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Abstract. In this paper among other results, we will prove the conjecture of Keskin, Şiar and

Karaatlı on the Diophantine equation x2 − kxy + y2 − 2n = 0.

1. Introduction

There has been much recent interest in the Diophantine equation

(1) x2 − kxy + y2 + lx = 0

for different values of the integers k and l. Marlewski and Zarzycki [4] considered
equation (1) for l = 1, and proved that equation (1) has no positive solutions for
l = 1 and k > 3, but has an infinite number of solutions for k = 3 and l = 1.
Keskin, in [1] considered equation (1) for l = −1 and proved that it has positive
integer solutions for k > 1. Yuan and Hu [6] considred equation (1) with l = 1, 2 or
4 and determined the values of the integer k for which equation (1) has an infinite
number of positive solutions. Expanding on the work of Yuan and Hu [6], Keskin
et al. in [2] and [3] considered equation (1) for l = ±2r with r a positive integer.
They explained that in order to determine when equation (1) with l = −2r, has an
infinite number of positive integer solutions, one needs only to determine when the
Diophantine equation

(2) x2 − kxy + y2 − 2n = 0

has an infinite number of positive integer solutions x and y for certain values of
the non negative integer n. Similarly for l = 2r in equation (1), one needs only to
consider the Diophantine equation

(3) x2 − kxy + y2 + 2n = 0.

Keskin et al. solved equation (2) and equation (3) for 0 ≤ n ≤ 10, and formulated
the following conjecture in [3].

Conjecture 1. (i) Let n be an odd integer and n > 2. If k > 2n − 2, then

equation (2) has no positive integer solutions. If k ≤ 2n − 2 and (2) has a solution,

then k is even.
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(ii) Let n be an even integer. If k > 2n−2, then equation (2) has no positive odd

integer solutions. If k ≤ 2n − 2 and equation (2) has a positive odd integer solution,

then k is even.

In this paper, among other results, we will prove Conjecture 1 in Theorem 3.1,
and prove Theorem 3.2 a result analogous to Conjecture 1.

2. Preliminary results

In this section, we will recall some results that we will need for the proof of our
theorems. Let d be a positive integer which is not a perfect square and consider the
Pell equation

(4) x2 − dy2 = 1.

It is well known (cf. [5, p. 197]) that equation (4) always has a positive solution when

d ≥ 2. Consider all the solutions x + y
√
d with positive x and y. Among these

there is a least solution x1+y1
√
d in which x1 and y1 have their least positive values.

The number x1 + y1
√
d is called the fundamental solution, and all positive integer

solutions to (4) are given by

xn + yn
√
d =

(

x1 + y1
√
d
)n

with n ≥ 1.

Let C be a nonzero integer, and consider the Diophantine equation

(5) u2 − dv2 = C.

Suppose that u + v
√
d is a solution to equation (5). If x + y

√
d is any solution of

equation (4), then

u′ + v′
√
d =

(

u+ v
√
d
)(

x+ y
√
d
)

= ux+ vyd+ (yu+ vx)
√
d

is also a solution of (5). The solution u′ + v′
√
d is said to be associated with the

solution u+ v
√
d. The set of all solutions associated with each other form a class of

solutions of equation (5). Every class contains an infinity of solutions. We have the
following lemmas.

Lemma 2.1. If u+v
√
d is the fundamental solution of a class K of the equation

u2 − dv2 = N

where N is a positive integer and if x1 + y1
√
d is the fundamental solution of equa-

tion (4), then we have the inequalities

0 ≤ v ≤ y1
√

2 (x1 + 1)

√
N

and

0 < |u| ≤
√

1

2
(x1 + 1)N.

Lemma 2.2. If u+v
√
d is the fundamental solution of a class K of the equation

u2 − dv2 = −N, where N is a positive integer and if x1 + y1
√
d is the fundamental

solution of equation (4), then we have the inequalities

0 < v ≤ y1
√

2 (x1 − 1)

√
N
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and

0 ≤ |u| ≤
√

1

2
(x1 − 1)N.

For the proof of Lemma 2.1 and Lemma 2.2, see [5].

3. New results

In this section, we will prove Conjecture 1 in Theorem 3.1, and in Theorem 3.2
a result that is analogous to Conjecture 1 for the Diophantine equation

x2 − kxy + y2 = −2n.

If k = 0, then equation (2) has finitely many solutions and equation (3) has no
solution. We suppose in the sequel that k 6= 0.

Theorem 3.1. Conjecture 1 is true.

Proof. (i) Let n > 2 be an odd integer. If (x, y) is a positive solution of equa-
tion (2), then clearly x and y have the same parity. If x and y are odd, then k is
even. Let x = 2aX and y = 2bY with X and Y odd. Since n is odd, it can be seen
that a = b. Thus we get

(6) X2 − kXY + Y 2 = 2n−2a = 2r with r odd.

Hence k is clearly even. After a change of variables, equation (2) with n odd yields

(7) u2 − dv2 = 2n;

where u =
∣

∣x− k
2
y
∣

∣ , y = v and d = k2

4
− 1.

Since k is even, then u and v are positive integers. If k = 2, equation (7) implies
that u2 = 2n, which is impossible. Hence, k > 2, whereupon d > 1. The solution
k
2
+
√

k2

4
− 1 is the fundamental solution to the Diophantine equation

x2 − dy2 = 1, where d =
k2

4
− 1.

If equation (2) has a positive solution with n an odd positive integer, then equation (7)

has a positive solution. If u + v
√
d is the fundamental solution of a class K of

equation (7), then Lemma 2.1 implies that

0 ≤ v ≤ 1
√

2
(

k
2
+ 1

)

√
2n.

If v = 0, then equation (7) yields u2 = 2n, which is impossible. Therefore, v ≥ 1 and
the inequality above implies that

√
k + 2 ≤

√
2n, i.e. k ≤ 2n − 2.

(ii) Let n be a positive even integer, and suppose that (x, y) is a solution to
x2 − kxy + y2 = 2n. If x and y are odd, then clearly k is even. Hence equation (2)

yields u2 − dv2 = 2n, where u =
∣

∣x− k
2
y
∣

∣ , v = y and d = k2

4
− 1. Since k 6= 0, k ≥ 2,

and d is a non negative integer. Clearly, d = 0 implies k = 2. The fact that k > 2n−2
implies that k+2 > 2n. For k = 2, we have that 4 > 2n, which is impossible because
n is even. Hence, d > 1, since d 6= 1. Lemma 2.1 implies that

0 ≤ v ≤ 1
√

2
(

k
2
+ 1

)

√
2n
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since the solution k
2
+

√

k2

4
− 1 is the fundamental solution to x2 − dy2 = 1, where

d = k2

4
− 1. If v = 0, then equation (7) yields u = 2n/2 and all solutions in the same

class as (2n/2, 0) are even. Hence, we suppose v ≥ 1, and the last inequality implies

that
√

2
(

k
2
+ 1

)

≤
√
2n, i.e. k ≤ 2n − 2. �

Theorem 3.2. (i) Let n be an odd integer and n > 2. If k > 2n + 2, then the

equation x2 − kxy + y2 = −2n has no positive integer solutions. If k ≤ 2n + 2, and

the equation x2 − kxy + y2 = −2n has a solution, then k is even.

(ii) Let n be an nonzero even integer. If k > 2n + 2, then the equation x2 −
kxy + y2 = −2n has no positive odd integer solution. If k ≤ 2n + 2 and the equation

x2−kxy+ y2 = −2n has a positive odd integer solution, then k is even and 2 divides

exactly k.

Proof. (i) Let n be a positive odd integer and n > 2. Using the same reasoning
as in the proof of Theorem 3.1, without loss of generality, we can suppose that the
solutions x and y to (1) are odd. Hence k is even. Again, the same method in the
proof of Theorem 3.1 and Lemma 2.2 implies that

1 ≤ v ≤ 1
√

2
(

k
2
− 1

)

√
2n

whereupon,
√
k − 2 ≤

√
2n, i.e. k ≤ 2n + 2.

(ii) Suppose that n is even and that the equation x2 − kxy + y2 = −2n has a
positive integer solution. Then clearly k is even because n ≥ 1 (the case n = 0
has been settled in [2]). Again the same method as in the proof of Theorem 3.1
and Lemma 2.2 implies that k ≤ 2n + 2 and k even. If (x, y) is an odd solution
to equation (1), then taking x2 − kxy + y2 = −2n modulo 4 implies that 2 divides
exactly k. �

Remark 3.1. It was proved in [3] that the Diophantine equation x2−kxy+y2 =
2n with k = 2n − 2 has infinitely many solutions and in [2] that the Diophantine
equation x2 − kxy + y2 = −2n with k = 2n + 2 has infinitely many solutions. Hence
the bounds of k in Theorem 3.1 and Theorem 3.2 are sharp.

Theorem 3.3. (i) Let n > 2 be an odd integer and p a prime such that (2
p
) = −1.

If equation (2) has a positive solution, then k
2
6≡ ±1 mod p. In particular, k is a

multiple of 3.
(ii) Let n > 2 an odd integer, and p a prime such that (2

p
) = 1. If equation (3)

has a positive solution, then k
2
6≡ ±1 mod p.

Proof. (i) If n > 2 is an odd integer and equation (2) has a positive solution,
then the proof of Theorem 3.1 implies that k is even and the Diophantine equation
u2− (k

2

4
− 1)v2 = 2n is solvable. Hence if p is an odd prime such that (2

p
) = −1, then

k
2
6≡ ±1 mod p. By taking p = 3, we obtain that k is a multiple of 3.

(ii) The proof of (ii) is similar to (i) and will be omitted. �
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