
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 41–64

SHARP TOTAL VARIATION RESULTS

FOR MAXIMAL FUNCTIONS

João P. G. Ramos

Rheinische Friedrich-Wilhelms-Universität Bonn, Mathematisches Institut
Endenicher Allee 60, D-53115 Bonn, Germany; jpgramos@math.uni-bonn.de

Abstract. In this article, we prove some total variation inequalities for maximal functions.

Our results deal with two possible generalizations of the results contained in Aldaz and Pérez

Lázaro’s work [1], one of whose considers a variable truncation of the maximal function, and the

other one interpolates the centered and the uncentered maximal functions. In both contexts, we find

sharp constants for the desired inequalities, which can be viewed as progress towards the conjecture

that the best constant for the variation inequality in the centered context is one. We also provide

counterexamples showing that our methods do not apply outside the stated parameter ranges.

1. Introduction

An object of major interest in harmonic analysis is the Hardy–Littlewood maxi-
mal function, which can be defined as

Mf(x) = sup
t∈R+

1

2t

ˆ x+t

x−t

|f(s)| ds.

Alternatively, one can also define its uncentered version as

M̃f(x) = sup
x∈I

1

|I|

ˆ

I

|f(s)| ds.

The most classical result about these maximal functions is perhaps the Hardy–
Littlewood–Wiener theorem, which states that both M and M̃ map Lp(R) into itself
for 1 < p ≤ ∞, and that in the case p = 1 they satisfy a weak type inequality:

|{x ∈ R : Mf(x) > λ}| ≤
C

λ
‖f‖1,

where C = 11+
√
61

12
is the best constant possible found by Melas [12] for M . The same

inequality also holds in the case of M̃ above, but this time with C = 2 being the best
constant, as shown by F. Riesz [13].

In the remarkable paper [6], Kinnunen proves, using functional analytic tech-
niques and the aforementioned theorem, that, in fact, M maps the Sobolev spaces
W 1,p(R) into themselves, for 1 < p ≤ ∞. Kinnunen also proves that this result holds
if we replace the standard maximal function by its uncentered version. This opened
a new field of studies, and several other properties of this and other related maximal
functions were studied. We mention, for example, [4, 3, 5, 7, 9].

Since the Hardy–Littlewood maximal function fails to be in L1 for every nontrivial
function f and the tools from functional analysis used are not available either in the

https://doi.org/10.5186/aasfm.2019.4409
2010 Mathematics Subject Classification: Primary 26A45, 42B25, 46E35.
Key words: Hardy–Littlewood maximal function, functions of bounded variation, sharp

estimates.



42 João P. G. Ramos

case p = 1, an important question was whether a bound of the form ‖(Mf)′‖1 ≤
C‖f ′‖1 could hold for every f ∈ W 1,1.

In the uncentered case, Tanaka [15] provided us with a positive answer to this
question. Explicitly, Tanaka proved that, whenever f ∈ W 1,1(R), then M̃f is weakly

differentiable, and it satisfies that ‖(M̃f)′‖1 ≤ 2‖f ′‖1. Here, W 1,1(R) stands for the
Sobolev space {f : R → R : ‖f‖1 + ‖f ′‖1 < +∞}.

Some years later, Aldaz and Pérez Lázaro [1] improved Tanaka’s result, showing

that, whenever f ∈ BV (R), then the maximal function M̃f is in fact absolutely

continuous, and V(M̃f) = ‖(M̃f)′‖1 ≤ V(f), with C = 1 being sharp, where we

take the total variation of a function to be V(f) := sup{x1<···<xN}=P
∑N−1

i=1 |f(xi+1)−
f(xi)|, and consequently the space of bounded variation functions as the space of
functions f : R → R : ∃g; f = g a.e. and V(g) < +∞. In this direction, Bober,
Carneiro, Hughes and Pierce [2] studied the discrete version of this problem, obtaining
similar results.

In the centered case, many questions remain unsolved. Surprisingly, it turned
out to be harder than the uncentered one, due to the contrast in smoothness of
Mf and M̃f . In [8], Kurka showed the endpoint question to be true, that is, that
V(Mf) ≤ CV(f), with C = 240, 004. Unfortunately, his method does not give the
best constant possible, with the standing conjecture being that C = 1 is the sharp
constant.

In [16], Temur studied the discrete version of this problem, proving that for every
f ∈ BV (Z) we have V(Mf) ≤ C ′V(f), where C ′ > 106 is an absolute constant. The
standing conjecture is again that C ′ = 1 in this case, which was in part backed up by
Madrid’s optimal results [11]: If f ∈ ℓ1(Z), then Mf ∈ BV (Z), and V(Mf) ≤ 2‖f‖1,
with 2 being sharp in this inequality.

Our main theorems deal with—as far as the author knows—the first attempt
to prove sharp bounded variation results for classical Hardy–Littlewood maximal
functions. Indeed, we may see the classical, uncentered Hardy–Littlewood maximal
function as

M̃f(x) = sup
x∈I

1

|I|

ˆ

I

|f(s)| ds = sup
(y,t) : |x−y|≤t

1

2t

ˆ y+t

y−t

|f(s)| ds.

Notice that this supremum is not necessarily attained for every function f and at
every point x ∈ R, but this shall not be a problem for us in the most diverse cases,
as we will see throughout the text. This way, we may look at this operator as a
particular case of the wider class of nontangential maximal operators

Mαf(x) = sup
|x−y|≤αt

1

2t

ˆ y+t

y−t

|f(s)| ds.

Indeed, from this new definition, we get directly that
{

Mαf = Mf, if α = 0,

Mαf = M̃f, if α = 1.

As in the uncentered case, we can still define ‘truncated’ versions of these op-
erators, by imposing that t ≤ R. These operators are far from being a novelty:
several references consider those all around mathematics, among those the classical
[14, Chapter 2], and the more recent, yet related to our work, [3]. An easy argument
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(see Section 5.1 below) proves that, if α < β, then

V(Mβf) ≤ V(Mαf).

This implies already, by the main Theorem in [8], that there exists a constant A ≥ 0
such that V(Mαf) ≤ AV(f), for all α > 0. In the intention of sharpening this result,
our first result reads, then, as follows:

Theorem 1. Fix any f ∈ BV (R). For every α ∈ [1
3
,+∞), we have that

(1) V(Mαf) ≤ V(f).

There exists an extremizer f for the inequality (1). If α > 1
3
, then any positive

extremizer f to inequality (1) satisfies:

• limx→−∞ f(x) = limx→+∞ f(x).
• There is x0 such that f is non-decreasing on (−∞, x0) and non-increasing on
(x0,+∞).

Finally, for every α ≥ 0 and f ∈ W 1,1(R), Mαf ∈ W 1,1
loc

(R).

Notice that stating that a function g ∈ W 1,1
loc

(R) is the same as asking it to be
locally absolutely continuous. Our ideas to prove this theorem and theorem 3 are
heavily inspired by the ones in [1]. Our aim will always be to prove that, when
f ∈ BV (R), then the maximal function Mαf is well-behaved on the detachment set

Eα = {x ∈ R : Mαf(x) > f(x)}.

Namely, we seek to obtain that the maximal function does not have any local maxima
in the set where it disconnects from the original function. Such an idea, together with
the concept of the detachment set Eα, are also far from being new, having already
appeared at [1, 4, 3, 15], and recently at [10]. More specific details of this can be
found in the next section.

In general, our main ideas are contained in Lemma 2, where we prove that the
region in the upper half plane that is taken into account for the supremum that
defines

M1
≡Rf = sup

x∈I : |I|≤2R

−

ˆ

I

|f(s)| ds,

where we define

−

ˆ

I

g(s) ds :=
1

|I|

ˆ

I

g(s) ds,

is actually a (rotated) square, and not a triangle—as a first glance might impress on
someone—, and in the comparison of Mαf and M1

≡R over a small interval, in order
to establish the maximal attachment property.

We may ask ourselves if, for instance, we could go lower than 1/3 with this
method. Our next result, however, shows that this is the optimal bound for this
technique:

Theorem 2. Let α < 1
3
. Then there exists f ∈ BV (R) such that f ≥ 0, f(x) =

lim supy→x f(y) and a point xα ∈ R such that xα is a local maximum of Mαf , but
Mαf(xα) > f(xα).

We could, alternatively, use other normalizations on f more suitable to each Mαf .
See the next section for further definitions and motivations for such normalizations.

We can inquire ourselves whether we can generalize the results from Aldaz and
Pérez Lázaro in yet another direction, though. With this in mind, we notice that
Kurka [8] mentions in his paper that his techniques allow one to prove that some
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Lipschitz truncations of the center maximal function, that is, maximal functions of
the form

M0
Nf(x) = sup

t≤N(x)

1

2t

ˆ x+t

x−t

|f(s)| ds,

are bounded from BV (R) to BV (R)—with some possibly big constant—if Lip(N) ≤
1. Inspired by it, we define the N-truncated uncentered maximal function as

M1
Nf(x) = sup

|x−y|≤t≤N(x)

−

ˆ y+t

y−t

|f(s)| ds.

The next result deals then with an analogous of Kurka’s result in the case of the
centered maximal functions. In fact, we achieve even more in this case, as we have
also the explicit sharp constants for that. In details, the result reads as follows:

Theorem 3. Let N : R → R+ be a measurable function. If Lip(N) ≤ 1
2
, we

have that, for all f ∈ BV (R),

V(M1
Nf) ≤ V(f).

Moreover, the result is sharp, in the sense that there are non-constant functions f
such that V(f) = V(M1

Nf).

Again, we are also going to use a careful maxima analysis in this case. Actually,
we are going to do it both in theorems 1 and 3 for the non-endpoint cases α > 1

3
and

Lip(N) < 1
2
, while the endpoints are treated with a limiting argument.

In the same way, one may ask whether we can ask our Lipschitz constant to be
greater than 1

2
in this result. Regarding this question, we prove in section 4.3 the

following negative answer:

Theorem 4. Let c > 1
2

and

f(x) =

{

1, if x ∈ (−1, 0);

0, otherwise.

Then there is a function N : R → R≥0 such that Lip(N) = c and

V(M1
Nf) = +∞.

Acknowledgements. The author would like to thank Christoph Thiele, for the
remarks that led him to the full range α ≥ 1

3
at Theorem 1, as well as to the proof

that this is sharp for this technique, and Olli Saari, for enlightening discussions about
the counterexamples in the proof of Theorem 4 and their construction. He would
also like to thank Emanuel Carneiro and Mateus Sousa for helpful comments and
discussions, many of which took place during the author’s visit to the International
Centre for Theoretical Physics in Trieste, to which the author is grateful for its
hospitality, and Diogo Oliveira e Silva, for his thorough inspection and numerous
comments on the preliminary versions of this paper. The author would like to thank
also the anonymous referees, whose corrections and ideas, among which the use of a
new normalization, have simplified and cleaned a lot this manuscript. Finally, the
author acknowledges financial support from the Hausdorff Center of Mathematics
and the DAAD.



Sharp total variation results for maximal functions 45

2. Basic definitions and properties

Throughout the paper, I and J will usually denote open intervals, and l(I), l(J),
r(I), r(J) their left and right endpoints, respectively. We also denote, for f ∈ BV (R),
the one-sided limits f(a+) and f(a−) to be

f(a+) = lim
xցa

f(x) and f(a−) = lim
xրa

f(x).

We also define, for a general function N : R → R, its Lipschitz constant as

Lip(N) := sup
x 6=y∈R

|N(x)−N(y)|

|x− y|
.

By considering the arguments and techniques contained in the lemmata from [1],
we may consider sometimes a function in BV (R) endowed with the normalization
f(x) = lim supy→x f(y), ∀x ∈ R. At some other times, however, we might need to
work with a normalization a little more friendly to the maximal functions involved.
Let, then, for a fixed α ∈ (0, 1],

Nαf(x) = lim sup
(y,t)→(x,0): |y−x|≤αt

1

2t

ˆ y+t

y−t

|f(s)| ds.

This coincides, by definition, with f almost everywhere, as bounded variation func-
tions are continuous almost everywhere. Moreover, this normalization can be stated,
in a pointwise context, as

Nαf(x) =
(1 + α) lim supy→x |f(y)|+ (1− α) lim infy→x |f(y)|

2
.

With this normalization, we see that, for any f ∈ BV (R),

Mαf(x) ≥ Nαf(x), for each x ∈ R.

This normalization, however, is not friendly to boundary points: the sets {Mαf > f}
might not be open when we adopt it, as the example of f = χ(0, 1−α

4
] +

1
2
χ( 1−α

4
, 1−α

2
] +

χ( 1−α
2

,1] endowed with Nαf shows. This function has the property that Mαf
(

1−α
2

)

>

Nαf
(

1−α
2

)

, but Mαf = f at
(

1−α
2
, 1
)

.
Consider then Nαf , and notice that the situations as in the example above can

only happen if Nαf is discontinuous at a point x. We then let

(2) Ñαf(x) =

{

Nαf(x), if Mαf(x) > lim supy→x f(y);

Mαf(x), if lim supy→x f(x) ≥ Mαf(x) ≥ Nαf(x).

Of course, we are only changing the points in which lim infy→x f(y) < Nαf <
lim supy→x f(y), and thus this normalization does not increase the variation, i.e.,

V(Ñαf) ≤ V(f). Again, by adapting the lemmata in [1] to this context, one checks
that we may assume, without loss of generality, that our function has this normal-
ization. We will, for shortness, say we are using NORM(α) whenever we use this
normalization. Notice that NORM(1) is the normalization used by Aldaz and Pérez
Lázaro.

We mention also a couple of words about the maxima analysis performed through-
out the paper. In the paper [1], the authors developed an ingenious way to prove
the sharp bounded variation result for the uncentered maximal function. Namely,
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they proved that, whenever f ∈ BV (R), then the maximal function M̃f is actually
continuous, and the (open) set

E = {M̃f > f} =
⋃

jIj

satisfies that, in each of the intervals Ij, M̃f has no local maxima. More specifically,

they observed that every local maximum x0 of M̃f satisfies that M̃f(x0) = f(x0). In
our case, we are going to need the general version of this property, as the statement
with local maxima of Mαf(x0) may not hold. It is much more of an informal principle
than a property itself, but we shall state it nonetheless, for the sake of stressing its
impact on our methods.

Property 1. We say that an operator O defined on the class of bounded varia-
tion functions has a good attachment at local maxima if, for every f ∈ BV (R) and
local maximum x0 of Of over an interval (a, b), with Of(x0) > max(Of(a),Of(b)),
then either Of(x0) = |f(x0)| or there exists an interval (a, b) ⊃ I such that Of is
constant on I and there is y ∈ I such that Of(y) = |f(y)|.

The intuition behind this principle is that, for such operators, one usually has
that V(Of) ≤ V(f), as skimming through the proofs in [1] suggests. This is, as one
should expect, the main tool to prove Theorems 1 and 3.

3. Proof of Theorems 1 and 2

In what follows, let f ∈ BV (R) have either NORM(1) or NORM(α), where the
specified normalization used will be stated in each context.

3.1. Analysis of maxima for Mα, α > 1

3
. Here, we prove some major

facts that will facilitate our work. Let then [a, b] be an interval, and suppose that
Mαf has a strict local maximum at x0 ∈ (a, b). That is, we suppose that Mαf(x0)
is maximal over [a, b], with Mαf(x0) > max{Mαf(a),Mαf(b)}. Suppose also that
Mαf(x0) = u(y, t), for some (y, t) ∈ {(z, s); |z − x0| ≤ αs}, where we define the
function u : R×R+ → R+ as

u(y, t) =
1

2t

ˆ y+t

y−t

|f(s)| ds.

Such an assumption is possible, as we would otherwise have that either

• a sequence (y, t) → (x0, 0) such that −
´ y+t

y−t
|f(s)| ds → Mαf(x0), which implies

|f(x0)| = Mαf(x0) by the normalization;

• a sequence (y, t) with t → ∞ such that −
´ y+t

y−t
|f(s)| ds → Mαf(x0), which

implies that either Mαf(a) or Mαf(b) is bigger than or equal to Mαf(x0), a
contradiction.

As Mαf(x0) = u(y, t), we have that Mαf(x0) = Mαf(y). Moreover, we claim
that

[y − αt, y + αt] ⊂ (a, b).

If this did not hold, then [y − αt, y + αt] ∋ either a or b. Let us suppose, without
loss of generality, that a ∈ [y − αt, y + αt]. But then

a ≥ y − αt =⇒ |a− y| ≤ αt =⇒ Mαf(a) ≥ Mαf(y) ≥ Mαf(x0),

a contradiction to our assumption of strictness of the maximum. This implies that,
as for any z ∈ [y − αt, y + αt] =⇒ |z − y| ≤ αt, the maximal function Mαf is
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constant over the interval [y − αt, y + αt]. Moreover, we have that the supremum of

u(z, s), for (z, s) ∈
⋃

z′∈[y−αt,y+αt]{(z
′′, s′′) : |z′′ − z′| ≤ αs′′} =: C(y, α, t),

is attained for (z, s) = (y, t).
By standard techniques, we shall assume f ≥ 0 from now on. Our next step is

then to find a subinterval I of [y − αt, y + αt] and a R = R(y, α, t) such that, over
this interval I, it holds that

M1
≡Rf ≡ Mαf.

Here, M1
≡R stands for the operator supx∈I,|I|≤2R −

´

I
|f(s)| ds. For that, we need to

investigate a few properties of the restricted maximal function M1
≡Rf . This is done

via the following:

Lemma 1. (Boundary Projection Lemma) Let (y, t) ∈ R×R+. Let us denote

1

2t

ˆ y+t

y−t

f(s) ds = u(y, t).

If (y, t) ∈ {(z, s); 0 < |z − x| ≤ s}, then

u(y, t) ≤ max

{

u

(

x+ y − t

2
,
x− y + t

2

)

, u

(

x+ y + t

2
,
y − x+ t

2

)}

.

Proof. The proof is simple: in case |x− y| = t, then the inequality is trivial, so
we assume |x− y| < t. We then just have to write

u(y, t) =
1

2t

ˆ y+t

y−t

f(s) ds =
1

2t

ˆ x

y−t

f(s) ds+
1

2t

ˆ y+t

x

f(s) ds

=
x− y + t

2t

1

x− y + t

ˆ x

y−t

f(s) ds+
y − x+ t

2t

1

y − x+ t

ˆ y+t

x

f(s) ds

=
x− y + t

2t
u

(

x+ y − t

2
,
x− y + t

2

)

+
y − x+ t

2t
u

(

x+ y + t

2
,
y − x+ t

2

)

≤ max

{

u

(

x+ y − t

2
,
x− y + t

2

)

, u

(

x+ y + t

2
,
y − x+ t

2

)}

.

�

(y, t)

y − αt y y + αt

Figure 1. The region C(y, α, t).

Let Mr,Af(x) = sup0≤t≤2A
1
t

´ x+t

x
|f(s)| ds, and define Ml,Af in a similar way,

there the subindexes “r” and “l” represent, respectively, “right” and “left”. These
operators are present out of the context of sharp regularity estimates for maximal
functions, just like in [13]. In the realm of regularity of maximal function, though,
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the first to introduce this notion was Tanaka [15]. As a corollary, we may obtain the
following:

Corollary 1. For every f ∈ L1
loc
(R), it holds that

sup
|z−x|+|t−R|≤R

u(z, t) ≤ max{Mr,Rf(x),Ml,Rf(x)}.

From this last corollary, we are able to establish the following important—and,
as far as the author knows, new—lemma:

Lemma 2. For every f ∈ L1
loc
(R), we have also that

M1
≡Rf(x) = sup

|z−x|+|t−R|≤R

u(z, t).

Proof. From Corollary 1, we have that

M1
≡Rf(x) := sup

|x−y|≤t≤R

u(y, t) ≤ sup
|z−x|+|t−R|≤R

u(z, t)

≤ max{Mr,Rf(x),Ml,Rf(x)} ≤ M1
≡Rf(x).

That is exactly what we wanted to prove. �

(y, t)

(

x+y−t
2

, x−y+t
2

)

(

x+y+t
2

, y−x+t
2

)

x

Figure 2. Illustration of Lemma 1: the points
(

x+y−t

2
, x−y+t

2

)

and
(

x+y+t

2
, y−x+t

2

)

are the

projections of (y, t) over the lines t = y − x and t = y + x, respectively.

Let R be then selected such that t
2
< R and R(1 − α) < αt. For α > 1

3
this is

possible. This condition is exactly the condition so that the region

{(z, t′) : |z − y|+ |t′ − R| ≤ R} ⊂ C(y, α, t).

(y, t)

y − αt y y + αt

Figure 3. In the figure, the dark gray area represents the region that our Lemma gives, for

some 1

2
t < R < α

1−α
t, and the black interval is one in which Mαf = M1

≡Rf ≡ Mαf(y).
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Now we are able to end the proof: if I is a sufficiently small interval around y,
then, by continuity, it must hold true that the regions

{(z, t′) : |z − y′|+ |t′ −R| ≤ R} ⊂ C(y, α, t),

for all y′ ∈ I. This is our desired interval for which Mαf ≡ M1
≡Rf . But we already

know that, from [1, Lemma 3.6], M1
≡Rf satisfies a stronger property of control of

maxima. Indeed, in order to fit it into the context of Aldaz and Pérez Lázaro, we
note that, by adopting NORM(1), f becomes automatically upper semicontinuous,
and also f ≤ M1

≡Rf everywhere. In particular, we know that, if M1
≡Rf is constant in

an interval, then it must be equal to the function f at every point of that interval.
But this is exactly our case, as we have already noticed that Mαf is constant on
[y − αt, y + αt], and therefore also on I. This implies, in particular, that

Mαf(y) = M1
≡Rf(y) = f(y),

which concludes our analysis of local maxima.

3.2. Proof of V(Mαf) ≤ V(f), for α ≥ 1

3
. We remark, before beginning,

that this strategy, from now on, is essentially the same as the one contained in [1].
We will, therefore, assume that f ≥ 0 throughout.

First, we say that a function g : I → R is V-shaped if there exists a point c ∈ I
such that

g|(l(I),c) is non-increasing and g|(c,r(I)) is non-decreasing.

We then present two different proofs of this inequality, the first using an approxima-
tion and the second working directly with general BV functions.

First proof. For this, we will suppose that f has NORM(1) as normalization.
One can easily check then that Mαf ∈ C(R) for f a Lipschitz function. In fact,
it is not difficult to show also that Mαf is continuous at x if f is continuous at x.
Moreover, we may prove an additional property about it that will help us later:

Lemma 3. (Reduction to the Lipschitz case) Suppose we have that

V(Mαf) ≤ V(f), ∀f ∈ BV (R) ∩ Lip(R).

Then the same inequality holds for all Bounded Variation functions, that is,

V(Mαf) ≤ V(f), ∀f ∈ BV (R).

Proof. Let ϕ ∈ S(R) be a smooth, nonnegative function such that
´

R
ϕ(t) dt = 1,

supp(ϕ) ⊂ [−1, 1], ϕ is even and non-increasing on [0, 1]. Call ϕε(x) =
1
ε
ϕ(x

ε
). We

define then fε(x) = f ∗ ϕε(x). Notice that these functions are all Lipschitz (in fact,
smooth) functions. Moreover, by standard theorems on approximate identities, we
have that fε(x) → f(x) almost everywhere. Therefore, assuming the theorem to hold
for Lipschitz functions, we have:

V(Mαfε) ≤ V(fε) = sup
x1<···<xN

N−1
∑

i=1

|fε(xi+1)− fε(xi)|

≤

ˆ

R

ϕε(t) sup
x1<···<xN

(

N−1
∑

i=1

|f(xi+1 − t)− f(xi − t)|

)

dt ≤ V(f).

Thus, it suffices to prove that

(3) lim sup
y→x

Mαf(y)≥ lim sup
ε→0

Mαfε(x) ≥ lim inf
ε→0

Mαfε(x) ≥ lim inf
y→x

Mαf(y), ∀x ∈ R,
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as then

(4) V(Mαf) = V(lim inf
ε→0

Mαfε) = V(lim sup
ε→0

Mαfε) = V( lim
j→∞

Mαfεj) ≤ V(f),

which follows from the following

Lemma 4. Let gε, g be bounded functions such that

(5) lim sup
y→x

g(y) ≥ lim sup
ε→0

gε(x) ≥ lim inf
ε→0

gε(x) ≥ lim inf
y→x

g(y),

for all x ∈ R. Assume that each gε is continuous, ∀ε > 0, and that g is continuous
up to a countable set, in which the lateral limits g(x−), g(x+) still exist, and it holds
that g(x) ∈ [min{g(x−), g(x+)},max{g(x−), g(x+)}]. Then

V(g) = V(lim sup
ε→0

gε) = V(lim inf
ε→0

gε).

Proof of Lemma 4. Let g1 = lim supε→0 gε, g2 = lim infε→0 gε. We first prove
that V(g) is less than both V(g1), V(g2). For that, fix a finite partition of the real
line P = {x1 < · · · < xN}. In order to estimate the variation VP(g), we need to
divide into two cases: (i) if g is continuous at every xi, then we let the partition
remain as it is; (ii) if g is not continuous at a certain xi, we then pick two points
x′
i, x

′′
i such that g is continuous at both of them, xi−1 < x′

i < xi < x′′
i < xi+1 and

g(xi) lies between g(x′
i) and g(x′′

i ). The assumptions on g show that this is always

possible. Add these new points to the partition P and call the new one P ′. By the
way we picked the points x′

i, x
′′
i , we see that the existence of the points xi in the new

partition is superfluous, and therefore we might think of P ′ as consisting of the points
of P where g is continuous and the x′

i, x
′′
i . By (5), we see that the limit limε→0 gε in

fact exists for each point of this P ′ and is equal to g. From that,

VP(g) ≤ VP ′(g) = VP ′(g1) = VP ′(g2).

The desired inequality then follows by taking supremum over all finite partitions of
the real line. The reverse inequality consists then of applying the exact same strategy
to g0, g1, by noticing that, from (5), they satisfy the same assumptions as g. �

The reader might notice one still has to prove that Mαf := g satisfies the as-
sumptions in Lemma 4. Indeed, one straightforward way to do so is to use the result
in subsection 5.1 to conclude that Mαf , as a BV -function, must fulfill all the prop-
erties above. A proof without resorting to this result is however also possible, but
we omit it for shortness.

Let us suppose, for the sake of a contradiction, that either the first or the third
inequalities in 3 are not fulfilled. Therefore, we focus on the first inequality: suppose
that there exists a real number x0, a sequence εk → 0 and a positive real number
η > 0 such that

Mαfεk(x0) > (1 + 2η) lim sup
y→x0

Mαf(y).

By definition, there exists a sequence (yk, rk) with |yk − x0| ≤ αrk and

−

ˆ yk+rk

yk−rk

fεk(s) ds > (1 + η) lim sup
y→x0

Mαf(y).

Case 1. Suppose rk → 0. By the way we normalized f , there is an interval I ∋ x0

such that f(y) ≤ (1 + η/4)f(x0), ∀y ∈ I. But then, by the support properties of ϕ
and for k sufficiently large, we would have that (1 + η/2)f(x0) ≥ Mαfεk(x0), which
is a contradiction, as lim supy→x0

Mαf(y) ≥ f(x0).
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Case 2. Let then infk rk > 0. Then, by Fubini’s theorem and manipulations,

−

ˆ yk+rk

yk−rk

fεk(s) ds = −

ˆ yk+rk

yk−rk

(
ˆ εk

−εk

ϕεk(t)f(s− t) dt

)

ds

=

ˆ εk

−εk

ϕεk(t)

(

−

ˆ yk+rk

yk−rk

f(s− t) ds

)

dt ≤
rk + εk

rk
Mαf(x0).

This implies rk ≤ εk
η
→ 0, which is another contradiction.

For the third inequality, we divide it once again: if Mαf(x0) = u(y, t) for some
(y, t) 6= (x0, 0), then, by L1 convergence of approximate identities, one easily gets
that lim infε→0M

αfε(x0) ≥ Mαf(x0). If not, pick (y, t) such that Mαf(x0) ≤
u(y, t) + δ

2
. Use then the L1 convergenge of approximate identities in the inter-

val (y − t, y + t). The reverse inequality, and therefore the lemma, is proved, as
Mαf(x) ≥ lim infy→xM

αf(y). �

Our main claim is then the following:

Lemma 5. Let f ∈ Lip(R) ∩BV (R). Then, over every interval of the set

Eα = {x ∈ R : Mαf(x) > f(x)} =
⋃

j∈Z
Iαj ,

it holds that Mαf is either monotone or V shaped in Iαj .

Proof. The proof goes roughly as the first paragraph of the proof of Lemma 3.9 in
[1]: let Iαj = (l(Iαj ), r(I

α
j )) =: (lj , rj), and suppose that Mαf is not V shaped there.

Therefore, there would be a maximal point x0 ∈ Iαj and an interval J ⊂ Iαj such
that Mαf has a strict local maximum at x0 over J . Then, by the maxima analysis
we performed, we see that we have reached a contradiction from this fact alone, as
J ⊂ Eα. We omit further details, as they can be found, as already mentioned, at [1,
Lemma 3.9]. �

We also need the following

Lemma 6. If f ∈ BV (R) ∩ Lip(R), then, for every (maximal) open interval
Iαj ⊂ Eα, we have that

Mαf(l(Iαj )) = f(l(Iαj )),

and an analogous identity holds for r(Iαj ).

The proof of this Lemma is straightforward, and we therefore skip it. To finalize
the proof in this case for α > 1

3
, we just notice that we can, in fact, bound the

variation of Mαf inside every interval Iαj . In fact, we have directly from the last
claim that, in case Mαf is V shaped on Iαj , then there exists cj ∈ Iαj such that Mαf
is non-increasing on (lj , cj) and non-decreasing on (cj , rj). We then calculate:

VIα
j
(Mαf) = |Mαf(l(Iαj ))−Mαf(cj)|+ |Mαf(r(Iαj ))−Mαf(cj)|

≤ |f(l(Iαj ))− f(cj)|+ |f(r(Iαj ))− f(cj)| ≤ VIαj
(f).

The way to formally end the proof is the following: let P = {x1 < · · · < xN}, and
let A := {j ∈ N : ∃xi ∈ P ∩ Iαj }. Clearly, the index set A is finite. Moreover, there
are at most two j ∈ N such that Iαj is not a bounded interval. With this in mind,
we refine the partition P by adding to it the following points:

• If j ∈ A and Mαf is monotone over Iαj , then add lj , rj to the partition;
• If j ∈ A and Mαf is V shaped over Iαj , then add lj, rj and the point cj to the

partition.
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Notice that this covers only the case of Iαj being bounded. For the case of unbounded
intervals, one might proceed in a similar fashion, by adding directly a “sufficiently
large” point in each interval instead of the (missing) endpoint. Notice this strategy
allows us to deal with unbounded intervals over which the maximal function is either
monotone or V shaped: indeed, if limx→−∞ f(x) = L, limx→+∞ f(x) = M , and we
suppose L ≥ M (without loss of generality), then:

(A) if there is an interval Iαj0 = (−∞, rj0), then it is easy to prove that limx→−∞
Mαf(x) = L. Therefore, by ‘choosing a point’ x′ sufficiently large, we see
that |Mαf(x′)− f(x′)| has to be small, and the argument follows;

(B) if there is an interval Iαj1 = (lj1,+∞), then a standard argument proves that

limx→+∞ Mαf(x) = 1+α
2
L + 1−α

2
M . But, also by a standard argument, one

proves that Mαf(x) ≥ 1+α
2
L+ 1−α

2
M for each x ∈ R. This shows that Mαf

cannot be “strictly" V shaped over Iαj1. As we know from Lemma 6 that
Mαf(lj1) = f(lj1) and that Mαf has to be non-increasing over Iαj1, choosing
a ‘sufficiently large’ point only helps us, as

VIαj1
(Mαf) = f(lj1)−

(

1 + α

2
L+

1− α

2
M

)

≤ f(lj1)−M ≤ VIαj1
(f).

Call the new partition obtained by this procedure P ′. By the calculation above and
the fact that, if f ∈ Lip(R) =⇒ Mαf ≥ f everywhere, and in particular Mαf = f
at R\Eα, one obtains that

VP(M
αf) ≤ VP ′(Mαf) ≤ V(f).

By taking a supremum over all partitions, we finish the result for α > 1
3
. On the

other hand, it is straight from the definition that

β ≤ α =⇒
β

α
Mαf ≤ Mβf ≤ Mαf.

This implies that, for a partition P as above,

N−1
∑

i=1

|M
1

3f(xi+1)−M
1

3 f(xi)| ≤ lim
αց 1

3

N−1
∑

i=1

|Mαf(xi+1)−Mαf(xi)| ≤ V(f).

The theorem follows, again, as before.

Second proof. For this part, we assume that f has NORM(α) normalization.
The argument here is morally the same, with just a couple of minor modifications.
Therefore, this section might seem a little bit superfluous now, even though its reason
of being is going to be shown while we characterize the extremizers.

Claim 1. Let Eα = {x ∈ R : Mαf(x) > f(x)}. This set is open for any f ∈
BV (R) normalized wiht NORM(α) and therefore can be decomposed as

Eα =
⋃

j∈ZI
α
j ,

where each Iαj is an interval. Furthermore, the restriction of Mαf to each of those
intervals is either a monotone function or a V shaped function with a minimum at
cj ∈ Iαj . Moreover, Mαf(cj) < min{Mαf(l(Iαj )),M

αf(r(Iαj ))}.

Proof of the claim. The claim seems quite sophisticated, but its proof is simple,
once one has done the maxima analysis we have done. The fact that Eα is open is
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easy to see. In fact, let x0 ∈ Eα. By the lower semicontinuity of Mαf at x0 and the
fact that we normalized f with NORM(α),

lim inf
z→x0

Mαf(z) ≥ Mαf(x0) > lim sup
z→x0

f(z).

This shows that, for z close to x0, the strict inequality should still hold, as desired.
The second part follows in the same fashion as the proof of Lemma 5, and we

therefore omit it. �

To finish the proof of the fact that VIαj
(Mαf) ≤ VIαj

(f) also in this case we just
need one more lemma:

Lemma 7. For every (maximal) open interval Iαj ⊂ Eα we have that

Mαf(l(Iαj )) = f(l(Iαj )),

and an analogous identity holds for r(Iαj ).

This is, just like Lemma 6, direct from the definition and the maximality of the
intervals Iαj . The conclusion in this case uses Lemma 7 in a direct fashion, combined
with the strategy for the first proof: namely, the estimate

VIαj
(Mαf) ≤ |Mαf(l(Iαj ))−Mαf(cj)|+ |Mαf(r(Iαj ))−Mαf(cj)|

≤ |f(l(Iαj ))− f(cj)|+ |f(r(Iαj ))− f(cj)| ≤ VIαj
(f)

still holds, by Lemma 7 and by the fact that cj ∈ Iαj . This finishes finally the second
proof of Theorem 1.

3.3. Absolute continuity on the detachment set. We prove briefly the fact
that, for f ∈ W 1,1(R), then we have that Mαf ∈ W 1,1

loc
(R) for any 1 > α > 0, as the

case α = 0 has been dealt with by Kurka [8], in Corollary 1.4.
Indeed, let

Eα,k = {x ∈ Eα : M
αf(x) = sup

(y,t) : |y−x|≤αt, t≥ 1

2k

1

2t

ˆ y+t

y−t

|f(s)| ds}.

Then we see that Eα =
⋃

k≥1Eα,k. Moreover, for x, y ∈ Eα,k, let then (y1, t1) have this
property for x. Suppose also, without loss of generality, that y ≥ x and Mαf(x) >
Mαf(y). By assuming that y > y1 + αt1—as otherwise Mαf(x) ≤ Mαf(y)—, we
have that

Mαf(x)−Mαf(y) ≤
1

2t1

ˆ y1+t1

y1−t1

|f(s)| ds− u

(

y + αy1 − αt1
1 + α

,
y − y1 + t1

1 + α

)

≤
2

1+α
(y − y1)−

2α
1+α

t1

2t1 ·
2

1+α
(y − y1 + t1)

ˆ y1+t1

y1−t1

|f(s)| ds

≤
2

1+α
|y − x|

2
1+α

(y−y1+t1)
‖f‖∞ ≤

|x− y|

(1 + α)t1
‖f‖∞ ≤

2

1 + α
k|x−y|‖f‖∞.

This shows that Mαf is Lipschitz continuous with constant ≤ 2
1+α

k‖f‖∞ on each
Eα,k. The proof of the asserted fact, however, follows from this, by using the well-
known Banach–Zarecki lemma:

Lemma 8. (Banach–Zarecki) A function g : I → R is absolutely continuous if
and only if the following conditions hold simultaneously:

(A) g is continuous;
(B) g is of bounded variation;
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(C) g(S) has measure zero for every set S ⊂ I with |S| = 0.

In fact, let S be then a null-measure set on the real line and f ∈ W 1,1(R)—
which implies that Mαf ∈ C(R) and, by the comments in subsection 5.1, ∀α > 0
and f ∈ W 1,1(R), Mαf ∈ BV (R)—, and let us invoke [1, Lemma 3.1]:

Lemma 9. Let f : I → R be a continuous function. Let also E ⊂
{

x ∈

I : |Df(x)| :=
∣

∣ lim suph→0
f(x+h)−f(x)

h

∣

∣ ≤ k
}

. Then

m∗(f(E)) ≤ km∗(E),

where m(S) = |S| stands for the Lebesgue measure of S.

It is easy to see that the maximal functions Mαf are, in fact, continuous on the
open set Eα. Thus, we may use Lemmas 8 and 9 in each of the connected components
of Eα:

|Mαf(S ∩ Iαj )| ≤
∑

k≥1

|Mαf(S ∩ Eα,k ∩ Iαj )| = 0,

where we used that Mαf is Lipschitz over each Eα,k. But this implies that

|Mαf(S)| ≤ |Mαf(S ∩ Ec
α)|+

∑

j∈Z
|Mαf(S ∩ Iαj )| = |f(S ∩ Ec

α)| = 0,

by Lemma 8 and the fact that f ∈ W 1,1
loc

(R). This finishes this part of the analysis.

3.4. Sharpness of the inequality and extremizers. In this part, we prove
that the best constant in such inequalities is indeed 1, and characterize the extrem-
izers for such. Namely, we mention promptly that the inequality must be sharp, as
f = χ(−1,0) realizes equality. It is easy to see that, to do so, we may assume that f
still has NORM(α) normalization.

Claim 2. Let f ∈ BV (R) normalized as before satisfy V(f) = V(Mαf). If we
decompose Eα = ∪jI

α
j , where each of the Iαj is open and maximal, then

VIαj
(f) = VIαj

(Mαf).

Proof. Let P,Q be two finite partitions of R such that

(6)

{

V(Mαf) ≤ VP(Mαf) + ε
20
,

V(f) ≤ VQ(f) +
ε
20
.

Now let the mutual refinement of those be S = P ∪Q. We consider the intersection
S ∩ Eα: if the finite set A := {j : Iαj ∩ S 6= ∅} satisfies that

(7)
∑

j∈A
VIαj

(f) ≥
∑

j∈N : Iαj 6=∅
VIαj

(f)−
ε

20
,

then keep the partition as it is before advancing. If not, then add to S finitely many
points, all of them contained in intervals of the form Iαj , such that inequality 7 holds.
Call this new partition S again, as it still satisfies the inequalities 6.

We finally add some other points to the partition S: If j 6∈ A, do not add any
points from the interval. If j ∈ A, then do the following:

(A) As f = Mαf on the boundary of an interval Iαj , we add to the collection both
endpoints r(Iαj ), l(I

α
j ).
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(B) If Mαf is V shaped over the interval Iαj , then there is a point cj such that
Mαf is non-increasing on (lj, cj) and non-decreasing on (cj, rj). Add such a
point to our partition.

(C) If VIαj
(f) > V{xi∈S : xi∈Iαj }(f) +

ε
220|j|

, then add finitely many points to the

partition to make the reverse inequality hold (here, V{xi∈S : xi∈A}(g) stands for
the variation along the finite partition composed solely by elements in the set
A).

It is easy to see that, if we denote by S ′ the partition obtained by the prescribed
procedure above, then, as V(f) = V(Mαf) and f = Mαf on R\Eα,

|VS′∩Eα
(f)− VS′∩Eα

(Mαf)| ≤ 2ε,

which then implies that, by the considerations above,
∑

j∈Z
VIαj

(f)−
ε

4
≤
∑

j∈A
VIαj

(f) ≤
∑

j∈A
V{xi∈S′ : xi∈Iαj }(f) + ε

≤
∑

j∈A
V{xi∈S′ : xi∈Iαj }(M

αf) + 3ε ≤
∑

j∈Z
VIαj

(Mαf) + 3ε.(8)

As ε was arbitrary, comparing the first and last terms above and looking back to our
proof that in each of the Iαj the variation of f controls that of the maximal function,
we conclude that, for each j ∈ Z,

(9) VIαj
(f) = VIαj

(Mαf).

This finishes the proof of this claim. �

Claim 3. Let f, Iαj as above. Then f and Mαf are monotone in the closure Iαj .

Proof. Suppose first that Mαf is not monotone there. Then it must be V shaped
on Iαj , and then, by Claim 2, we see that the only possibility for that to happen is
if Mαf(cj) = f(cj), cj ∈ Iαj . This is clearly not possible by the definition of Iαj , and
we reach a contradition.

Suppose now that f is not monotone over Iαj . As VIαj
(f) = VIαj

(Mαf) by Claim 2,

and VIαj
(Mαf) = |f(rj)−f(lj)|, then it is easy to see that, no matter what configura-

tion of non-monotonicity we have, it yields a contradiction with the equality for the
variations over the interval Iαj . We skip the details, for they are routinely verified. �

Remark 1. Note that this last claim proves also that, if Iαj is bounded, f is
non-decreasing over it and lj is its left endpoint, then f(lj−) ≤ f(lj+), as otherwise
we would arrive at a contradiction with the fact that VIαj

(f) = VIαj
(Mαf). An

analogous statement holds for the right endpoint, and analogous conclusions if f is
non-increasing instead of non-decreasing over the interval.

Next, we suppose without loss of generality that the function f is non-decreasing
on Iαj , as the other case is completely analogous.

Claim 4. Such an f is, in fact, non-decreasing on (−∞, r(Iαj )].

Proof. Our proof of this fact will go by contradiction: First, let aj = inf{t ∈
R; f is non-decreasing in [t, r(Iαj )]}, and define bj < aj such that the minimum of f
in [bj , rj] happens inside (bj , rj). Of course, such a minimum need not happen at a
point, but it surely does happen at a lateral limit of a point.

Subclaim 1. Mαf(aj) = f(aj) and f(aj−) = f(aj+).
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Proof. If Mαf(aj) > f(aj), then there exists a maximal open interval Eα ⊃
J ′
j ∋ aj , and, as we proved before, f must be monotone in such an interval. By the

definition of aj , we see that, at least on (aj , r(I
α
j )) ∩ J ′

j =: Kj , the function f has
to be non-decreasing. If f is non-constant in Kj , then, by maximality and Claim 3,
we see that f is non-decreasing in J ′

j, which contradicts the choice of aj . Then f
has to be constant in Kj and, therefore, non-increasing in J ′

j. We wish to show that
this cannot happen, so that we conclude the desired equality. We seek to contradict
Lemma 7, in the sense that we wish to prove that, actually, Mαf(r(J ′

j)) > f(r(J ′
j)).

Before we start doing so, we notice that, as f is non-decreasing (and non-constant)
on (aj , r(I

α
j )], and non-increasing on J ′

j, then r(J ′
j) ∈ (l(J ′

j), r(I
α
j )) and f attains a

minimum over [l(J ′
j), r(I

α
j )] at r(J ′

j).
We consider two cases: if |r(J ′

j)− l(J ′
j)| ≤ |r(J ′

j)− r(Iαj )|, then

Mαf(r(J ′
j)) ≥ −

ˆ 2r(J ′
j)−l(I′j)

l(J ′
j)

f > f(r(J ′
j)),

where the strict inequality comes from the facts that (i) [l(J ′
j), 2r(J

′
j) − l(I ′j)] ⊂

[l(J ′
j), r(I

α
j )]; (ii) f has a local minimum at r(J ′

j) in [l(J ′
j), r(I

α
j )]; (iii) f is not constant

over the whole interval J ′
j (as otherwise it would yield a contradiction to the definition

of aj). If, on the other hand, |r(J ′
j) − l(J ′

j)| > |r(J ′
j)− r(Iαj )|, we may consider, for

δ > 0 sufficiently small,

Mαf(r(J ′
j)) ≥ −

ˆ r(Iαj )+δ

2r(J ′
j)−r(Iαj )−δ

f > f(r(J ′
j)),

as (i) [2r(J ′
j)− r(Iαj )− δ, r(Iαj )] ⊂ [l(J ′

j), r(I
α
j )]; (ii) f has a local minimum at r(J ′

j)
in [l(J ′

j), r(I
α
j )]; (iii) if f is constant on (r(J ′

j), r(I
α
j )), then, for r(Iαj )+δ > p > r(Iαj ),

it holds that f(p) > f(r(J ′
j)), as long as we choose δ > 0 to be small enough (this

holds because f is normalized). As we covered the only two possible cases, we arrive
at a contradiction, namely, that Mαf(r(J ′

j)) > f(J ′
j). This finishes the first part of

our subclaim.
Now for the second equality: if it were not true, then aj would be, again, one of

the endpoints of a maximal interval Jj ⊂ Eα. If aj is the left-endpoint, then it means
that f(aj−) > f(aj+). But this is a contradiction, as f then must be non-decreasing
on Jj , and therefore we would again have that VJj(f) > VJj (M

αf). Therefore, aj is
the right endpoint, and also f(aj−) < f(aj+). At the present moment an analysis as
in Remark 1 is already available, and thus we conclude that f shall be non-decreasing
on Jj , which is again a contradiction to the definition of Jj. �

We must prove yet another fact that will help us:

Subclaim 2. Let

D = {x ∈ (bj , rj) : min(f(x−), f(x+)) attains the minimum in (bj , rj)}.

Then there exists d ∈ D such that f(d−) = f(d+) and Mαf(d) = f(d).

Proof. If aj ∈ D, then our assertion is proved by Subclaim 1. If not, then
D ⊂ (bj , aj). In this case, pick any point d0 in this intersection.

Case 1. f(d0+) = f(d0−). In this case, there is nothing left undone if f(d0) =
Mαf(d0). Otherwise, we would have that Mαf(d0) > f(d0), and then there would
be an interval Eα ⊃ J0 ∋ d0. By the fact that all the points in D must lie in (bj , aj),
and that f is monotone on J0, we see automatically that either f(bj) ≤ f(d0), a
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contradiction, or the right endpoint of J0 satisfies f(r(J0)) ≤ f(d0). By the definition
of d0, this inequality has to be an equality, and also f must be continuous at r(J0),
by the argument of Remark 1. As an endpoint of a maximal interval J0 ⊂ Eα, we
have then Mαf(r(J0)) = f(r(J0)).

Case 2. f(d0+) > f(d0−). It is easy to see that, in this case, there is an open
interval J ⊂ Eα such that either J ∋ d0 or d0 is its right endpoint. In either case,
we see that f must be non-decreasing over this interval J , and let again l0 be its left
endpoint. As we know, l0 ∈ D again, l0 ∈ (bj , rj) and, by Remark 1, we must have
that f(l0−) = f(l0+). Of course, by being the endpoint we have automatically again
that Mαf(l0) = f(l0). This concludes again this case, and therefore the proof of the
subclaim. �

The concluding argument for the proof of the Claim 4 goes as follows: let d be
the point from Subclaim 2. Then we must have that

f(d) = Mαf(d) ≥ Mf(d) ≥ −

ˆ d+δ

d−δ

f.

For small δ, it is easy to get a contradiction from that. Indeed, by the properties of
the interval (bj , rj] one can ensure that it is only needed to analyze δ ≤ |d− bj |. The
details are omitted.

This contradiction came from the fact that we supposed that aj > −∞, and our
claim is established. �

Now we finish the proof: If Mαf ≤ f always, we get to the case of a superhar-

monic function, i.e., a function which satisfies −
´ x+r

x−r
f(s) ds ≤ f(x) for all r > 0. That

is going to be handled in a while. If not, then we analyze the detachment set:

(A) If all intervals in the detachment set are of one single type, that is, either all
non-increasing or all non-decreasing, our function must then admit a point
x0 such that f is either non-decreasing on (−∞, x0] (resp. non-decreasing on
[x0,+∞),) and f = Mαf on (x0,+∞) (resp. on (−∞, x0)).

(B) If there is at least one interval of each type, then we must have an interval
[R, S] such that

• f is non-decreasing on (−∞, R];
• f is non-increasing on [S,+∞);
• f = Mαf on (R, S).

The analysis is then easily completed for every one of the cases above: If f = Mαf
over an interval, then, as Mαf ≥ Mf , we conclude that f must be superharmonic
there, where by “locally subharmonic” we mean a function that satisfies f(x) ≥
−
´ x+r

x−r
f(s) ds for all 0 ≤ s ≪x 1. As superharmonic in one dimension coincides with

concave, and concave functions have at most one global maximum, then the first
case above gives that f is either monotone or has exaclty one point x1 such that it is
exactly non-decreasing until a point x1, non-increasing after. The case of monotone
functions is easily ruled out, as if limx→∞ f = L, limx→−∞ f = M =⇒ V(f) =

|M−L|,V(Mαf) ≤ |M−L|
2

. The second case is treated in the exact same fashion, and
the result is the same: in the end, the only possible extremizers for this problem are
functions f such that there is a point x1 such that f is non-decreasing on (−∞, x1),
and f is non-increasing on (x1,+∞). The theorem is then complete.

3.5. Proof of Theorem 2. We start our discussion by pointing out that the
measure dµ = δ0 + δ1 satisfies our Theorem.
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Proposition 1. Let 0 ≤ α < 1
3
. Then

+∞ = Mαµ(0) > Mαµ

(

1

3

)

< Mαµ

(

1

2

)

> Mαµ

(

2

3

)

.

That is, Mαµ has a nontrivial local maximum.

Proof. By the symmetries of our measure, Mαµ
(

1
3

)

= Mαµ
(

2
3

)

. A simple

calculation then shows that Mαf
(

1
3

)

= 3(α+1)
2

, if α < 1
3
. As Mαµ

(

1
2

)

≥ Mµ
(

1
2

)

=

2 > 3α+3
2

⇐⇒ α < 1
3
, we are done with the proof of this proposition. �

Before proving our Theorem, we mention that our choice of 1
3
, 1
2
, 2
3

was not ran-
dom: 1

2
is actually a local maximum of Mαµ, while 1

3
, 2
3

are local minima.

Proof of Theorem 2. Let fn(x) = n(χ[0, 1
n
] + χ[1− 1

n
,1]). It is easy to see that

´

gfn dx →
´

g dµ(x), for each g ∈ L∞(R) that is continuous on [0, t0) ∪ (t1, 1], for
some t0 < t1.

We prove that Mαfn(x) → Mαµ(x), ∀x ∈ [0, 1]. This is clearly enough to
conclude our Theorem, as then, if we fix α < 1

3
, there will be n(α) > 0 such that, for

N ≥ n(α),

0 = fN

(

1

3

)

< MαfN

(

1

3

)

< MαfN

(

1

2

)

> MαfN

(

2

3

)

> fN

(

2

3

)

= 0.

To prove convergence, we argue in two steps.
The first step is to prove that lim infn→+∞Mαfn(x) ≥ Mαµ(x). It clearly holds

for x ∈ {0, 1}. For x ∈ (0, 1), we see that

Mαfn(x) = sup
|x−y|≤αt≤3α

1

2t

ˆ y+t

y−t

fn(s) ds.

But then

Mαµ(x) = sup
|x−y|≤αt≤3α

1

2t

ˆ y+t

y−t

dµ(s)

= sup
|x−y|≤αt≤3α;t≥δ(x)>0

lim
n→∞

1

2t

ˆ y+t

y−t

fn(s) ds ≤ lim inf
n→∞

Mαfn(x),

where δ(x) > 0 is a multiple of the minimum of the distances of x to either 1 or 0.
This completes this part.

The second step is to establish that, for every ε > 0, (1 + ε)Mαµ(x) ≥
lim supN→∞MαfN(x). This readily implies the result.

To do so, notice that, as 1 > x > 0, then for N sufficiently large, the average
that realizes the supremum on the definition of Mα has a positive radius bounded
bellow and above in N . Specifically, we have that

MαfN(x) = −

ˆ yN+tN

yN−tN

fN(s) ds, ∆(x) ≥ tN ≥ δ(x) > 0.
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This shows also that {yN} and {tN} must be bounded sequences. Therefore, using
compactness,

lim sup
N→∞

MαfN (x) = lim sup
N→∞

−

ˆ yN+tN

yN−tN

fN(s) ds = lim
k→∞

−

ˆ yNk
+tNk

yNk
−tNk

fNk
(s) ds

≤ (1 + η)
1

2t
lim sup
N→∞

ˆ y+(1+ε/2)t

y−(1+ε/2)t

fN(s) ds

= (1 + η)(1 + ε/2)−

ˆ y+(1+ε/2)t

y−(1+ε/2)t

dµ(s) ≤ (1 + ε)Mαµ(x),

where we assume that the sequence {nk} is suitably chosen so that the convergence
requirements all hold. If we make N sufficiently large, and take η depending on ε
such that (1 + η)(1 + ε/2) < 1 + ε, we are done with the second part. �

4. Proof of Theorems 3 and 4

The idea for this proof is basically the same as before: analyze local maxima
in the detachment set in this Lipschitz case, proving that the maximal function is
either V shaped or monotone in its composing intervals, if the Lipschitz constant
into consideration is less than 1

2
. The endpoint case is done by approximation, and we

comment on how to do it later. By the end, we sketch on how to build the mentioned
counterexamples.

4.1. Analysis of maxima of M1

N
for Lip(N) < 1

2
. We assume, first of all,

that f has NORM(1) normalization. Let (a, b) be an interval on the real line, such
that there exists a point x0, maximum of M1

Nf over (a, b), with the property that

M1
Nf(x0) > max{M1

Nf(a),M
1
Nf(b)}.

Therefore, we wish to prove that, for some point in (a, b), M1
Nf = f . We begin

with the general strategy: let us suppose that this is not the case. Then there must
be an average u(y, t) = 1

2t

´ y+t

y−t
|f(s)| ds with N(x0) ≥ t > 0, |x0 − y| ≤ t and

M1
Nf(x0) = u(y, t).

Now we want to find a neighbourhood of x0 such that there is R = R(x0) > 0
such that, for all x ∈ I, M1

≡Rf(x) = M1
Nf(x0). By Lemma 1, we can suppose that

either y = x0 − t or y = x0 + t. Without loss of generality, let us assume that
y = x0 − t.

Case (a). t < N(x0). This is the easiest case, and we rule it out with a simple
observation: let I be an interval for which x0 is an endpoint and such that, for all
x ∈ I, N(x) > t. Assume, without loss of generality, that x0 is the right endpoint
r(I). We claim then that, for x ∈ I, M1

≡t+εf(x) = M1
Nf(x0), if ε is sufficiently small.

Indeed, if ε is sufficiently small, then M1
≡t+εf(x) ≤ M1

Nf(x)(≤ M1
Nf(x0)) for every

x ∈ I. But then we see also that (x0 − t, t) belongs to the region {(z, s) : |x − z| ≤
s ≤ N(x)}, as then |(x0 − t)− x| = x+ t− x0 ≤ t < t+ ε < N(x). This shows that

M1
Nf(x0) ≤ inf

x∈I
M1

≡t+εf(x) ≤ sup
x∈I

M1
≡t+εf(x) ≤ M1

Nf(x0).

As before, we finish this case with [1, Lemma 3.6], as then it guarantees us that
M1

≡t+εf(x) = f(x) for every point in this interval I.
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Case (b). t = N(x0). In this case, we have to use Lemma 2. Namely, we wish to
include the point (x0 −N(x0), N(x0)) in the region

{(z, s) : |z − x| + |s−N(x)| ≤ N(x)},

for x0 − δ < x < x0, δ sufficiently small.
Let then ε > 0 and x close to x0 be such that N(x) ≥ N(x0) − ε. We have

already a comparison of the form

M1
Nf(x) ≥ M1

≡N(x0)−εf(x).

We want to conclude that there is an interval I such that M1
≡N(x0)−εf is constant on

I. We want then the point (x0 −N(x0), N(x0)) to lie on the set

{(z, s) : |z − x|+ |s−N(x0) + ε| ≤ N(x0)− ε}.

But this is equivalent to

x− x0 +N(x0) + ε ≤ N(x0)− ε ⇐⇒ |x− x0| ≥ 2ε.

So, we can only afford to to this if x is somewhat not too close to x0. But, as
Lip(N) < 1

2
in this case, we see that

|N(x)−N(x0)| ≤ Lip(N)|x−x0| =⇒ N(x) ≥ N(x0)− Lip(N)|x− x0| ≥ N(x0)− ε

⇐⇒ |x− x0| ≤
1

Lip(N)
ε.

Therefore, we conclude that, on the non-trivial set
{

x ∈ R :
1

Lip(N)
ε ≥ |x− x0| ≥ 2ε

}

,

it holds that M1
Nf(x0) ≥ M1

Nf(x) ≥ M1
≡N(x0)−εf(x) ≥ M1

Nf(x0) ≥ M1
Nf(x). By [1,

Lemma 3.6], M1
≡N(x0)−εf(x) = M1

Nf(x) = f(x). This concludes then that, whenever

there is a “strict” local maximum (with respect to the endpoints) of M1
Nf over an

interval (a, b), then there is a x ∈ (a, b) sucht that M1
Nf(a) = f(a), as the finishing

argument here is then the same as the one used in Theorem 1, and we therefore omit
it.

N(x0)− ε N(x0)

|x−x0|
2

x0xa b

(x0 −N(x0), N(x0))

|x−x0|
2

Figure 4. Illustration of proof of case (b).

4.2. The critical case Lip(N) = 1

2
. The argument is pretty simple: we

build explicitly a suitable sequence of approximations of N such that they all have
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Lipschitz constants less than 1
2
. By our already proved results, this will give us the

result also in this case.
Explicitly, let N be such that Lip(N) = 1

2
and f ∈ BV (R). Let then P = {x1 <

· · · < xM} be any partition of the real line. Let J ≫ 1 be a large integer, and divide
the interval [x1, xM ] into J equal parts, that we call (aj, aj+1), where j = 1, ..., J .
Define also the numbers

∆j =
N(aj+1)−N(aj)

aj+1 − aj
.

We know, by hypothesis, that ∆j ∈ [−1/2, 1/2]. Let then ∆̃j = ∆j −
1
J2 , and define

the function

Ñ(x) =



















N(x1), if x ≤ x1,

N(x1) + ∆̃1(x− x1), if x ∈ (a1, a2],

Ñ(aj) + ∆̃j(x− aj), if x ∈ (aj , aj+1],

Ñ(aJ+1), if x ≥ xM .

It is obvious that this function is continuous and Lipschitz with constant at most
1
2
− 1

J2 . If x ∈ (aj , aj+1], then

|Ñ(x)−N(x)| ≤ |Ñ(x)− Ñ(aj)|+ |Ñ(aj)−N(x)|

≤
|x1 − xM |

2J
+ |N(aj)−N(x)|+ |Ñ(aj)−N(aj)|

by the definition of Ñ ≤
|x1 − xM |

J
+ |Ñ(aj−1)−N(aj−1)|+

|aj − aj−1|

J2

by an inductive argument ≤
2|x1 − xM |

J
+ |Ñ(x1)−N(x1)| =

2|x1 − xM |

J
.

We now choose J such that the right hand side above is less than δ > 0, which is
going to be chosen as follows: for the same partition P, we let δ > 0 be such that

|Ñ(xi)−N(xi)| < δ =⇒ |M1
Nf(xj)−M1

Ñ
f(xj)| <

ε

2M
.

This can, by continuity, always be accomplished. This implies that, using the previous
case,

VP(M
1
Nf) ≤ VP(M

1
Ñ
f) + ε ≤ V(M1

Ñ
f) + ε ≤ V(f) + ε.

Taking the supremum over all possible partitions and then taking ε → 0 finishes also
this case, and thus the proof of Theorem 3.

4.3. Counterexample for Lip(N) > 1

2
. Finally, we build examples of func-

tions with Lip(N) > 1
2

and f ∈ BV (R) such that

V(MNf) = +∞.

Fix then β > 1
2

and let a function N with Lip(N) = β be defined as follows:

(A) First, let x0 =
2

2β+1
. Let then N(0) = 1, N(x0) =

x0

2
and extend it linearly in

(0, x0).
(B) Let x′

K be the solution to the equation βx− βxK−1+
xK−1

2
= x+1

2
⇐⇒ x′

K =

xK−1 +
1

β− 1

2

.

(C) At last, take xK = x′
K+ 1

2β+1
, and define for all K ≥ 1 N(xK) =

xK

2
, N(x′

K) =
x′
K
+1

2
, extending it linearly on (xK−1, x

′
K) and (x′

K , xK).
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As {x′
K}K≥1 is an arithmetic progression, we see that

∑

K≥1

1

x′
K

= +∞.

Moreover, define f(x) = χ(−1,0)(x). We will show that, for this N , we have that

V(M1
Nf) = +∞.

In fact, it is not difficult to see that:

(A) M1
Nf(xK) = 0, ∀K ≥ 0. This is due to the fact that the maximal intervals

(y− t, y+ t) that satisfy |xK − y| ≤ t ≤ N(xK) are still contained in [0,+∞),
which is of course disjoint from (−1, 0).

(B) M1
Nf(x

′
K) ≥

1
x′
K
+1

. This follows from

M1
Nf(x

′
K) ≥

1

2N(x′
K)

ˆ x′
K

−1

f(t) dt =
1

x′
K + 1

.

This shows that

V(M1
Nf) ≥

∞
∑

K=1

|M1
Nf(x

′
K)−M1

Nf(xK)| =
∞
∑

K=1

1

x′
K + 1

= +∞.

This construction therefore proves Theorem 4.

N(x)

Figure 5. A counterexample in the case of Lip(N) = 3

4
. The dashed lines are the graphs of x

2

and 1

1+x
, and the non-dashes ones the graphs of M1

Nf and N in this case.

5. Comments and remarks

5.1. Monotonicity of maximal BV -norms. Theorem 1 proves that, if we
define

B(α) := sup
f∈BV (R) : V(f)6=0

V(Mαf)

V(f)
,

then B(α) = 1 for all α ∈ [1
3
, 1]. We can, however, with the same technique, show

that B(α) is non-increasing in α > 0, and also that B(α) ≡ 1 ∀α ∈ [1
3
,+∞). Indeed,

we show that, for f ∈ BV (R) endowed with NORM(1) normalization and β > α,
then V(Mαf) ≥ V(Mβf). This allows one to conclude, without glancing at Theorem
1, that V(Mαf) ≤ C · V(f), for C = 240.004 and all α ≥ 0, as a consequence
of Kurka’s [8] result. The argument uses the maximal attachment property and is
independent of the proof of Theorem 1—which allows us, for instance, to make use
of this fact in the proof of Theorem 1, as indicated in the subsection 3.2: we first
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assume f to be positive, without loss of generality. Let, as usual, (a, b) be an interval
where Mβf has a local maximum inside it, at, say, x0, and

Mβf(x0) > max(Mβf(a),Mβf(b)).

Then, as we have that Mβf ≥ Mαf everywhere, we have two options:

• If Mβf(x0) = f(x0), we do not have absolutely anything to do, as then also
Mαf(x0) = Mβf(x0).

• If Mβf(x0) = u(y, t), for t > 0, we have—as in subsection 3.1—that (y −
βt, y + βt) ⊂ (a, b). But it is then obvious that

Mαf(y) ≥ u(y, t) = Mβf(x0) ≥ Mβf(y) ≥ Mαf(y).

Therefore, we have obtained a form of the maximal attachment property, and there-
fore we can apply the standard techniques that have been used through the paper to
this case, and it is going to yield our result.

This shows directly that B(α) ≤ 1, ∀α ≥ 1, but taking f(x) = χ(0,1) as we did
several times shows that actually B(α) = 1 in this range.

5.2. Nontangential maximal functions and classical results. Here, we
investigated mostly the regularity aspect of our family Mα of nontangential maximal
functions, and looked for the sharp constants in such bounded variation inequalities.
One can, however, still ask about the most classical aspect studied by Melas [12]:
Let Cα be the least constant such that we have the following inequality:

|{x ∈ R : Mαf(x) > λ}| ≤
Cα

λ
‖f‖1.

By [12], we have that, for when α = 0, then C0 =
11+

√
61

12
, and the classical argument

of Riesz [13] that C1 = 2. Therefore, 11+
√
61

12
≤ Cα ≤ 2, ∀α ∈ (0, 1). Nevertheless,

the exact values of those constants is, as long as the author knows, still unknown.

5.3. Bounded variation results for mixed Lipschitz and nontangential

maximal functions. In Theorems 3 and 4, we proved that, for the uncentered Lips-
chitz maximal function MN , we have sharp bounded variation results for Lip(N) ≤ 1

2
,

and, if Lip(N) > 1
2
, we cannot even assure any sort of bounded variation result.

We can ask yet another question: if we define the nontangential Lipschitz maximal

function

Mα
Nf(x) = sup

|x−y|≤αt≤αN(x)

1

2t

ˆ y+t

y−t

|f(s)| ds,

then what should be the best constant L(α) such that, for Lip(N) ≤ L(α), then
we have some sort of bounded variation result like V(Mα

Nf) ≤ AV(f), and, for
each β > L(α), there exists a function Nβ and a function fβ ∈ BV (R) such that
Lip(Nβ) = β and V(MNβ

fβ) = +∞? Regarding this question, we cannot state any
kind of sharp constant bounded variation result, but the following is still attainable:
it is possible to show that the first two lemmas of Kurka [8] are adaptable in this
context if we suppose that

Lip(N) ≤
1

α + 1
,

and then we obtain our results, with a constant that is even independent of α ∈ (0, 1).
On the other hand, our example used above in the proof of Theorem 4 is easily
adaptable as well, and therefore one might prove the following Theorem:
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Theorem 5. Let α ∈ [0, 1] and N be a Lipschitz function with Lip(N) ≤ 1
α+1

.
Then, for every f ∈ BV (R), we have that

V(Mα
Nf) ≤ CV(f),

where C is independent of N, f, α. Moreover, for all β > 1
α+1

, there is a function Nβ

and

f(x) =

{

1, if x ∈ (−1, 0);

0, otherwise,

with Lip(Nβ) = β and V(Mα
Nβ

f) = +∞.
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