proof of (7.15). Ky C X\U}_, B(xi,r,). We have K, = CN(X\U_, B(z;,2r,))

C X\ U, B(z;,ry,). This completes the proof of (7.15).

Proof of (7.16). For all i = 1,...,n, we have K; € A, ;. We first note that K is
compact. Indeed, since C' is compact and B(x;, 4r,,) \ B(z;,r,) is closed, we conclude
that S; is compact. This clearly implies that K; = C; U S; is compact. Next, we
observe that K; # @. However, this follows immediately from the fact that K; O C;
and C; # & (because C; € ICH,AH(%M),%(X; xi,rn) € K(X)). We therefore conclude

Finally, we show that K; € A, ;. Since K; D C;, we conclude from (7.22) that

/M dIl;, (s) > /M dlly; (s) > An(xi, ) — u.

s s
This completes the proof of (7.16).

Proof of (7.17). For all i = 1,...,n, we have K; C B(x;,5r,). We have K; =
C;US; = C;U(C N (B(x,4r,) \ B(zi,mn))) € By, 1) U B(wy,4r,) C B(x, 5ry).
This completes the proof of (7.17).

Proof of (7.18). dy(C,K) < r. Since X = (X\U;—, B(x;,2r,))UU;_, B(x;,4ry,),

we conclude that C'= (C'N (X \ U;_, B(z;,2r,))) UU;—,(C N B(x;4r,,)), whence

dy(C, K) = dy((C N (X \UZ B(wi, 2ra))) UUZ (C N Blwidrn)), Ko U UL KG).

However, since Ko = C N (X \ U, B(z;,2r,)), the above expression for dy(C, K)
simplifies to

(723) dH(C, K) = dH<K0 U UZL:I(C N B(QZZ, 4T’n)), KO U U?:1K1>
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Since C'N B(x;,4ry,), K; € K(X) fori=1,...,nand Ky € K(X)U{@}, we conclude
from (7.23) and Lemma 7.3 that

dy(C, K) < dp (Ko UUiZy (C'N Blay, 4ry)), Ko UUZ KG)
< max dy(C'N By, 4r,), K;).

~i=1,.,n

(7.24)

Since clearly C' N B(x;,4r,) = (C N B(x,ry)) U (C N (B(x,4r,) \ B(xi,ry))), we
conclude from (7.24) that

dy(C,K) < max dy(C'N B(xy,4ry,), K;)

(728) T N -
= max dy((C'N Bz, ) U(C N (B(xg, 41) \ B(xiyry))), Ci U S;).

..... n

Using the fact that S; = C N (B(x;,41,) \ B(xi,7y)), it follows from (7.25) that

dH(C, K) S ErllaX dH((C N B(IZ‘,T’”)) U Si, Cz U Sz)

Next, since C' N B(z,1,),C; € K(X) fori=1,...,nand S; € K(X) U {2}, we now

deduce from the above and Lemma 7.3 that

(r26) =
< max dy(C N Bz, ), Ch).

T i=1,...,n

Finally, since dy(C N B(x;1,),C;) < rforalli=1,...,n (by (7.19)), it follows from
(7.26) that dy(C, K) < r. This completes the proof of (7.18).

The statement in Claim 3 follows from (7.14)—(7.18). This completes the proof
of Claim 3.
Claim 4. We have (), G, C K(X) \ U,.

Proof of Claim 4. Let C' € (), Gi. Hence for each positive integer k, we can
find real numbers ty1,... ,txn With f1,... tgn > k such that C' € Ly, . In
particular, this implies that there are sets Cy o, Ci 1, ..., Ckpn with

tk,n'

C=CroUCr1U...UCy,
such that

Ck,(] € IC<X) U {@}7
Cro € X\ Uiz B(wi, ),
foralli=1,...,n, we have Cy; € Ay, , 4,

foralli=1,...,n, we have Cy,; C B(z;,5ry).

Since Cy; € Ay, , i, we have

log N_—s i
/M dil, (s) > An(zi,ry) —u.
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This implies that for all = 1,...,n, we have
dimp 5(C N By, 5ry)) = limtsup/ log Ne—- (€ 2 B(wi,5ra)) dIT,(s)
(7.27) > limtsup/ M dI;(s) [since C' N B(xy,57)) 2 Ch.dl
> limksup/ —log Ne;(ck’i) dIl, (s)

Z Aﬂ(xia Tn) — u.
We conclude immediately from (7.27) that C' ¢ M,. This completes the proof of
Claim 4.
Combining Claim 2, Claim 3 and Claim 4, we now conclude that M, is meagre.

(2) This statement follows from (1) since "= (), T),. O

Proposition 7.5. Let X be a metric space and let I1 = (I1;);>4, be an averaging
system. Let (x,), be a sequence of points from X, and let (r,), be sequence of
positive real numbers. Write

T={CeK(X)|forallne€ N and for alli =1,...,n, we have
dimp 5(C' N B(wy,57r,)) > An(ws, )},

and

S ={C e K(X) | dimp 5(C) > sup An(r)},

If (x,)n is dense in X and r,, — 0, then T'C S.
Proof. Let C € T and € > 0. First choose g € C such that
(7.28) An(xg) > sup Ap(z) —e.

zeC
Next, choose 7y > 0 such that
(729) AH<I0, T’o) Z AH($0) — &.
Finally, since the sequence (z,), is dense in X, we can choose iy such that z;, €
B(xy, %0), and since 7, — 0, we can choose ng such that iy < ny and r,, < 3. Since
10 < ng and C' € T, we have
(730) di_mn,B(C) 2 (h_mmB(C N B(%io, 57’n0)) Z An(l'io, Tno)-
Also, since B(x,7n,) € B(wo, 3 +1n,) € B(wo, 3 + %) = B(w,10), it follows from
Lemma 7.1 that
(7.31) An(xig, Thy) = An(zo,70)-
Combining (7.28)—(7.31) yields

EEB(C) Z An(l'io,rno) Z AH({E(),’I“()) Z AH(J?()) — & Z sup AH(ZL') — 26.
zeC

Finally, letting € ™\, 0 gives the desired result. U
We can now prove Theorem 2.2.(2).

Proof of Theorem 2.2.(2). Let the sets S and T be defined as in the statement
of Proposition 7.5. It follows from Proposition 7.4 that T is co-meagre and since X
is separable, it follows from Proposition 7.5 that 7" C S. We conclude from this that
S is co-meagre. This clearly implies the statement in the theorem. U
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