ERRATUM TO "QUASICONFORMAL HARMONIC MAPPINGS WITH THE CONVEX HOLOMORPHIC PART"

Dariusz Partyka, Ken-ichi Sakan and Jian-Feng Zhu

The John Paul II Catholic University of Lublin, Institute of Mathematics and Computer Science Al. Racławickie 14, P.O. Box 129, 20-950 Lublin, Poland; partyka@kul.lublin.pl and The State School of Higher Education in Chełm, Institute of Mathematics and Information Technology, Pocztowa 54, 22-100 Chełm, Poland

Osaka City University, Graduate School of Science, Department of Mathematics Sugimoto Sumiyoshi-ku, Osaka, 558-8585, Japan; ksakan@sci.osaka-cu.ac.jp

> Huaqiao University, School of Mathematical Sciences Quanzhou-362021, P.R. China; flandy@hqu.edu.cn

Corollary 2.7. Given R > 0 let H be a conformal mapping in \mathbf{D} such that $H(\mathbf{D})$ is a convex domain and $\mathbf{D}(H(0), R) \subset H(\mathbf{D})$. Then H is co-Lipschitz with

(2.19)
$$L^{-}(H) = D^{-}(H) \ge \frac{R}{4}.$$

Proof. Under the assumption of the corollary we see that the mapping $\mathbf{D} \ni z \mapsto \tilde{H}(z) := H(z) - H(0)$ maps \mathbf{D} onto a convex domain and $\mathbf{D}(0, R) \subset \tilde{H}(\mathbf{D})$. Since $\tilde{H}(0) = 0$ we conclude from [10, Corollary 3.1] (see also [5, Theorem 2.5]) that

$$|H'(z)| = |\tilde{H}'(z)| \ge \frac{R}{4}, \quad z \in \mathbf{D}.$$

Therefore $D^-(H) \ge R/4$, and so the inequality in (2.19) holds. By Remark 2.6 we see that the equality in (2.19) holds. Therefore H is a co-Lipschitz mapping, which is our claim.

Let us consider the following deformations of a harmonic mapping $F = H + \overline{G}$ in **D**,

(2.20)
$$\mathbf{D} \ni z \mapsto F_{\varepsilon}(z) := H(z) + \varepsilon \overline{G(z)}, \quad \varepsilon \in \mathbf{C}.$$

Using now the decomposition (2.2) we derive the following theorem.

Theorem 2.8. Let $F = H + \overline{G}$ be a sense-preserving harmonic mapping in **D**. Suppose that H is injective, $H(\mathbf{D})$ is a rectifiably M-arcwise connected domain with a given $M \ge 1$ and that F is not a conformal mapping. Then for every $\varepsilon \in \mathbf{D}(1/M \| \mu_F \|_{\infty})$, F_{ε} is a quasiconformal harmonic mapping. Moreover, if M = 1, then F_{ε} is co-Lipschitz.

Proof. Fix $\varepsilon \in \mathbf{D}(1/M \| \mu_F \|_{\infty})$. By setting $H(\mathbf{D}) \ni z \mapsto \phi(z) := \overline{\varepsilon} G \circ H^{-1}(z)$, we see that for every $z \in H(\mathbf{D})$,

(2.21)
$$|\phi'(z)| = \left| \overline{\varepsilon} \frac{G'(H^{-1}(z))}{H'(H^{-1}(z))} \right| = |\varepsilon| |\mu_F(H^{-1}(z))| \le |\varepsilon| ||\mu_F||_{\infty}.$$

https://doi.org/10.5186/aasfm.2018.4355

²⁰¹⁰ Mathematics Subject Classification: Primary 30C62, 30C55.

Key words: Harmonic mappings, quasiconformal mappings, Lipschitz condition, bi-Lipschitz condition, Jacobian.

Hence $M D^+(\phi) \leq M|\varepsilon| \|\mu_F\|_{\infty} < 1$. From Lemma 2.4 it follows that $I[\phi]$ is bi-Lipschitz, and so $I[\phi]$ is quasiconformal. Since $F_{\varepsilon} = I[\phi] \circ H$, F_{ε} is a quasiconformal mapping as a composition of quasiconformal ones. Suppose now that M = 1, i.e., $H(\mathbf{D})$ is a convex domain. By the conformality of H, $\mathbf{D}(H(0), R) \subset H(\mathbf{D})$ for a certain positive number R. Then by Corollary 2.7 we see that H is a co-Lipschitz mapping. Therefore F_{ε} is a co-Lipschitz mapping as a composition of co-Lipschitz ones, which proves the theorem.

References

- [5] KALAJ, D.: On harmonic diffeomorphisms of the unit disc onto a covex domain. Complex Variables 48:2, 2003, 175–187.
- [10] PARTYKA, D., and K. SAKAN: On a variant of Heinz's inequality for harmonic mappings of the unit disk onto bounded convex domains. - Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 59:2, 2009, 25–36.
- [PSZ] PARTYKA, D., K. SAKAN, and J.-F. ZHU: Quasiconformal harmonic mappings with the convex holomorphic part. - Ann. Acad. Sci. Fenn. Math. 43:1, 2018, 401–418.

Received 6 April 2018 • Accepted 6 April 2018