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Abstract. In this paper we study fractional type operators with more than one kernel, defined
by

Tomf(x) = /n ki(x — Ary)ka(z — Asy) ... km(z — Any) f(y) dy,

where, for 1 <14 < m, each k; satisfies a fractional size condition and generalized fractional Hérman-
der condition, and A; are invertibles matrices. We obtain weighted Coifman type estimates, strong
and weak type inequalities and BMO estimates for this operator. We also present some examples
different from those in the literature.

1. Introduction

The classical integral operators, for example the Calderon—Zygmund operator or
the fractional integral I,, have kernels with only one possible singularity. For the
study of integral operators with more that one singularity in the kernel, we write the
kernel as product of functions where each function has only one possible singularity.

In [18], Ricci and Sjogren obtain the LP(R,dz) boundedness, p > 1, for a fa-
mily of maximal operators on the three dimensional Heisenberg group. Some of
these operators arise in the study of the boundary behavior of Poisson integrals
on the symmetric space SLR?*/SO(3). To get the principal result, they study the
boundedness on L*(R) of the operator

(L1) T, f(x) = /R = — e + 41 f () dy,

for 0 < o < 1. Later, in [12], Godoy and Urciuolo study a generalization of (1.1) for
R™.

More recently, in [21] the second author and Urciuolo analyze the following ge-
neralization of these operators. Let 0 < a < n and m € N. For 1 <7 <m, let A; be
matrices such that

(H) A, is invertible and A; — A; is invertible for i # j,1 <4, 7 < m.
For any f € L2 (R™), they define
(1.2) Ta,mf(z) = K(z,y)f(y) dy,
R?’L
where

(1.3) K(z,y) = ki(z — Ayy)ka(r — Agy) . . k(7 — Any),
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and k; is a fractional rough kernel defined is the following way, let 1 < ¢; < oo such
that 2 +---+ = =n —a. Let ¥ the unit sphere in R", ); € L'(¥) homogeneous
of degree 0. Then they consider

Qi(z/|z])
(1.4) ki(z) = PR
and proved the weighted Coifman type estimates, strong and weak type inequalities
and BMO estimates for this operator.

During the last years, several authors studied operators of the form (1.2) in diffe-
rent contexts: weighted Lebesgue and Hardy spaces with constant and variable ex-
ponent, also the endpoint estimates and boundedness in BMO and weighted BMO.
See for example [9, 11, 13, 14, 19, 20, 22, 23, 24, 25, 26, 27|.

These operators generalized classical operators as [, the fractional integral ope-
rator, and rough fractional and singular operators. In the case of a = 0, T,
behaves like a singular integral operator in sense of LP boundedness. For a > 0, if
1 <p<n/aand % = % — & then T, , is bounded from L into LY. It is well known
that if 0 < p < 1 the operator I, is bounded from H? into H?, for some ¢. In several
cases the operators consider in this paper are not bounded from H? into HY, but
instead are bounded from H? into L9, 0 < p < 1 and some ¢ (see [23, 24]).

In this paper, we consider the operator Ty, ,,, defined by (1.2) and (1.3) with the
matrices A; satisfying the condition (H). Let 0 < «o; < n, 1 < i < m such that
ap + -+, =n — «a, and assume that k; satisfies a fractional size condition and
a generalized fractional Hérmander condition. The definition of spaces and objets
involved in this paper are described in Section 2.

Our first result is a pointwise estimate that relates the sharp delta maximal
function of T, . f, .M(?(Ta,m f), 0 < § <1, with a generalized fractional maximal
function of f. This estimate is a fundamental key to obtain weighted inequalities for
the operator T, ,,. These inequalities are developed in Section 3. These weighted
inequalities are the Coifman type estimates, the endpoint estimates and strong type
estimates with A, , weights and bump conditions.

In Section 4, we present new examples of this type of operators different than
the ones described above. In section 5 we present the weak type (1, 1) estimate with
respect to the Lebesgue measure for 7j,,. In Section 6 we give the proofs of the
results.

2. Preliminaries
In this section we present some notions about Young function, Luxemburg ave-

rage and weights that will be fundamental throughout all this work.

Young Function and Luxemburg average. For more details of this topic see
[16] or [17]. A function ¥: [0,00) — [0,00) is said to be a Young function if ¥ is
continuous, convex, no decreasing and satisfies ¥(0) = 0 and tlim U(t) = 0.

—00

The average of the Luxemburg norm of a function f induced by a Young function
U in the ball B is defined by

| fllw.B ::inf{A>0: ﬁ/jg\l/(%) gl},

. 1/r
Observe that if W(t) = 7, 1> 1, |flws = | flls = (i S 117) "
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Each Young function ¥ has an associated complementary Young function ¥
satisfying the generalized Holder inequality

i,
=7 [ 1f9l < 20| fllv.sllgllv 5-
1Bl /5 v
Remark 2.1. Observe that in the proof of this last inequality in [16], the ball
B can be replaced by any measurable set E such that |E| < oco.

If ¥y,...,¥,,, ¢ are Young functions satisfying that for some t, > 0, U (¢)---
U-L(t)p~(t) < ct, for all t > ¢y, then

(2.1) If1- fmgllis < cllfilles s [ fmllw..5ll9lls,5-
The function ¢ is called the complementary of the functions ¥y, ..., ¥,,.

Given f € Ll _(R™) and 0 < a < n, the fractional maximal operator associated

to the Young function VU is defined as
Mo f(x) == SBUPIB\“/"HJ‘HQ,B-
Sx

Now we compile some examples of maximal operators related to certain Young
functions.

o If U(t) =t, then M,y = M,, the classical fractional maximal operator.

o U(t) = t" with 1 < r < oco. In this case M,y = M,,, where My, f =
M(fr)l/r.

o U(t) =exp(t) — 1. Then, Moy = My exp(L)-

elf 3>0and 1 <r < oo, U(t) = t"log(e + t)” is a Young function, then
Ma,\ll = Ma,LT(logL)B'

e lfa=0and k € N, U(t) = tlog(e + t)*¥ it can be proved that My ~ M*+!
where M**1is M iterated k + 1 times.

Remark 2.2. Observe that if W(¢) = ¢" then a simple computation show that
Mo, f = (Mar‘fr)l/r’

Fractional size and fractional Hormander conditions. Now we present the
fractional size condition and a generalized fractional Hérmander condition. For more
details of these objects see [2] or [10].

Let ¥ be a Young function and let 0 < o < n. Let us introduce some notation:
|| ~ s means s < |z| < 25 we write || f||w,jzj~s = ||/ X|a|~s]|w,B(0,26)-

The function K, is said to satisfy the fractional size condition and we set K, €
Sa,w, if there exists a constant C' > 0 such that

| Kallw,jgj~s < O

When VU(t) = t we write S, v = S,. Observe that if K, € S,, then there exists a
constant ¢ > 0 such that

/ | Ko(x)|de < cs®.
|z|~s

The function K, satisfies the L®¥-Hérmander condition and we set K € H,w, if
there exist cg > 1 and C'y > 0 such that for all x and R > cy|z],

o0

Y @R Kol — @) = Ka()llwjy~zmr < Cv.

m=1
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We say that K, € H, if K, satisfies the previous condition with || - ||z |gj~2mr
in place of || - ||w,jzj~2mr. When ®(t) = t", 1 < r < oo, we recover the fractional
L"-Hérmander condition and simply write H, , instead of H, y.

Weights. We say that a function w is a weight if w is a non negative function
in L. (R"). Let 0 < a <n, 1 <p,q < oo, we say that a weight w belong to the
class A, , if

[w]APﬂZ = S%p||w“q7BHw_al’,B < Q.

If 1 <p < oo, A, denotes the classical Muckenhoupt class of weights. Note that
w € Ay, is equivalent to w? € A,. We recall that A = J,-, 4p, and the statement
w € Ay oo is equivalent to w™t € Aj. -

The fractional B, condition, which is denote by B}’ was introduced by Cruz-Uribe

and Moen in [6]: Let 0 < v < n, 1 <p < n/a, % = %—% and ¢ be a Young function,

we say ¢ € B if
oo qa/p
[ o dr
Lt ¢
They proved, in Theorem 3.3 in [6], that if ¢ € By then M, : LP(dx) — L%(dx) and

)

[YPPER
1 t

We will consider the following bump conditions: let 1 < ¢ < oo and ¥ be a
Young function, then a weight w € A,y if

[w]a,e = Sngqu,QHw_IH\If,Q < 00.

Given a function f € L} (R"), the sharp maximal function is defined by

)4

A locally integrable function f has bounded mean oscillation (f € BMO) if M# f €
L and the norm || f||gyo = [|M¥ f|l
Observe that the BMO norm is equivalent to

M# f(z) = sup—

I llpsio = 1A% ~ supint = [ 7(2) = al .

There is also a weighted version of BMO, this is denoted by BMO(w), and it is
described by the seminorm

mmm=$mwwm@(/
B B

It is easy to check that

0~ 15 ﬂ¢0'

1Ml = [l .

3. Main results

In this section, we present the main results of this paper. We start with the
pointwise estimates of the sharp delta maximal function.
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Theorem 3.1. Let 0 < o < n, m € N and let T ,, be the integral operator
defined by (1.2). For 1 < i < m, let ¥; be a Young function and let 0 < o; < n
such that aq + -+ a,, =n — . Let k; € S,_o, v, N Hy—o, v, and let the matrices
A; satisfy the hypothesis (H). If a = 0, suppose Tp ., be of strong type (po, po) for
some 1 < pg < oo. If ¢ is the complementary of the functions ¥y, ..., V,, then there
exists C' > 0 such that, for 0 < § <1 and f € L°(R"™) (f a bounded function with
compact support)

(31 ML fl(w) = M (T ) ()5 < O My o f (A7),
=1

Remark 3.2. Observe that in Theorem 3.1 if @« = 0, then m > 1. Indeed o =0
and m = 1 imply o; = n, then T, is a singular integral operator and the size
condition has no sense. Nevertheless the result of the Theorem is still true, see [15].

For the weighted estimates we need an extra condition for the weights. There
exists ¢ > 0 such that

(3.2) w(A;z) < cw(x),
ae.z € R"and forall 1 <i¢<m.

Theorem 3.3. Let 0 < a <n and m € N and let T, ,,, be the integral operator
defined by (1.2). For 1 < i < m, let ¥; be Young functions, 0 < a; < n such that
oy + -+ ay =n — a. Also suppose k; € S,_q, v, N Hy—q, w, and that matrices A,
satisfy the hypothesis (H). If o = 0, suppose Ty, be of strong type (po, po) for some
1 <po<oo. Let 0 < p < oo. If ¢ is the complementary of the functions ¥y, ..., V,,,
then there exists C' > 0 such that, for f € L°(R") and w € A,

(3.3) / | T f () [P(2) daz < CZ/ | Mo f (2)[Pw(A;z) da,
whenever the left-hand side is finite. Futhermore, if w satisfies (3.2), then

/ NTomf(@)[Pw(z) de < © /R Moo f(2) () da.

By (3.3), the Coifman type estimate, we can obtain weighted inequalities for T, ,,,.
To obtain these inequalities we need a relationship between Mg and M,.. Caldarelli,
Lerner and Ombrosy in [3], and Di Plinio and Lerner in |7], proved the following

Lemma 3.4. [3, 7| Let ® be a Young function. For all x € R™ and r > 1,

1/r
z%ﬂ@s@ m>9@> M f(@) = M, f (@),

t>0-1(1/2)

It follows, in analogous way, that,

(3.4) M,of(z) < ck. My, f(x).
First, we get a weighted BMO estimate for weights in the class A(Z%, 00).

Theorem 3.5. Let T, ,,, be as in Theorem 3.3. Suppose there exists r > 1 such
that k, < oco. If w" € A(Z:,00) and satisfies (3.2), then there exists C' > 0 such that
for f € L*(R"),

Temfllw < Cllfwllpnra.
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In [21] it is proved an analogous result for the weighted BMO estimate, so we
omit the proof.

Theorem 3.6. Let T, ,, be as in Theorem 3.3. Let % = % — &. Suppose there
exists 1 < r < p such that k, < oco. If w" € A(l, ") and satisfies (3.2) then there
exists C' > 0 such that for f € L°*(R"),

rn n—ar 1/T
supA(wr—er{x € R": |Tpmf(z)| > A})™ <C (/ |f(z)|"w" (x) dx) .

A>0
The strong type inequality follows from the boundedness of M, 4, Theorem 2.6
in [1].
Theorem 3.7. Let T,,, be as in Theorem 3.3. Let 1 < r < p < n/a and
% = % — 2. Let n and ¢ be Young functions such that n=*(t)t» < ¢~!(t) for every
t>0. Ifp'"7"a € B for every s > r(n —a)/(n — ar) and w” € AL, 1),

[ Tom fllzaqwsy < ClIFllzer).

Observe that Theorems 3.5 and 3.6 depend on an auxiliary exponent r. These
exponents r give rise to a class of weights that is sufficient to prove a boundedness
condition.

Taking a class of weights satisfying bump condition that does not depend on the
exponent r, we are able to prove another weighted strong inequality. Indeed, we first
recall Theorem 5.37 in [5]:

Theorem 3.8. [5| Let 0 < a < n, 1 <p < n/a, let % = 1—1) — 2. Let ¢, B and
C' be Young functions such that B~ (t)C~(t) < c¢™'(t), t > t, > 0. If C' € BY and
w € A, p, then there exists ¢ > 0 such that for every f € LP(wP),

[@taprur < [1aper
Now, from Theorem 3.8 we obtain

Theorem 3.9. Let T, ,,, be as in Theorem 3.3. Let % = % — . Let ¢, B and C
be Young functions such that B—'(t)C~'(t) < c¢™'(t), t > o > 0. If C € B and
w € A, p, then there exists ¢ > 0 such that for every f € LP(wP),

| Tom f || Laqws) < |l £l zrwr)-

4. Examples
Now we present some examples of this type of operator. For 1 < r < oo, let
" be the conjugate exponent of r. Let Wy(t) = t",Wy(t) = exp(t) — 1 and ¢(t) =
t"log(e +t)”. Observe that
tl/r’

WO T; (8oL () = £ log (e + t)m — ¢,

then ¢ is the complementary function of Wy, W,.
For 8; > 0,1 =1, 2, we define

kit +4) = U} <t(1 — lo;(t))l%) Xon(t).
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By Theorem 5 in [15], we have k; € Hy,. For the size condition, observe that

- 1 1 1
f o= [t = < oo
If s > 1, then l;;ixs<|x|§28 =0. Ifs<1,

- - 1 [2s -
I Eillw, jzj~s = I1FiXsc|ai<2s]|wi,B02s) < 1+ 4—8/ U, (ki(t)) dt

<1 L (1 <1 1 !
<ala)=i ()

Then, we get ki € Sy,.
Let 0 < o, i, 9 < 1 such that oy + a3 = 1 — a. By Proposition 4.1 in [2], we

know that if k;(¢) = t'=*k;(t) then k; € Hi_o, v, N S1—a, v,- We define the operator,

(4.1) Tf(x) = / (2 — Avy)ha(e — Agy) f(y) dy,

where k; are defined as above and A;, Ay are invertibles matrices such that A; — A,
is invertible. This operator satisfies the hypothesis of the Theorem 3.3 and we have
the following

Theorem 4.1. Let 0 < o < 1. Let T be the operator defined by (4.1). Then,
(a) For all1 < ¢ < 0o and w € A,

| @) e < €Y [ 1M e fl (i) d

(b) Let 1 <p < 1/a and % =1 —a. If w satisfies (3.2) and w" € A» 4, then

/Rn |Tf(x)|"wi(x)de < C - | f () [PwP () d.

(¢) Kpy1 < 00 and if w" ! € A(m, o0) and satisfies (3.2), then

T fllw < Cllifwllpae @)

(d) Let s = % If w™*' € A1, —-) and satisfies (3.2), then

1 /(' +1)
supAw*{x € R": |Tf(z)| > \})s <C (/ |f ()] T T (2) dI) :

A>0
Remark 4.2. Observe that to prove (b), we can use Theorem 2.3 in [1]. This
result asserts that M, ;r10gz+ is bounded from LP(wP) into L9(w?) if and only if
w" € Ap a.

5. Awuxiliaries results

In this section, we obtain an auxiliary lemma and the weak type (1, 1) estimate
for the case a = 0 with respect to the Lebesgue measure. These results are used in
the proof of the main results.

Lemma 5.1. Let T, ,, be as in Theorem 3.3. Let "~= < q < oo and v € A, for
some s > 1. If f € L (R"™), then T, f € Li(v).
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Remark 5.2. Let 1 < p < oo and % =
1 <r < oo, then w? € A, with s = (n — a).

Let ¥ be a Young function and w € A, . If 9 < c¥(t), then w? € A,. On the
other hand, if " < c¥(t), then w € A, .

Theorem 5.3. Under the hypothesis of Theorem 3.1 for a = 0, Tj,, is weak
type (1,1) respect to the Lebesgue measure, in other words there exists ¢ > 0 such
that

]lj — 2 Ifw € A%, %) for some

o € R Tonf@)] > A <5 [ 111

n

for all A > 0 and f € L*(R™).

6. Proofs of the results

6.1. Proofs of main results. In the proof of Theorem 3.1, we follow the idea
of Theorem 2.2 in [21].

Proof of Theorem 3.1.  Les us consider the case m = 2. The general case
follows in an analogous way. Let f € LX(R") and 0 < 6 < 1. Let x € R™ and
let B = B(cp, R) be a ball that contains z, centered at cp with radius R. We write
B = B(cp,2R) and for 1 <i < 2, set B; = A7'B. Let f; = fxue_ g and fa=f—fi.

Suppose that a := T,(f2)(cp) < oo. Then, -

(ﬁ /B Tof(y) — a|5dy) v < (ﬁ /B T () a|5dy) 1/8
=C (ﬁ / |Ta(f1)(y)|5dy) .

) ) 1/5
e (E / Tu(fo)(y) — Tl f2)(cs) dy)
(6.1) =C+1I1I).

First, we consider the case 0 < o < n. For I, using Jensen inequality we have,

1
I< / T £2) ()] dy

1
< / / KGRI =y

(6.2) <y ﬁ / TAG) /B K (y, 2)| dy dz.

Let us estimate the first summand, i.e. z € Bl. The case z € B~2 is analogous.

Now,
[ 1K)l dy
) B
<

(6.3
K (y,2)|dy + / K (y,2)|dy.

/{yGB: ly—A1z|<|y—A22[} {yeB: |y—A22|<|y— A1z}

For j € N, let consider the set
Ci={y€B:|y—Aiz| <|y— Asz|, |y — A1z| ~ 277 'R}.
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Observe that if y € B and z € By, then |y—A;2| < 3R < 4R and so B C B(A,z,4R).
Then, by Hélder’s inequality

K(y, 2 \dy<2/ K (y, )] dy

j=—2

|B Alz 2- JR |
< K(y, 2z 1 d
E  [B(Ar2, 27 R) B(Alzwml (v, 2)[xcr dy

/{yEB: ly—A1z|<|y—A2z[}

<C Z |B(A12, 277 R)|Ik1 (- = Av2)[lw, jy—arzpma-i-1rll k2 (- = A22) wy jy—ayzma-i-1-

j=—2

Observe that if y € Cj, then |y — Ayz| > |y — Ajz| > 277'R. Then, since
k2 S Sn—az,\llg

[k2 (- = A22)[lwy jy—ar2/~2-i-1R < Z [ka(- — A22)|lwy jy— apzjma-s+r-1R

k>0
< k(M lwafyinz-s+i-1m
k>0
(6.4) <Y (27TFR)™ = (27 R) ™
k>0

Inequality (6.4) and the fact that k; € S,,—q,.w,, gives

|K(y.2)|dy < C Y (279R)"™7* = CR".
j=—2

/{yEB: ly—A1z|<|y—A2z|}

In an analogous way, we get

(6.5) |K(y,2)|dy < CR".

/{yGBI ly—A2z|<|y—A12[}
Then, by (6.2) and (6.5), we have

1 1
I <CR* —/ f(2)|dz < CR* - f(2)|dz
;\B| éi\()\ Z|Bi| BZ-H)‘

i=1

2 2
<O Mof(A7'n) e My f (A7),
i=1 i=1
For I1, by Jensen inequality

u<E / ITa(f2) () — Ta(f2)(cp)| dy

</ /(Bluéz)cmy, K(ep, 2)|fs(2)] d= dy

1 2
< 131/, 22 [ 160 2) = KCem D ) .

where

Z'=(ByUBy) N {z: |eg — Aiz| <|eg — Apz|,r #1,1 < r <2}
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For y € B and z € Z', let estimate

|K(y, 2) — K(cp, 2)| < [ki(y — A1z) — ki(ep — Ar2)[[ka(y — As2))
(6.6) ki (en — Ar2)||Ea(y — Asz) — Ea(cp — As2)).

For simplicity we control the first summand of (6.6), the other summand follows
in an analogous way. For j € N, let

D.={zeZ: |cp — Az| ~ 2" R}.

Observe that D! C {z: |cp — Aiz| ~ 2R} C A B(cp, 27*2R) =: By and Z' =
U N Dé». Using generalized Holder inequality we get

Ik‘l(y — Aiz) = ka(ep — Avz)|[ka(y — A22)[|f(2)] d=

<Z |k1y Arz) = ki(cp — Av2)||ka(y — As2)|f(2)| dz

IN

S B [XDﬂ,ﬁ(y — 412) — ka(es — Av2)|[Raly — Av2) || (2)

=1 T 1Bl B,

8

IA

Z | Builll(ka(y = Av) = ki(es — A))xptlly, 5, 12 — A2 )Xoty 5, 1 follo 5,

< CZ | Bl (ke (y— Ar) = ki (e — Av))xptlle, 5, [1k2(y = A2 )Xt v, 5, 1 2]l 5,5, -

If y € Band z € Z' then |cg — Ajz|/2 < |y — Aiz| < 2|cg — Ajz| and if z € D!
then 2/R < |y — Ajz| < 27*?R. For the case | = 1, observe that if z € Dj, then
cp — Ag2| > |ep — Ayz[ > 27T R. So we decompose Dj = [, (D)2 whero

(Djl'>k,2 = {Z c D]l ‘CB — AQZ‘ ~ 2]+1R}

Note that (D})rs C {z: |cg — Azz| ~ 28" R}, As ky € Sp_ayw,, then

ks (y = A xpt lwy 3, < D k(Y = A2 )X (01,0 s s

k>j

<Y k() llwafoozir + [K2() lwa,jol ozt
k>j

<c) (2FR) =c(2’R)

k>j
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Finally using ky € H,,_,, w, and since Al_lx € BIJ we get

. Fi(y — Arz) = k(e — Avz)|[ka(y — A22)][ f2(2)] d=

< e (@R (ki(y — Av) = kiles — Ae)xot ey s, 1 1o,

j=1
<My, f( A T Z 2]R T (ke (y — Ar) — k(e —A1'))XD31.H\I/1,BLJ-
7=1

< CMa,gof( 1 ZL’)

The case [ = 2 follows the same argument with minimals changes. As ko €
Sn—azﬁllza we get

Ikaly — A2 )xpzlla, 5, < c(2R)2

Then, as above

y Fi(y — Arz) = k(e — Avz)[|ka(y — A22)[[f(2)] d=

< S 1Baglll ki (y — Ar) — kies — A))xpzlle, 5y, 1 ol 5,

j=1

Mg

< Mo f(Ay SC) (ZR)" 7| (ki (y — Ar) = ki(es — A1)xp2llw, 51

<.
[y

g1

< cMOWf(A;1 ) Z(QjR)"_O‘?_aH(kl(y —Ay) — k(e — Al'))XD§ ||q/1,ég

00 k
< Mo f(A7'2)) (Z(T‘“ )'H) (2°R)™ || (ka(y— Av) = ka(es = Av)x o), v, 5

k=1 \y=1

.
[y

o

< Moo f(Ay ) ) (2°R)™ |[(ki(y — Av) = kules — Av))xor,, v, 5

k=1

< M, f (A7),

where the last inequality holds since k; € H,,_,, w,. So,

2
Z Ikl y—Aiz) = kiep — Ai2)llkaly — Ao2)|| f(2)| dz S €Y Moo f(A] '),

=1
and

2
IT<cY Ma,f(A'x).
=1

For the case av = 0, proceed as in (6.1). The estimate for I follows, since Tp o is
of weak-type (1,1) with respect to the Lebesgue measure (see Lemma 5.3). Using
Kolmogorov’s inequality (see Lemma 5.16 in [8]), we get

C 2. C - -1
1< E/Rn\fl(y)ldyzgg/éi|f(y)\dy§C;Mf(Ai F())
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The term I1 is analogous to the case 0 < a < n, and so the theorem follows in this
case. ]

Proof of Theorem 3.3. By the extrapolation result Theorem 1.1 in [4], estimate
(3.3) holds for all 0 < p < oo and all w € Ay if, and only if, it holds for some
0 < pg < oo and all w E Aoo. Therefore, we will show that (3.3) is true for po, which
is taken such that =2 < py < 0.

Let w € A, then there exists » > 1 such that w € A,. Let 0 < § < 1 such that
1 <r <po/d, thus w € A,y /5. Then, by Lemma (5.1), we have ||T5  f]| zro(w) < 00,
and [[(To.mf)° |l 1ro /6wy < 00. Applying Fefferman-Stein inequality (see Lemma 7.10
in [8], p. 144) and Theorem 3.1 we get

| anf@ruta) e < [ M @ ) do
< [ QBT @) i) do
<O [ Ohaaf (A et
Hence, for all w € A, (3.3) holds for poj :tlhat is

(6.7) / (T () Pow(a d:c<CZ/ Moo f(A )P0 () da

Thus, as mentioned, using the extrapolation results obtained in [4], (3.3) holds for
all 0 <p <ooand w € Ay.
If w satisfies (3.2), we have

| ni@Pute dx<02/ Mo f (A7) () de
oY [ (Meas@putam) s

< CZ / (Moo f (2))w(z) da. O

6.2. Proof of weighted inequalities.

Proof of Theorem 3.6. Let t > 1 such that % = % — 2 = == by Theorem 3.3
and inequality (3.4) we have

(w{z € R™: [Tamf(z)| > A})T < Clw'{zx € R": ZMa¢f ) > ey A}t
C(w'{z € R": Z Mo, f(A7'2) > ey A}

1
t

< C(w'{z € R™: ZMm\fV( z) > A"H)T,

where the last inequality holds by Remark 2.2.
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Since w satisfies (3.2), we have

supA(w'{z € R": |Tomf(z)] > AN < Ciulgk(wt{:c eR": My, |f"(z) > A" })*
>

<o([irewe) "

where the last inequality follows since w” € Ay _n_ and M,, is of weak type (1, ——)

n—ar ) n—ar

in other words of weak type (1,¢/r). O

Proof of Theorem 3.7. Since k, < oo and w” € Az ¢, by Lemma 5.1 we have that

if f e L*(R"), then T, ,,f € L9(w?). Now, from Theorem 3.3 and Theorem 2.6 in
[1], we obtain

<o ([ wre ) v s

6.3. Proof of the Auxiliaries results.

Proof of Lemma 5.1. Let M = max;<j<s ||A;|lc. Suppose suppf C B(0, R). If
|| > 2MR and y € suppf, then for 1 <i <2 |Ay| < MR < % and

T 3
% <lz| = RM < |z — Ay| < |z|+ |Ay| < §|5E|

Analogous to the proof of Theorem 3.1,

i [ B = Aha(e = A) ) dy\

<

/ ki(z — Avy)ke(x — Agy) f(y) dy‘
yEB(O,R): |x—Azy|<|z—A1y|

_l_

/ ki(z — Avy)ka(r — Agy) f(y) dy' :
yEB(0,R): |z—A1y|<|z— A2y

We only estimate the first summand the other is analogous. Let
Z ={y € B(0,R): |x — Ary| <A4|z|} C B(0, R).
By Holder’s inequality

ki(x — Ary)ka(x — Agy) f(y) dy

/yEB(O,R): |x—Agy|<|x—A1y|
Z]
< 7||f’|L°° |k1(z — Ary)ka(z — Asy)| dy
‘ ‘ y€B(0,R): |[x—Azy|<|x—A1y|
< Nzl 211 (2 = Ar)X . 121 cpomaryiagionlbon 21R2(@= A2 )X, 2o agi<giony a2
< |l fllpee | Z]|z |77 < e[ fll e[ B(O, R)|[2]*™ < cl]*7™.

Hence, if |z| > 2MR, then |T'f(z)| < c|z|*™™. On the other hand, if |x| < 2MR,
|z — Ayl < |z| + |Aiy] < 3MR. Then, we proceed just as above to get |T'f(x)| <

cR*™™ and for 1 < s < 00,
/ |Tf(x)]°dx < C.
B(0,2MR)
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The rest of the proof follows the same steps as the proof of Lemma 3.2 in [21]: if
v € A, for some s > 1, we get

/\Tf(:c)|qy(x) iz < C. 0

Proof of Theorem 5.3. We consider T' = Ty 5. Let f be a function in the Schwartz
space and A > 0. By the Calderén-Zygmund decomposition for f at the height A,
we get 2\ = U,Q);, where @); are disjoint dyadic cubes in R". Then there exist g and

h = Y, h; functions such that f = g+ h, ||gll, < cad™ | £/, supp(h;) C Q;
and [ h; = 0. Thus,

{z e R*:|Tf(2)] > A} < {z € R": [Tg(x)] > A/2}[ + [{z € R": |Th(z)[ > A/2}]
=I1+1I.

For I, using that T is of weak type (po, po), we obtain

c
ol < el =5 [ 51
For II, let Q;; the cube with center A;c; and 1(Q;;) = 4MI(Q,), where M =

maxi<i<2 ||Az HOO’

II = |{x € R": |Th(z)| > \/2}]

< {93 S U(Qm UQj2): [Th(z)| > A/QH

I=H{zeR": |Tg(x)| > N2} <c

+ {95 ¢ U(Qg’,l UQj2): [Th(z)| > )\/2}‘

< U(Qj,l UQj2)

J

+ {95 ¢ U(Qg’,l UQj2): |Th(z)| > )\/2} :

For the first term, we have

U(Qj,l UQj2)

J

< Z Q1] +1Qj2] = QZ(4MZ(QJ))n

I

2
c / Th(z)| dz
A J0,65006,2
2c
XY K@ - K@)l dyds
i 7 (U (@511Q52)) JQ;

XSl [ K@) - K o)l dedy.
Ny

(Q5,1UQj2)¢

= 2(4M)" Y " 1(Q;)" =
J
For the second term

Hﬂf ¢ U(Qj,l UQj2): |Th(z)| > )\/2}
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If we have

(6.8) / | K (z,y) — K(x,¢;j)|de < C,
(Q] 1UQ~j 2) :

then

o # (@10 Qi IThGa) > A/} < %E/Q by dy < SNl

Hence, T is of weak-type (1,1). )
Now, let us prove (6.8). Observe that B;; = B(A;c;,2M1(Q;)) C Qj,, then

/ K(z,y) - K(z,c;)) |dx<z [ K@)~ Kol da,
(Q]lUQ]Z).

where
Z' = (B UBo) N{x: |v — Ayl < |z — Ayyl,r #1,1 <r <2}
Let estimate

|K(2,y) — K(z,¢5)] < |k1(z — Ary) — ki(z — Aicy)||ka(z — Agy)]
(6.9) + |k1(x — Avcy)||ka(x — Agy) — ka(x — Agcy)|.

We only study the first summand, the second one follows in analogous way. For
t e N,

Dl ={reZ" |v— Ac;| ~2'1(Q;)}.

Observe that D! C {z: |z — Aic;| ~ 21(Q;)} € B(Ai¢;,271(Q;)) =: Bl. Using
generalized Holder inequality we get

[ e Aw) — ko - A1) kel — Ay ds
(Qg 1UQ] 2)

ZZ / k(= Avy) — ka(z — Avey)|[Ea(z — Agy)| de

2

Bl

< E: :Bl|/ XDl|k‘1 (z — Avy) — ki(z — Aigy)[[ka(z — Asy)| dz
=1 t=1

2 o0
(6.10) ZZ | Billk1(- — Ary) — k1 (- — A1ei)xptlw, k2 (- — A2y)X 0t |y -

For | =1, since kg € S;_a,,w, and using inequality (6.4), we have

k2 (- = Asy) Xyl r < €(2"MIU(Q;)) ™™
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Then,

Z | B}[[k1(- = Avy) = k(- — A1) xpy o, B l1k2(- = A2y)xpi [l w, 5
t=1

< CZ(TMZ(QJ))"_O‘2||1€1(' = Ay) = k(- = Aiey))xot |y,

t=1

<O (2MUQ)) ™ k(- — Ary) — ki (- — Ave)))Xpi |, o

t=1

<,

where the last inequality holds by k; € H,,_4, v,-
If | =2, since ky € S;,—qa,,w,, We obtain

k2 (- = Azy)Xp2ll gy, 52 < c(2"MUQ;)) ™"
Then, proceeding as inequality (6.4), we get

Z B} |[|k1 (- — Ary) — ka(- — Arej))xpzlle, m2llke(- — A2y)xp2llw, 2

Z 2" MUQ )™ k1 (- — Avy) — K (- — Arey))xpzlle, 2 < C.
Hence,

[ = Aw) — ko - A1) ksl — Ay ds
(Qg 1UQJ 2)

2 o)
< CZ Z 1 Bll|k1(- = Ary) = ka(- = Arep))xpillw, s k2 (- = Asy)xpillw, 5 < C.

=1 t=1
Then, we prove (6.8). O
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