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Abstract. In this paper we study fractional type operators with more than one kernel, defined
by

Tα,mf(x) =

ˆ

Rn

k1(x−A1y)k2(x−A2y) . . . km(x −Amy)f(y) dy,

where, for 1 ≤ i ≤ m, each ki satisfies a fractional size condition and generalized fractional Hörman-

der condition, and Ai are invertibles matrices. We obtain weighted Coifman type estimates, strong

and weak type inequalities and BMO estimates for this operator. We also present some examples

different from those in the literature.

1. Introduction

The classical integral operators, for example the Calderón–Zygmund operator or
the fractional integral Iα, have kernels with only one possible singularity. For the
study of integral operators with more that one singularity in the kernel, we write the
kernel as product of functions where each function has only one possible singularity.

In [18], Ricci and Sjögren obtain the Lp(R, dx) boundedness, p > 1, for a fa-
mily of maximal operators on the three dimensional Heisenberg group. Some of
these operators arise in the study of the boundary behavior of Poisson integrals
on the symmetric space SLR3/SO(3). To get the principal result, they study the
boundedness on L2(R) of the operator

(1.1) Tαf(x) =

ˆ

R

|x− y|−α|x+ y|α−1f(y) dy,

for 0 < α < 1. Later, in [12], Godoy and Urciuolo study a generalization of (1.1) for
R

n.
More recently, in [21] the second author and Urciuolo analyze the following ge-

neralization of these operators. Let 0 ≤ α < n and m ∈ N. For 1 ≤ i ≤ m, let Ai be
matrices such that

(H) Ai is invertible and Ai − Aj is invertible for i 6= j, 1 ≤ i, j ≤ m.

For any f ∈ L∞
loc
(Rn), they define

(1.2) Tα,mf(x) =

ˆ

Rn

K(x, y)f(y) dy,

where

(1.3) K(x, y) = k1(x−A1y)k2(x−A2y) . . . km(x−Amy),
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and ki is a fractional rough kernel defined is the following way, let 1 < qi < ∞ such
that n

q1
+ · · ·+ n

qm
= n − α. Let Σ the unit sphere in R

n, Ωi ∈ L1(Σ) homogeneous
of degree 0. Then they consider

(1.4) ki(x) =
Ωi(x/|x|)

|x|n/qi
,

and proved the weighted Coifman type estimates, strong and weak type inequalities
and BMO estimates for this operator.

During the last years, several authors studied operators of the form (1.2) in diffe-
rent contexts: weighted Lebesgue and Hardy spaces with constant and variable ex-
ponent, also the endpoint estimates and boundedness in BMO and weighted BMO.
See for example [9, 11, 13, 14, 19, 20, 22, 23, 24, 25, 26, 27].

These operators generalized classical operators as Iα, the fractional integral ope-
rator, and rough fractional and singular operators. In the case of α = 0, T0,m

behaves like a singular integral operator in sense of Lp boundedness. For α > 0, if
1 < p < n/α and 1

q
= 1

p
− α

n
then Tα,m is bounded from Lp into Lq. It is well known

that if 0 < p < 1 the operator Iα is bounded from Hp into Hq, for some q. In several
cases the operators consider in this paper are not bounded from Hp into Hq, but
instead are bounded from Hp into Lq, 0 < p < 1 and some q (see [23, 24]).

In this paper, we consider the operator Tα,m defined by (1.2) and (1.3) with the
matrices Ai satisfying the condition (H). Let 0 ≤ αi < n, 1 ≤ i ≤ m such that
α1 + · · · + αm = n − α, and assume that ki satisfies a fractional size condition and
a generalized fractional Hörmander condition. The definition of spaces and objets
involved in this paper are described in Section 2.

Our first result is a pointwise estimate that relates the sharp delta maximal
function of Tα,mf , M ♯

δ(Tα,mf), 0 < δ ≤ 1, with a generalized fractional maximal
function of f . This estimate is a fundamental key to obtain weighted inequalities for
the operator Tα,m. These inequalities are developed in Section 3. These weighted
inequalities are the Coifman type estimates, the endpoint estimates and strong type
estimates with Ap,q weights and bump conditions.

In Section 4, we present new examples of this type of operators different than
the ones described above. In section 5 we present the weak type (1, 1) estimate with
respect to the Lebesgue measure for T0,m. In Section 6 we give the proofs of the
results.

2. Preliminaries

In this section we present some notions about Young function, Luxemburg ave-
rage and weights that will be fundamental throughout all this work.

Young Function and Luxemburg average. For more details of this topic see
[16] or [17]. A function Ψ: [0,∞) → [0,∞) is said to be a Young function if Ψ is
continuous, convex, no decreasing and satisfies Ψ(0) = 0 and lim

t→∞
Ψ(t) = ∞.

The average of the Luxemburg norm of a function f induced by a Young function
Ψ in the ball B is defined by

‖f‖Ψ,B := inf

{

λ > 0:
1

|B|

ˆ

B

Ψ

(

|f |

λ

)

≤ 1

}

.

Observe that if Ψ(t) = tr, r ≥ 1, ‖f‖Ψ,B = ‖f‖r,B =
(

1
|B|

´

B
|f |r
)1/r

.
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Each Young function Ψ has an associated complementary Young function Ψ
satisfying the generalized Hölder inequality

1

|B|

ˆ

B

|fg| ≤ 2‖f‖Ψ,B‖g‖Ψ,B.

Remark 2.1. Observe that in the proof of this last inequality in [16], the ball
B can be replaced by any measurable set E such that |E| < ∞.

If Ψ1, . . . ,Ψm, φ are Young functions satisfying that for some t0 > 0, Ψ−1
1 (t) · · ·

Ψ−1
m (t)φ−1(t) ≤ ct, for all t ≥ t0, then

‖f1 · · ·fmg‖1,B ≤ c‖f1‖Ψ1,B · · · ‖fm‖Ψm,B‖g‖φ,B.(2.1)

The function φ is called the complementary of the functions Ψ1, . . . ,Ψm.
Given f ∈ L1

loc
(Rn) and 0 ≤ α < n, the fractional maximal operator associated

to the Young function Ψ is defined as

Mα,Ψf(x) := sup
B∋x

|B|α/n‖f‖Ψ,B.

Now we compile some examples of maximal operators related to certain Young
functions.

• If Ψ(t) = t, then Mα,Ψ = Mα, the classical fractional maximal operator.
• Ψ(t) = tr with 1 < r < ∞. In this case Mα,Ψ = Mα,r, where M0,rf =
M(f r)1/r.

• Ψ(t) = exp(t)− 1. Then, Mα,Ψ = Mα,exp(L).
• If β ≥ 0 and 1 ≤ r < ∞, Ψ(t) = tr log(e + t)β is a Young function, then
Mα,Ψ = Mα,Lr(logL)β .

• If α = 0 and k ∈ N, Ψ(t) = t log(e + t)k it can be proved that MΨ ≈ Mk+1,
where Mk+1 is M iterated k + 1 times.

Remark 2.2. Observe that if Ψ(t) = tr then a simple computation show that

Mα,rf = (Mαr|f |
r)1/r .

Fractional size and fractional Hörmander conditions. Now we present the
fractional size condition and a generalized fractional Hörmander condition. For more
details of these objects see [2] or [10].

Let Ψ be a Young function and let 0 ≤ α < n. Let us introduce some notation:
|x| ∼ s means s < |x| ≤ 2s we write ‖f‖Ψ,|x|∼s = ‖fχ|x|∼s‖Ψ,B(0,2s).

The function Kα is said to satisfy the fractional size condition and we set Kα ∈
Sα,Ψ, if there exists a constant C > 0 such that

‖Kα‖Ψ,|x|∼s ≤ Csα−n.

When Ψ(t) = t we write Sα,Ψ = Sα. Observe that if Kα ∈ Sα, then there exists a
constant c > 0 such that

ˆ

|x|∼s

|Kα(x)|dx ≤ csα.

The function Kα satisfies the Lα,Ψ-Hörmander condition and we set K ∈ Hα,Ψ, if
there exist cΨ > 1 and CΨ > 0 such that for all x and R > cΨ|x|,

∞
∑

m=1

(2mR)n−α‖Kα(· − x)−Kα(·)‖Ψ,|y|∼2mR ≤ CΨ.
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We say that Kα ∈ Hα,∞ if Kα satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR

in place of ‖ · ‖Ψ,|x|∼2mR. When Φ(t) = tr, 1 ≤ r < ∞, we recover the fractional
Lr-Hörmander condition and simply write Hα,r instead of Hα,Ψ.

Weights. We say that a function w is a weight if w is a non negative function
in L1

loc
(Rn). Let 0 ≤ α < n, 1 ≤ p, q ≤ ∞, we say that a weight w belong to the

class Ap,q if

[w]Ap,q = sup
B

‖w‖q,B‖w
−1‖p′,B < ∞.

If 1 ≤ p < ∞, Ap denotes the classical Muckenhoupt class of weights. Note that
w ∈ Ap,p is equivalent to wp ∈ Ap. We recall that A∞ =

⋃

p≥1Ap, and the statement

w ∈ A∞,∞ is equivalent to w−1 ∈ A1.
The fractional Bp condition, which is denote by Bα

p was introduced by Cruz-Uribe

and Moen in [6]: Let 0 ≤ α < n, 1 < p < n/α, 1
q
= 1

p
− α

n
and φ be a Young function,

we say φ ∈ Bα
p if

ˆ ∞

1

φ(t)q/p

tq
dt

t
< ∞.

They proved, in Theorem 3.3 in [6], that if φ ∈ Bα
p then Mα,φ : L

p(dx) → Lq(dx) and

‖Mα,φ‖Lp→Lq ≤ c

(
ˆ ∞

1

φ(t)q/p

tq
dt

t

)1/q

.

We will consider the following bump conditions: let 1 < q < ∞ and Ψ be a
Young function, then a weight w ∈ Aq,Ψ if

[w]Aq,Ψ
= sup

Q
‖w‖q,Q‖w

−1‖Ψ,Q < ∞.

Given a function f ∈ L1
loc(R

n), the sharp maximal function is defined by

M#f(x) = sup
B∋x

1

|B|

ˆ

B

∣

∣

∣

∣

f −
1

|B|

ˆ

B

f

∣

∣

∣

∣

.

A locally integrable function f has bounded mean oscillation (f ∈ BMO) if M#f ∈
L∞ and the norm ‖f‖BMO = ‖M#f‖∞

Observe that the BMO norm is equivalent to

‖f‖BMO = ‖M#f‖∞ ∼ sup
B

inf
a∈C

1

|B|

ˆ

B

|f(x)− a| dx.

There is also a weighted version of BMO, this is denoted by BMO(w), and it is
described by the seminorm

‖|f |‖w = sup
B

‖wχB‖∞

(
ˆ

B

∣

∣

∣

∣

f(x)−
1

|B|

ˆ

B

f

∣

∣

∣

∣

dx

)

.

It is easy to check that

‖|f |‖w ≃ ‖wM#f‖∞.

3. Main results

In this section, we present the main results of this paper. We start with the
pointwise estimates of the sharp delta maximal function.
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Theorem 3.1. Let 0 ≤ α < n, m ∈ N and let Tα,m be the integral operator
defined by (1.2). For 1 ≤ i ≤ m, let Ψi be a Young function and let 0 ≤ αi < n
such that α1 + · · ·+ αm = n − α. Let ki ∈ Sn−αi,Ψi

∩Hn−αi,Ψi
and let the matrices

Ai satisfy the hypothesis (H). If α = 0, suppose T0,m be of strong type (p0, p0) for
some 1 < p0 < ∞. If φ is the complementary of the functions Ψ1, . . . ,Ψm, then there
exists C > 0 such that, for 0 < δ ≤ 1 and f ∈ L∞

c (Rn) (f a bounded function with
compact support)

(3.1) M ♯
δ |Tα,mf |(x) := M ♯

(

|Tα,mf |
δ
)

(x)1/δ ≤ C
m
∑

i=1

Mα,φf(A
−1
i x).

Remark 3.2. Observe that in Theorem 3.1 if α = 0, then m > 1. Indeed α = 0
and m = 1 imply α1 = n, then T0,1 is a singular integral operator and the size
condition has no sense. Nevertheless the result of the Theorem is still true, see [15].

For the weighted estimates we need an extra condition for the weights. There
exists c > 0 such that

(3.2) w(Aix) ≤ cw(x),

a.e. x ∈ R
n and for all 1 ≤ i ≤ m.

Theorem 3.3. Let 0 ≤ α < n and m ∈ N and let Tα,m be the integral operator
defined by (1.2). For 1 ≤ i ≤ m, let Ψi be Young functions, 0 ≤ αi < n such that
α1 + · · ·+ αm = n− α. Also suppose ki ∈ Sn−αi,Ψi

∩Hn−αi,Ψi
and that matrices Ai

satisfy the hypothesis (H). If α = 0, suppose T0,m be of strong type (p0, p0) for some
1 < p0 < ∞. Let 0 < p < ∞. If φ is the complementary of the functions Ψ1, . . . ,Ψm,
then there exists C > 0 such that, for f ∈ L∞

c (Rn) and w ∈ A∞,

(3.3)

ˆ

Rn

|Tα,mf(x)|
pw(x) dx ≤ C

m
∑

i=1

ˆ

Rn

|Mα,φf(x)|
pw(Aix) dx,

whenever the left-hand side is finite. Futhermore, if w satisfies (3.2), then
ˆ

Rn

|Tα,mf(x)|
pw(x) dx ≤ C

ˆ

Rn

|Mα,φf(x)|
pw(x) dx.

By (3.3), the Coifman type estimate, we can obtain weighted inequalities for Tα,m.
To obtain these inequalities we need a relationship between MΦ and Mr. Caldarelli,
Lerner and Ombrosy in [3], and Di Plinio and Lerner in [7], proved the following

Lemma 3.4. [3, 7] Let Φ be a Young function. For all x ∈ R
n and r > 1,

MΦf(x) ≤

(

2 sup
t≥Φ−1(1/2)

Φ(t)

tr

)1/r

Mrf(x) =: κrMrf(x).

It follows, in analogous way, that,

(3.4) Mα,Φf(x) ≤ cκrMα,rf(x).

First, we get a weighted BMO estimate for weights in the class A( n
αr
,∞).

Theorem 3.5. Let Tα,m be as in Theorem 3.3. Suppose there exists r > 1 such
that κr < ∞. If wr ∈ A( n

αr
,∞) and satisfies (3.2), then there exists C > 0 such that

for f ∈ L∞
c (Rn),

‖|Tα,mf |‖w ≤ C‖fw‖Ln/α.
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In [21] it is proved an analogous result for the weighted BMO estimate, so we
omit the proof.

Theorem 3.6. Let Tα,m be as in Theorem 3.3. Let 1
q
= 1

p
− α

n
. Suppose there

exists 1 < r < p such that κr < ∞. If wr ∈ A(1, n
n−αr

) and satisfies (3.2) then there
exists C > 0 such that for f ∈ L∞

c (Rn),

sup
λ>0

λ(w
rn

n−αr {x ∈ R
n : |Tα,mf(x)| > λ})

n−αr
rn ≤ C

(
ˆ

|f(x)|rwr(x) dx

)1/r

.

The strong type inequality follows from the boundedness of Mα,φ, Theorem 2.6
in [1].

Theorem 3.7. Let Tα,m be as in Theorem 3.3. Let 1 ≤ r < p < n/α and
1
q
= 1

p
− α

n
. Let η and ϕ be Young functions such that η−1(t)t

α
n . ϕ−1(t) for every

t > 0. If ϕ1+ sn
n−α ∈ B sn

n−α
for every s > r(n− α)/(n− αr) and wr ∈ A(p

r
, q
r
),

‖Tα,mf‖Lq(wq) ≤ C‖f‖Lp(wp).

Observe that Theorems 3.5 and 3.6 depend on an auxiliary exponent r. These
exponents r give rise to a class of weights that is sufficient to prove a boundedness
condition.

Taking a class of weights satisfying bump condition that does not depend on the
exponent r, we are able to prove another weighted strong inequality. Indeed, we first
recall Theorem 5.37 in [5]:

Theorem 3.8. [5] Let 0 ≤ α < n, 1 < p < n/α, let 1
q
= 1

p
− α

n
. Let φ,B and

C be Young functions such that B−1(t)C−1(t) ≤ cφ−1(t), t ≥ t0 > 0. If C ∈ Bα
p and

w ∈ Aq,B, then there exists c > 0 such that for every f ∈ Lp(wp),
ˆ

(Mα,φf)
qwq ≤ c

ˆ

|f |pwp.

Now, from Theorem 3.8 we obtain

Theorem 3.9. Let Tα,m be as in Theorem 3.3. Let 1
q
= 1

p
− α

n
. Let φ, B and C

be Young functions such that B−1(t)C−1(t) ≤ cφ−1(t), t ≥ t0 > 0. If C ∈ Bα
p and

w ∈ Aq,B, then there exists c > 0 such that for every f ∈ Lp(wp),

‖Tα,mf‖Lq(wq) ≤ c‖f‖Lp(wp).

4. Examples

Now we present some examples of this type of operator. For 1 ≤ r < ∞, let
r′ be the conjugate exponent of r. Let Ψ1(t) = tr,Ψ2(t) = exp(t) − 1 and φ(t) =
tr log(e + t)r

′
. Observe that

Ψ−1
1 (t)Ψ−1

2 (t)φ−1(t) ≃ t1/r log(e+ t)
t1/r

′

log(e+ t)
= t,

then φ is the complementary function of Ψ1,Ψ2.
For βi > 0, i = 1, 2, we define

k̃i(t + 4) = Ψ−1
i

(

1

t(1− log(t))1+βi

)

χ(0,1)(t).
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By Theorem 5 in [15], we have k̃i ∈ HΨi
. For the size condition, observe that

ˆ

R

Ψi(k̃i(t)) dt =

ˆ 1

0

1

t(1 − log(t))1+βi
dt =

1

βi

< ∞.

If s > 1, then k̃iχs<|x|≤2s ≡ 0. If s < 1,

‖k̃i‖Ψi,|x|∼s = ‖k̃iχs<|x|≤2s‖Ψi,B(0,2s) ≤ 1 +
1

4s

ˆ 2s

s

Ψi(k̃i(t)) dt

≤ 1 +
1

4s

(

1

βi

)

≤
1

s

(

1 +
1

4βi

)

.

Then, we get k̃i ∈ SΨi
.

Let 0 < α, α1, α2 < 1 such that α1 + α2 = 1 − α. By Proposition 4.1 in [2], we

know that if ki(t) = t1−αi k̃i(t) then ki ∈ H1−αi,Ψi
∩ S1−αi,Ψi

. We define the operator,

(4.1) Tf(x) =

ˆ

k1(x−A1y)k2(x− A2y)f(y) dy,

where ki are defined as above and A1, A2 are invertibles matrices such that A1 −A2

is invertible. This operator satisfies the hypothesis of the Theorem 3.3 and we have
the following

Theorem 4.1. Let 0 < α < 1. Let T be the operator defined by (4.1). Then,

(a) For all 1 < q < ∞ and w ∈ A∞,

ˆ

Rn

|Tf(x)|qw(x) dx ≤ C

2
∑

i=1

ˆ

Rn

|Mα,Lr′ logLr′f(x)|qw(Aix) dx.

(b) Let 1 < p < 1/α and 1
q
= 1

p
− α. If w satisfies (3.2) and wr′ ∈ A p

r′
, q
r′

, then
ˆ

Rn

|Tf(x)|qwq(x) dx ≤ C

ˆ

Rn

|f(x)|pwp(x) dx.

(c) κr′+1 < ∞ and if wr′+1 ∈ A( 1
α(r′+1)

,∞) and satisfies (3.2), then

‖|Tf |‖w ≤ C‖fw‖L1/α(dx).

(d) Let s = r′+1
1−α(r′+1)

. If wr′+1 ∈ A(1, s
r′+1

) and satisfies (3.2), then

sup
λ>0

λ(ws{x ∈ R
n : |Tf(x)| > λ})

1

s ≤ C

(
ˆ

|f(x)|r
′+1wr′+1(x) dx

)1/(r′+1)

.

Remark 4.2. Observe that to prove (b), we can use Theorem 2.3 in [1]. This
result asserts that Mα,Lr logLγ is bounded from Lp(wp) into Lq(wq) if and only if
wr ∈ A p

r
, q
r
.

5. Auxiliaries results

In this section, we obtain an auxiliary lemma and the weak type (1, 1) estimate
for the case α = 0 with respect to the Lebesgue measure. These results are used in
the proof of the main results.

Lemma 5.1. Let Tα,m be as in Theorem 3.3. Let n−α
n

< q < ∞ and ν ∈ As for
some s > 1. If f ∈ L∞

c (Rn), then Tα,mf ∈ Lq(ν).
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Remark 5.2. Let 1 < p < ∞ and 1
q
= 1

p
− α

n
. If wr ∈ A(p

r
, q
r
) for some

1 < r < ∞, then wq ∈ As with s = q
n
(n− α).

Let Ψ be a Young function and w ∈ Ap,Ψ. If tq
′
≤ cΨ(t), then wq ∈ Aq. On the

other hand, if tp
′
≤ cΨ(t), then w ∈ Ap,q.

Theorem 5.3. Under the hypothesis of Theorem 3.1 for α = 0, T0,m is weak
type (1, 1) respect to the Lebesgue measure, in other words there exists c > 0 such
that

|{x ∈ R
n : |T0,mf(x)| > λ}| ≤

c

λ

ˆ

Rn

|f |,

for all λ > 0 and f ∈ L1(Rn).

6. Proofs of the results

6.1. Proofs of main results. In the proof of Theorem 3.1, we follow the idea
of Theorem 2.2 in [21].

Proof of Theorem 3.1. Les us consider the case m = 2. The general case
follows in an analogous way. Let f ∈ L∞

c (Rn) and 0 < δ ≤ 1. Let x ∈ R
n and

let B = B(cB, R) be a ball that contains x, centered at cB with radius R. We write
B̃ = B(cB, 2R) and for 1 ≤ i ≤ 2, set B̃i = A−1

i B̃. Let f1 = fχ∪2
i=1

B̃i
and f2 = f−f1.

Suppose that a := Tα(f2)(cB) < ∞. Then,
(

1

|B|

ˆ

B

|Tαf(y)− a|δdy

)1/δ

≤

(

1

|B|

ˆ

B

|Tαf(y)− a|δdy

)1/δ

≤ C

(

1

|B|

ˆ

B

|Tα(f1)(y)|
δdy

)1/δ

+ C

(

1

|B|

ˆ

B

|Tα(f2)(y)− Tα(f2)(cB)|
δdy

)1/δ

= C(I + II).(6.1)

First, we consider the case 0 < α < n. For I, using Jensen inequality we have,

I ≤
1

|B|

ˆ

B

|Tα(f1)(y)| dy

≤
1

|B|

ˆ

B

ˆ

B̃1∪B̃2

|K(y, z)||f1(z)| dz dy

≤

2
∑

i=1

1

|B|

ˆ

B̃i

|f1(z)|

ˆ

B

|K(y, z)| dy dz.(6.2)

Let us estimate the first summand, i.e. z ∈ B̃1. The case z ∈ B̃2 is analogous.
Now,

ˆ

B

|K(y, z)| dy

≤

ˆ

{y∈B : |y−A1z|≤|y−A2z|}

|K(y, z)| dy +

ˆ

{y∈B : |y−A2z|≤|y−A1z|}

|K(y, z)| dy.
(6.3)

For j ∈ N, let consider the set

C1
j := {y ∈ B : |y −A1z| ≤ |y − A2z|, |y − A1z| ∼ 2−j−1R}.
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Observe that if y ∈ B and z ∈ B̃1, then |y−A1z| ≤ 3R < 4R and so B ⊂ B(A1z, 4R).
Then, by Hölder’s inequality
ˆ

{y∈B : |y−A1z|≤|y−A2z|}

|K(y, z)| dy ≤
∞
∑

j=−2

ˆ

C1
j

|K(y, z)| dy

≤

∞
∑

j=−2

|B(A1z, 2
−jR)|

|B(A1z, 2−jR)|

ˆ

B(A1z,2−jR)

|K(y, z)|χC1
j
dy

≤ C
∞
∑

j=−2

|B(A1z, 2
−jR)|‖k1(· −A1z)‖Ψ1,|y−A1z|∼2−j−1R‖k2(· −A2z)‖Ψ2,|y−A1z|∼2−j−1R.

Observe that if y ∈ C1
j , then |y − A2z| ≥ |y − A1z| > 2j−1R. Then, since

k2 ∈ Sn−α2,Ψ2

‖k2(· − A2z)‖Ψ2,|y−A1z|∼2−j−1R ≤
∑

k≥0

‖k2(· − A2z)‖Ψ2,|y−A2z|∼2−j+k−1R

≤
∑

k≥0

‖k2(·)‖Ψ2,|y|∼2−j+k−1R

≤
∑

k≥0

(2−j+kR)−α2 = c(2−jR)−α2 .(6.4)

Inequality (6.4) and the fact that k1 ∈ Sn−α1,Ψ1
, gives

ˆ

{y∈B : |y−A1z|≤|y−A2z|}

|K(y, z)| dy ≤ C
∞
∑

j=−2

(2−jR)n−α1−α2 = CRα.

In an analogous way, we get

(6.5)

ˆ

{y∈B : |y−A2z|≤|y−A1z|}

|K(y, z)| dy ≤ CRα.

Then, by (6.2) and (6.5), we have

I ≤ CRα

2
∑

i=1

1

|B|

ˆ

B̃i

|f(z)| dz ≤ CRα

2
∑

i=1

1

|B̃i|

ˆ

B̃i

|f(z)| dz

≤ C

2
∑

i=1

Mαf(A
−1
i x) ≤ c

2
∑

i=1

Mα,ϕf(A
−1
i x).

For II, by Jensen inequality

II ≤
1

|B|

ˆ

B

|Tα(f2)(y)− Tα(f2)(cB)| dy

≤
1

|B|

ˆ

B

ˆ

(B̃1∪B̃2)c
|K(y, z)−K(cB, z)||f2(z)| dz dy

≤
1

|B|

ˆ

B

2
∑

l=1

ˆ

Zl

|K(y, z)−K(cB, z)||f2(z)| dz dy,

where

Z l = (B̃1 ∪ B̃2)
c ∩ {z : |cB −Alz| ≤ |cB − Arz|, r 6= l, 1 ≤ r ≤ 2}.
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For y ∈ B and z ∈ Z l, let estimate

|K(y, z)−K(cB, z)| ≤ |k1(y − A1z)− k1(cB −A1z)||k2(y − A2z)|

+ |k1(cB − A1z)||k2(y − A2z)− k2(cB −A2z)|.(6.6)

For simplicity we control the first summand of (6.6), the other summand follows
in an analogous way. For j ∈ N, let

Dl
j = {z ∈ Z l : |cB − Alz| ∼ 2j+1R}.

Observe that Dl
j ⊂ {z : |cB − Alz| ∼ 2j+1R} ⊂ A−1

l B(cB, 2
j+2R) =: B̃l,j and Z l =

⋃

j∈NDl
j . Using generalized Hölder inequality we get

ˆ

Zl

|k1(y − A1z)− k1(cB −A1z)||k2(y − A2z)||f(z)| dz

≤
∞
∑

j=1

ˆ

Dl
j

|k1(y −A1z)− k1(cB − A1z)||k2(y −A2z)|f(z)| dz

≤
∞
∑

j=1

|B̃l,j|

|B̃l,j|

ˆ

B̃l,j

[

χDl
j
|k1(y − A1z)− k1(cB − A1z)||k2(y − A2z)||f(z)|

]

dz

≤

∞
∑

j=1

|B̃l,j|‖(k1(y −A1·)− k1(cB − A1·))χDl
j
‖Ψ1,B̃l,j

‖k2(y − A2·)χDl
j
‖Ψ2,B̃l,j

‖f2‖ϕ,B̃l,j

≤ c

∞
∑

j=1

|B̃l,j|‖(k1(y−A1·)−k1(cB − A1·))χDl
j
‖Ψ1,B̃l,j

‖k2(y−A2·)χDl
j
‖Ψ2,B̃l,j

‖f2‖ϕ,B̃l,j
.

If y ∈ B and z ∈ Z l then |cB − Alz|/2 ≤ |y − Alz| < 2|cB − Alz| and if z ∈ Dl
j

then 2jR ≤ |y − Alz| ≤ 2j+2R. For the case l = 1, observe that if z ∈ D1
j , then

|cB − A2z| ≥ |cB − A1z| ≥ 2j+1R. So we decompose D1
j =

⋃

k≥j(D
1
j )k,2 where

(D1
j )k,2 = {z ∈ D1

j : |cB − A2z| ∼ 2j+1R}.

Note that (D1
j )k,2 ⊂ {z : |cB − A2z| ∼ 2k+1R}. As k2 ∈ Sn−α2,Ψ2

, then

‖k2(y − A2·)χD1
j
‖Ψ2,B̃1,j

≤
∑

k≥j

‖k2(y −A2·)χ(D1
j )k,2

‖Ψ2,B̃2,k

≤
∑

k≥j

‖k2(·)‖Ψ2,|x|∼2kR + ‖k2(·)‖Ψ2,|x|∼2k+1R

≤ c
∑

k≥j

(2kR)−α2 = c(2jR)−α2 .
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Finally using k1 ∈ Hn−α1,Ψ1
and since A−1

1 x ∈ B̃1,j we get
ˆ

Z1

|k1(y − A1z)− k1(cB − A1z)||k2(y −A2z)||f2(z)| dz

≤ c

∞
∑

j=1

(2jR)n−α2‖(k1(y − A1·)− k1(cB − A1·))χD1
j
‖Ψ1,B̃1,j

‖f‖ϕ,B̃1,j

≤ cMα,ϕf(A
−1
1 x)

∞
∑

j=1

(2jR)n−α2−α‖(k1(y − A1·)− k1(cB −A1·))χD1
j
‖Ψ1,B̃1,j

≤ cMα,ϕf(A
−1
1 x).

The case l = 2 follows the same argument with minimals changes. As k2 ∈
Sn−α2,Ψ2

, we get

‖k2(y −A2·)χD2
j
‖Ψ2,B̃2,j

≤ c(2jR)−α2 .

Then, as above
ˆ

Zl

|k1(y − A1z)− k1(cB −A1z)||k2(y − A2z)||f(z)| dz

≤ c
∞
∑

j=1

|B̃2,j|‖(k1(y −A1·)− k1(cB − A1·))χD2
j
‖Ψ1,B̃2,j

‖f2‖ϕ,B̃2,j

≤ cMα,ϕf(A
−1
2 x)

∞
∑

j=1

(2jR)n−α2−α‖(k1(y − A1·)− k1(cB −A1·))χD2
j
‖Ψ1,B̃

j
2

≤ cMα,ϕf(A
−1
2 x)

∞
∑

j=1

(2jR)n−α2−α‖(k1(y − A1·)− k1(cB −A1·))χD2
j
‖Ψ1,B̃

j
2

≤ cMα,ϕf(A
−1
2 x)

∞
∑

k=1

(

k
∑

j=1

(2−α1)k−j

)

(2kR)α1‖(k1(y−A1·)−k1(cB−A1·))χ(Dl
j)k,1

‖Ψ1,B̃k
1

≤ cMα,ϕf(A
−1
2 x)

∞
∑

k=1

(2kR)α1‖(k1(y − A1·)− k1(cB − A1·))χ(Dl
j)k,1

‖Ψ1,B̃k
1

≤ cMα,ϕf(A
−1
2 x),

where the last inequality holds since k1 ∈ Hn−α1,Ψ1
. So,

2
∑

l=1

ˆ

Zl

|k1(y −A1z)− k1(cB − A1z)||k2(y − A2z)||f(z)| dz ≤ c
2
∑

l=1

Mα,ϕf(A
−1
l x),

and

II ≤ c
2
∑

l=1

Mα,ϕf(A
−1
l x).

For the case α = 0, proceed as in (6.1). The estimate for I follows, since T0,2 is
of weak-type (1, 1) with respect to the Lebesgue measure (see Lemma 5.3). Using
Kolmogorov’s inequality (see Lemma 5.16 in [8]), we get

I ≤
C

|B|

ˆ

Rn

|f1(y)| dy =

2
∑

i=1

C

|B|

ˆ

B̃i

|f(y)| dy ≤ C

2
∑

i=1

Mf(A−1
i f(x)).
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The term II is analogous to the case 0 < α < n, and so the theorem follows in this
case. �

Proof of Theorem 3.3. By the extrapolation result Theorem 1.1 in [4], estimate
(3.3) holds for all 0 < p < ∞ and all w ∈ A∞ if, and only if, it holds for some
0 < p0 < ∞ and all w ∈ A∞. Therefore, we will show that (3.3) is true for p0, which
is taken such that n−α

n
< p0 < ∞.

Let w ∈ A∞, then there exists r > 1 such that w ∈ Ar. Let 0 < δ < 1 such that
1 < r < p0/δ, thus w ∈ Ap0/δ. Then, by Lemma (5.1), we have ‖Tα,mf‖Lp0(w) < ∞,
and ‖(Tα,mf)

δ‖Lp0/δ(w) < ∞. Applying Fefferman–Stein inequality (see Lemma 7.10

in [8], p. 144) and Theorem 3.1 we get
ˆ

Rn

|Tα,mf(x)|
p0w(x) dx ≤

ˆ

Rn

|M(Tα,mf)
δ(x)|p0/δw(x) dx

≤

ˆ

Rn

(M ♯
δ(Tα,mf)(x))

p0w(x) dx

≤ C
m
∑

i=1

ˆ

Rn

(Mα,φf(A
−1
i x))p0w(x)dx.

Hence, for all w ∈ A∞, (3.3) holds for p0, that is

(6.7)

ˆ

Rn

|Tα,mf(x)|
p0w(x) dx ≤ C

m
∑

i=1

ˆ

Rn

(Mα,φf(A
−1
i x))p0w(x) dx.

Thus, as mentioned, using the extrapolation results obtained in [4], (3.3) holds for
all 0 < p < ∞ and w ∈ A∞.

If w satisfies (3.2), we have

ˆ

Rn

|Tα,mf(x)|
pw(x) dx ≤ C

m
∑

i=1

ˆ

Rn

(Mα,φf(A
−1
i x))pw(x) dx

= C
m
∑

i=1

ˆ

Rn

(Mα,φf(x))
pw(Aix) dx

≤ C

m
∑

i=1

ˆ

Rn

(Mα,φf(x))
pw(x) dx. �

6.2. Proof of weighted inequalities.

Proof of Theorem 3.6. Let t > 1 such that 1
t
= 1

r
− α

n
= n−αr

rn
, by Theorem 3.3

and inequality (3.4) we have

(wt{x ∈ R
n : |Tα,mf(x)| > λ})

1

t ≤ C(wt{x ∈ R
n :

m
∑

i=1

Mα,φf(A
−1
i x) > cγλ})

1

t

≤ C(wt{x ∈ R
n :

m
∑

i=1

Mα,rf(A
−1
i x) > cγλ})

1

t

≤ C(wt{x ∈ R
n :

m
∑

i=1

Mαr|f |
r(A−1

i x) > λr})
1

t ,

where the last inequality holds by Remark 2.2.
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Since w satisfies (3.2), we have

sup
λ>0

λ(wt{x ∈ R
n : |Tα,mf(x)| > λ})

1

t ≤ Csup
λ>0

λ(wt{x ∈ R
n : Mαr|f |

r(x) > λr})
1

t

≤ C

(
ˆ

|f |r(x)wr(x)dx

)1/r

,

where the last inequality follows since wr ∈ A1, n
n−αr

and Mαr is of weak type (1, n
n−αr

)

in other words of weak type (1, t/r). �

Proof of Theorem 3.7. Since κr < ∞ and wr ∈ A p
r
, q
r
, by Lemma 5.1 we have that

if f ∈ L∞
c (Rn), then Tα,mf ∈ Lq(wq). Now, from Theorem 3.3 and Theorem 2.6 in

[1], we obtain
(
ˆ

Rn

|Tα,mf(x)|
qwq(x) dx

)1/q

≤ C

(
ˆ

Rn

|Mα,φf(x)|
qwq(x) dx

)1/q

≤ C

(
ˆ

Rn

|f(x)|pwp(x) dx

)1/p

. �

6.3. Proof of the Auxiliaries results.

Proof of Lemma 5.1. Let M = max1≤j≤2 ‖Aj‖∞. Suppose suppf ⊂ B(0, R). If

|x| > 2MR and y ∈ suppf , then for 1 ≤ i ≤ 2, |Aiy| ≤ MR < |x|
2

and

|x|

2
≤ |x| − RM ≤ |x−Aiy| ≤ |x|+ |Aiy| <

3

2
|x|.

Analogous to the proof of Theorem 3.1,

|Tf(x)| =

∣

∣

∣

∣

ˆ

B(0,R)

k1(x− A1y)k2(x−A2y)f(y) dy

∣

∣

∣

∣

≤

∣

∣

∣

∣

ˆ

y∈B(0,R) : |x−A2y|≤|x−A1y|

k1(x−A1y)k2(x−A2y)f(y) dy

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

y∈B(0,R) : |x−A1y|≤|x−A2y|

k1(x−A1y)k2(x−A2y)f(y) dy

∣

∣

∣

∣

.

We only estimate the first summand the other is analogous. Let

Z = {y ∈ B(0, R) : |x− A1y| ≤ 4|x|} ⊂ B(0, R).

By Hölder’s inequality
∣

∣

∣

∣

ˆ

y∈B(0,R) : |x−A2y|≤|x−A1y|

k1(x− A1y)k2(x− A2y)f(y) dy

∣

∣

∣

∣

≤
|Z|

|Z|
‖f‖L∞

ˆ

y∈B(0,R) : |x−A2y|≤|x−A1y|

|k1(x− A1y)k2(x− A2y)| dy

≤ ‖f‖L∞|Z|‖k1(x−A1·)χ{y :
|x|
2
≤|x−A1y|<

3

2
|x|}

‖Ψ1,Z‖k2(x−A2·)χ{y :
|x|
2
≤|x−A2y|<

3

2
|x|}

‖Ψ2,Z

≤ c‖f‖L∞|Z||x|−α1−α2 ≤ c‖f‖L∞|B(0, R)||x|α−n ≤ c|x|α−n.

Hence, if |x| > 2MR, then |Tf(x)| ≤ c|x|α−n. On the other hand, if |x| < 2MR,
|x − Aiy| ≤ |x| + |Aiy| < 3MR. Then, we proceed just as above to get |Tf(x)| ≤
cRα−n and for 1 ≤ s < ∞,

ˆ

B(0,2MR)

|Tf(x)|s dx < C.
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The rest of the proof follows the same steps as the proof of Lemma 3.2 in [21]: if
ν ∈ As for some s > 1, we get

ˆ

|Tf(x)|qν(x) dx ≤ C. �

Proof of Theorem 5.3. We consider T = T0,2. Let f be a function in the Schwartz
space and λ > 0. By the Calderón–Zygmund decomposition for f at the height λ,
we get Ωλ = ∪jQj , where Qj are disjoint dyadic cubes in R

n. Then there exist g and

h =
∑

j hj functions such that f = g + h, ‖g‖p0 ≤ cnλ
1/p0′‖f‖

1/p0
1 , supp(hj) ⊂ Qj

and
´

hj = 0. Thus,

|{x ∈ R
n : |Tf(x)| > λ}| ≤ |{x ∈ R

n : |Tg(x)| > λ/2}|+ |{x ∈ R
n : |Th(x)| > λ/2}|

= I + II.

For I, using that T is of weak type (p0, p0), we obtain

I = |{x ∈ R
n : |Tg(x)| > λ/2}| ≤ c

2p0

λp0
‖g‖p0p0 ≤ c

2p0

λp0
‖f‖1λ

p0−1 =
c

λ

ˆ

Rn

|f |.

For II, let Q̃j,i the cube with center Aicj and l(Q̃j,i) = 4Ml(Qj), where M =
max1≤i≤2 ‖Ai‖∞,

II = |{x ∈ R
n : |Th(x)| > λ/2}|

≤

∣

∣

∣

∣

∣

{

x ∈
⋃

j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2

}
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

{

x 6∈
⋃

j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2

}
∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

⋃

j

(Q̃j,1 ∪ Q̃j,2)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

{

x 6∈
⋃

j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2

}
∣

∣

∣

∣

∣

.

For the first term, we have
∣

∣

∣

∣

∣

⋃

j

(Q̃j,1 ∪ Q̃j,2)

∣

∣

∣

∣

∣

≤
∑

j

|Q̃j,1|+ |Q̃j,2| = 2
∑

j

(4Ml(Qj))
n

= 2(4M)n
∑

j

l(Qj)
n = 2(4M)n

∣

∣

∣

∣

∣

⋃

j

Qj

∣

∣

∣

∣

∣

≤
c

λ

ˆ

Rn

|f |.

For the second term
∣

∣

∣

∣

∣

{

x 6∈
⋃

j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2

}
∣

∣

∣

∣

∣

≤
2c

λ

ˆ

(
⋃

j(Q̃j,1∪Q̃j,2))c
|Th(x)| dx

≤
2c

λ

∑

j

ˆ

(
⋃

j(Q̃j,1∪Q̃j,2))c

ˆ

Qj

|K(x, y)−K(x, cj)||hj(y)| dy dx

=
2c

λ

∑

j

ˆ

Qj

|hj(y)|

ˆ

(Q̃j,1∪Q̃j,2)c
|K(x, y)−K(x, cj)| dx dy.
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If we have

ˆ

(Q̃j,1∪Q̃j,2)c
|K(x, y)−K(x, cj)| dx ≤ C,(6.8)

then

|{x 6∈
⋃

j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2}| ≤
C

λ

∑

j

ˆ

Qj

|hj(y)| dy ≤
C

λ
‖f‖1.

Hence, T is of weak-type (1, 1).

Now, let us prove (6.8). Observe that Bj,i = B(Aicj , 2Ml(Qj)) ⊂ Q̃j,i, then

ˆ

(Q̃j,1∪Q̃j,2)c
|K(x, y)−K(x, cj))| dx ≤

2
∑

l=1

ˆ

Zl

|K(x, y)−K(x, cj)| dx,

where

Z l = (Bj,1 ∪Bj,2)
c ∩ {x : |x− Aly| ≤ |x−Ary|, r 6= l, 1 ≤ r ≤ 2}.

Let estimate

|K(x, y)−K(x, cj)| ≤ |k1(x−A1y)− k1(x− A1cj)||k2(x− A2y)|

+ |k1(x− A1cj)||k2(x− A2y)− k2(x−A2cj)|.(6.9)

We only study the first summand, the second one follows in analogous way. For
t ∈ N,

Dl
t = {x ∈ Z l : |x− Alcj| ∼ 2tl(Qj)}.

Observe that Dl
t ⊂ {x : |x − Alcj| ∼ 2tl(Qj)} ⊂ B(Alcj, 2

t+1l(Qj)) =: B̃l
t. Using

generalized Hölder inequality we get

ˆ

(Q̃j,1∪Q̃j,2)c
|k1(x− A1y)− k1(x−A1cj)||k2(x− A2y)| dx

≤
2
∑

l=1

∞
∑

t=1

ˆ

Dl
t

|k1(x−A1y)− k1(x− A1cj)||k2(x− A2y)| dx

≤

2
∑

l=1

∞
∑

t=1

|B̃l
t|

|B̃l
t|

ˆ

B̃l
t

χDl
t
|k1(x− A1y)− k1(x− A1cj)||k2(x−A2y)| dx

≤ C

2
∑

l=1

∞
∑

t=1

|B̃l
t|‖k1(· − A1y)− k1(· − A1cj))χDl

t
‖Ψ1,B̃l

t
‖k2(· −A2y)χDl

t
‖Ψ2,B̃l

t
.(6.10)

For l = 1, since k2 ∈ Sn−α2,Ψ2
and using inequality (6.4), we have

‖k2(· − A2y)χD1
t
‖Ψ2,B̃1

t
≤ c(2tMl(Qj))

−α2 .
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Then,
∞
∑

t=1

|B̃1
t |‖k1(· −A1y)− k1(· −A1cj))χD1

t
‖Ψ1,B̃1

t
‖k2(· −A2y)χD1

t
‖Ψ2,B̃1

t

≤ c
∞
∑

t=1

(2tMl(Qj))
n−α2‖k1(· −A1y)− k1(· −A1cj))χD1

t
‖Ψ1,B̃1

t

≤ C
∞
∑

t=1

(2tMl(Qj))
α1‖k1(· − A1y)− k1(· −A1cj))χD1

t
‖Ψ1,B̃1

t

≤ C,

where the last inequality holds by k1 ∈ Hn−α1,Ψ1
.

If l = 2, since k2 ∈ Sn−α2,Ψ2
, we obtain

‖k2(· − A2y)χD2
t
‖Ψ2,B̃2

t
≤ c(2tMl(Qj))

−α2 .

Then, proceeding as inequality (6.4), we get
∞
∑

t=1

|B̃2
t |‖k1(· −A1y)− k1(· −A1cj))χD2

t
‖Ψ1,B̃2

t
‖k2(· −A2y)χD2

t
‖Ψ2,B̃2

t

≤ C
∞
∑

t=1

(2tMl(Qj))
α1‖k1(· − A1y)− k1(· −A1cj))χD2

t
‖Ψ1,B̃2

t
≤ C.

Hence,
ˆ

(Q̃j,1∪Q̃j,2)c
|k1(x−A1y)− k1(x− A1cj)||k2(x− A2y)| dx

≤ C
2
∑

l=1

∞
∑

t=1

|B̃l
t|‖k1(· − A1y)− k1(· −A1cj))χDl

t
‖Ψ1,B̃l

t
‖k2(· − A2y)χDl

t
‖Ψ2,B̃l

t
≤ C.

Then, we prove (6.8). �
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