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Abstract. We give a characterization of real analytic functions in terms of integral means.

The characterization justifies the introduction of a definition of analytic functions on metric measure

spaces.

1. Introduction

It is well-known that harmonic functions, i.e., solutions to the Laplace equation
∆u = 0, where ∆ =

∑n
i=1

∂2

∂x2

i

, can be characterized by the mean value property.

Namely, a function u continuous on an open set Ω ⊂ R
n is harmonic on Ω if, and

only if, for any closed ball B(x,R) ⊂ Ω the value of u at the center of the ball is
equal to the integral mean of u over the ball. In the previous paper [7] we proved that
polyharmonic functions on Ω can be characterized as those continuous functions on
Ω for which integral mean over balls of radius R is expressed as an even polynomial
of R with coefficients continuous on Ω. Here we extend the above characterization
to the case of real analytic functions. Namely we prove

The main theorem. Let u be a continuous, complex valued function on an

open set Ω ⊂ R
n. Then u is real analytic on Ω if, and only if, there exist functions

u2l ∈ C0(Ω,C) for l ∈ N0 and ǫ ∈ C0(Ω,R+) such that

(1)
1

|B(x,R)|

ˆ

B(x,R)

u(y) dy =

∞∑

l=0

u2l(x)R
2l

locally uniformly in {(x,R) : x ∈ Ω, 0 ≤ R < ǫ(x)}.

In fact, the necessity of the expansion (1) for the real analyticity of u is well
known, see Theorem 1 below. The novelty of the main theorem is that the sufficient
condition for real analyticity of u assumes only continuity of the functions u and u2l

in the expansion (1). Thus it justifies the introduction of a definition of analytic
functions on metric measure spaces.

2. Preliminary results

Throughout the paper Ω stands for an open set. If Ω ⊂ R
n, x ∈ Ω and 0 <

R < dist(x, ∂Ω) solid and spherical means of a continuous, complex valued function
u ∈ C0(Ω) are defined by

M(u; x,R) =
1

σ(n)Rn

ˆ

B(x,R)

u(y) dy =
1

σ(n)

ˆ

B(0,1)

u(x+Rz) dz,(2a)

N(u; x,R) =
1

nσ(n)Rn−1

ˆ

S(x,R)

u(y) dS(y) =
1

nσ(n)

ˆ

S(0,1)

u(x+Rz) dS(z),(2b)
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where σ(n) = πn/2/Γ(n/2 + 1) (with Γ the Euler Γ-function) is the volume of the
unit ball B(0, 1) in R

n and dS denotes the surface measure on the sphere S(x,R).
Note that by the second formulas in (2a) and (2b) for a fixed x ∈ Ω the functions
M and N are defined for |R| < dist(x, ∂Ω) and they are even continuous functions
of R satisfying M(u; x, 0) = N(u; x, 0) = u(x). Computing M(u; x,R) in spheri-
cal coordinates one obtains the following differential relation between the functions
M(u; x,R) and N(u; x,R) (see [5, Lemma 1]),

(3)
(R
n

∂

∂R
+ 1

)
M(u; x,R) = N(u; x,R)

for any x ∈ Ω and |R| < dist(x, ∂Ω).
If u is a real analytic function, then its mean value functions M(u; ·, ·) and

N(u; ·, ·) are expressed by the so called Pizzetti’s serii.

Theorem 1. [8, 6] (Mean-value property) If u is a real analytic function on

Ω ⊂ R
n, then for any x ∈ Ω and |R| small enough we have

(4) M(u; x,R) =

∞∑

k=0

∆ku(x)

4k
(
n
2
+ 1

)
k
k!

· R2k

and

(5) N(u; x,R) =
∞∑

k=0

∆ku(x)

4k
(
n
2

)
k
k!

· R2k,

where (a)k = a(a+1) · · · (a+ k− 1) is the Pochhammer symbol. The expansions (4)
and (5) are uniform on compact subsets of Ω.

Conversely real analytic functions are characterized as those smooth ones for
which the Pizzetti’s serii converge.

Theorem 2. [6, Theorem 3.2] (Converse to the mean-value property) Let Ω ⊂
R

n, u ∈ C∞(Ω) and ǫ ∈ C0(Ω,R+). If the series on the right hand side of (4) or (5)
is locally uniformly convergent in {(x,R) : x ∈ Ω, |R| < ǫ(x)}, then u is real analytic

on Ω.

3. A characterization of real analyticity

In this section we shall prove the main theorem. Lets start with

Lemma 1. Let Ω be a domain in R
n and u ∈ C0(Ω). Assume that there exist

functions v2l ∈ C0(Ω) for l ∈ N0 and ǫ ∈ C0(Ω,R+) such that

(6) N(u; x,R) =

∞∑

l=0

v2l(x)R
2l

locally uniformly in {(x,R) : x ∈ Ω, |R| < ǫ(x)}. Then u ∈ C∞(Ω) and v2l ∈ C∞(Ω)
for l ∈ N0.

Proof. Let η̃(r) be a smooth function on [0,∞) supported by [0, 1] and constant

for r close to zero. Assume also that nσ(n)
´ 1

0
η̃(r)rn−1 dr = 1. Then ηε(y) = 1

εn
η̃
( |y|

ε

)

is a radially symmetric mollifier supported by B(0, ε). Integrating in spherical coor-
dinates we get

ˆ

B(0,ε)

ηε(y) dy =

ˆ 1

0

nσ(n)η̃(r)rn−1 dr = 1.
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Applying the Laplace operator ∆ to ηε we have

∆ηε(y) =
1

εn+2
η̃ ′′

(
|y|

ε

)
+

1

εn+1

n− 1

|y|
η̃ ′

(
|y|

ε

)
:= Lε(η̃)(|y|).

For l ∈ N0 put m2l(η
1) =

´

B(0,1)
η1(y)y2l dy. For x from a compact subset of Ω and

sufficiently small ε > 0 let us compute ∆ acting on the convolution ηε ∗ u. Using
spherical coordinates, (2b) and (6) we derive

∆
(
ηε ∗ u

)
(x) =

(
∆ηε

)
∗ u(x)

=

ˆ ε

0

(
ˆ

S(x,r)

u(ζ) dS(ζ)

)
Lε(η̃)(r) dr

(2b)
=

ˆ ε

0

nσ(n)N(u; x, r)Lε(η̃)(r)r
n−1 dr

(6)
=

∞∑

l=0

nσ(n)v2l(x)

ˆ ε

0

Lε(η̃)(r)r
2l+n−1 dr

=

∞∑

l=0

v2l(x) · nσ(n)ε
2l−2

ˆ 1

0

L1(η̃)(t)t
2l+n−1 dt

=
∞∑

l=0

v2l(x) · nσ(n)ε
2l−2

ˆ

B(0,1)

L1(η̃)(|y|)|y|
2l dy

=
∞∑

l=1

v2l(x) · ε
2l−2

ˆ

B(0,1)

∆η1(y) y2l dy

=
∞∑

l=0

v2l+2(x) · ε
2lm2l+2(∆η1)

since by the Green formula
´

B(0,1)
∆η1(y) dy =

´

S(0,1)
∂η1

∂n
(y) dS(y) = 0. Analogously

for k ∈ N0 we obtain

∆k
(
ηε ∗ u

)
(x) =

∞∑

l=0

v2l+2k(x) · ε
2lm2l+2k(∆

kη1).(7)

Since ∆k(ηε ∗ u) is convergent in the distributional sense as ε → 0 we get

m2k(∆
kη1)v2k = lim

ε→0
∆k(ηε ∗ u) = ∆k

(
lim
ε→0

ηε ∗ u
)
= ∆kv0 ∈ D′(Ω).

Since v2k ∈ C(Ω) applying the Weyl lemma [9, Lemma 2] we conclude that u = v0 ∈
C2k(Ω). Note that for 0 ≤ l ≤ k we have ∆kv0 = ∆k−l(∆lv0) = m2l(∆

lη1) ·∆k−lv2l ∈
C0(Ω). So v2l ∈ C2k−2l(Ω) since by (8) below, m2l(∆

lη1) = 4ll!
(
n
2

)
l
m0(η

1) and

m0(η
1) = 1. Since k is arbitrary big we conclude that v2l ∈ C∞(Ω) for l ∈ N0. �

Now the main theorem is a consequence of Theorem 1 and the following.

Theorem 3. Let Ω be a domain in R
n, ǫ ∈ C0(Ω,R+) and u ∈ C0(Ω). If there

exist functions uk ∈ C0(Ω) for k ∈ N0 and ǫ ∈ C0(Ω,R+) such that

M(u; x,R) =
∞∑

k=0

uk(x)R
k

locally uniformly in {(x,R) : x ∈ Ω, |R| < ǫ(x)}, then u is real analytic on Ω, uk = 0

if k is odd and uk =
[
4l
(
n
2
+ 1

)
l
l!
]−1

∆lu if k = 2l with l ∈ N0.
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Proof. Since, by the second formula in (2a), M(u; x,R) is an even function of R
we have uk = 0 if k is odd. Next applying (3) we get for x ∈ Ω and |R| < ǫ(x),

N(u; x,R) =
(R
n

∂

∂R
+ 1

)( ∞∑

l=0

u2l(x)R
2l
)
=

∞∑

l=0

(2l
n

+ 1
)
u2l(x)R

2l.

Hence the assumptions of Lemma 1 are satisfied with v2l =
(
2l
n
+ 1

)
u2l and so u2l ∈

C∞(Ω) for l ∈ N0. By the Green formula we get for l ∈ N0,

m2l(∆η1) =

ˆ

B(0,1)

∆η1(y)y2l dy =

ˆ

B(0,1)

η1(y)∆
(
y2l

)
dy

= 2l(n+ 2l − 2)

ˆ

B(0,1)

η1(y)y2l−2 dy

=

{
0 if l = 0,

2l(n + 2l − 2)m2l−2(η
1) if l ≥ 1.

So for k ∈ N0 we obtain

(8) m2l(∆
kη1) =

{
0 if l = 0, . . . , k − 1,

4k(l − k + 1)k(l − k + n
2
)k m2l−2k (η

1) if l ≥ k.

By (7) for k ∈ N0 we get

∆k
(
ηε ∗ u

)
(x) =

∞∑

l=0

v2l+2k(x) · ε
2lm2l+2k(∆

kη1)

=

∞∑

l=0

(
2l+2k

n
+ 1

)
u2l+2k(x) · ε

2l4k(l + 1)k(l +
n
2
)k m2l (η

1).

Taking the limit as ε → 0 we get

∆ku0(x) = lim
ε→0

∆k(ηε ∗ u)(x) =
(
2k
n
+ 1

)
u2k(x) · 4

kk!(n
2
)k m0 (η

1).

Since u0 = u and m0 (η
1) = 1 we conclude that 4kk!

(
n
2
+ 1

)
k
u2k = ∆ku for k ∈ N0.

Hence

M(u; x,R) =

∞∑

k=0

∆ku(x)

4k
(
n
2
+ 1

)
k
k!
R2k

locally uniformly in {(x,R) : x ∈ Ω, |R| < ǫ(x)} and Theorem 2 implies analyticity
of u in Ω. �

Remark 1. Analogues of Lemma 1 and Theorem 3 hold true if one only assumes
that u, ul, v2l ∈ L1

loc(Ω) for l ∈ N0. Also the condition of continuity of ǫ can be
replaced by its uniform positivity on compact subsets of Ω.

4. Analytic functions on metric measure spaces

It is well known that the mean value characterization of harmonic functions
can be used to define harmonic functions on metric measure spaces (MMS), see [3,
Definition 2.1]. If the measure is continuous with respect to the metric, then harmonic
functions on MMS satisfy the maximum principle, the Harnack type inequality and
the Weierstrass and Montel convergence theorem, see [3]. On the other hand Alabern,
Mateu and Verdera obtained in [1] a characterization of Sobolev spaces on R

n only



A characterization of real analytic functions 479

in terms of the Euclidean metric and the Lebesgue measure which allowed them to
define higher order Sobolev spaces on MMS.

Here we propose a definition of analytic functions on MMS.

Definition 1. Let (X, ρ, µ) be a metric measure space with a metric ρ and a
regular Borel measure µ which is positive on open sets and finite on bounded sets.
Let Ω be an open subset of X. For any x ∈ Ω and 0 < R < dist(x, ∂Ω) define the
solid mean of a continuous, complex valued function u ∈ C0(Ω) by

MX(u; x,R) =
1

µ(Bρ(x,R))

ˆ

Bρ(x,R)

u(y) dµ(y),

where Bρ(x,R) is a ball with respect to the metric ρ of center at x and radius R. We
also put MX(u; x, 0) := limR→0MX(u; x,R) = u(x).

Definition 2. We say that a function u ∈ C0(Ω) is (X, ρ, µ)-analytic on Ω if
there exist functions uk ∈ C0(Ω) for k ∈ N0 and ǫ ∈ C0(Ω,R+) such that

MX(u; x,R) =

∞∑

k=0

uk(x)R
k

locally uniformly in {(x,R) : x ∈ Ω, 0 ≤ R < ǫ(x)}.

Since an (X, ρ, µ)-analytic function u on Ω uniquely determines MX(u; x,R) and
vice versa the topology on the space AX(Ω, ρ, µ) of (X, ρ, µ)-analytic functions on Ω
can be defined by

AX(Ω, ρ, µ) = projlimK⋐Ωindlimǫ>0E(K, ǫ),

where

E(K, ǫ) =

{
F ∈ C0(K;C∞(−ǫ, ǫ)) : ‖F‖K,ǫ = sup

k∈N0,x∈K

∣∣ ∂k

∂RkF (x,R)|R=0

∣∣ ǫk
k!

< ∞

}
.

By Theorem 3 and the Pringsheim type theorem [4, Theorem] we get

Corollary 1. Let X = R
n with the Euclidean metric ρ and the Lebesgue mea-

sure λ. Let Ω ⊂ X. Then AX(Ω, ρ, λ) = A(Ω). In other words a function u
continuous on Ω is (X, ρ, λ)-analytic on Ω if, and only if, it is real analytic on Ω.

The following definition gives an important class of MMS for which metric-
measure theoretic properties of analytic functions are the same as the ones of real
analytic functions on R

n.

Definition 3. The metric measure space (X, ρ, µ) is called analytizable if for
any x ∈ X there exist open sets U ⊂ R

n, x ∈ Ω ⊂ X and a homeomorphism
Φ: U → Ω such that Φ

(
B(Φ−1(y), R)

)
= Bρ(y, R) for y ∈ Ω and R small enough

and µ(A) = |Φ−1(A)| for Borel sets A ⊂ Ω.

Theorem 4. Under the notations of Definition 3 let u : Ω → C be a continuous

function. Then u is (X, ρ, µ)-analytic on Ω if, and only if, u ◦ Φ is real analytic on

Φ−1(Ω).
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Proof. For x ∈ Ω and R small enough we have

MX(u; x,R) =
1

µ(Bρ(x,R))

ˆ

Bρ(x,R)

u(y) dµ(y)

=
1

|Φ−1(Bρ(x,R))|

ˆ

Φ−1(Bρ(x,R))

u(Φ(z)) dz

=
1

|B(Φ−1(x), R)|

ˆ

B(Φ−1(x),R)

u(Φ(z)) dz

= M(u ◦ Φ; Φ−1(x), R),

which proves the theorem. �

5. Lp-mean value expansions

The following theorem establishes the mean value expansion of a real analytic
function with respect to the Lp metric on R

n and the Lebesgue measure λ.

Theorem 5. (Mean value property) Let 1 ≤ p ≤ ∞, X = (Rn, ‖·‖p, λ), Ω ⊂ R
n

and u ∈ A(Ω). Then for x ∈ Ω and R small enough we have

(9) MX(u; x,R) =

∞∑

k=0

D(n, p, k)
∑

κ∈Nn
0
,|κ|=k

D(p, κ)
∂2ku(x)

∂x2κ
R2k

where

(10) D(n, p, k) =
Γ
(
n
p
+ 1

)

Γ
n(1

p
+ 1

)
Γ
(
n+2k

p
+ 1

) , D(p, κ) =
Γ
(
2κ1+1+p

p

)
· · ·Γ

(
2κn+1+p

p

)

(2κ1 + 1)! · · · (2κn + 1)!
.

The expansion (9) is locally uniform with respect to x ∈ Ω.

Proof. Expending u into Taylor series we compute

MX(u; x,R) =
1

|Bp(x,R)|

ˆ

Bp(x,R)

u(y) dy

=
1

|Bp(x,R)|

ˆ

Bp(x,R)

∑

ℓ∈Nn
0

1

ℓ!

∂lu(x)

∂xℓ
(y − x)ℓ dy

=
1

|Bp(0, 1)|

ˆ

Bp(0,1)

∑

ℓ∈Nn
0

1

ℓ!

∂lu(x)

∂xℓ
(Rz)ℓ dz.

Note that if at least one of the exponents ℓ1, . . . , ℓn is odd, then the integral of
zℓ = zℓ11 · · · zℓnn over Bp(0, 1) vanishes. Next using [2, formula 676, 5)] for k ∈ N0 and
κ ∈ N

n
0 with |κ| = k we have

ˆ

Bp(0,1)

z2κ dz =
2n

pn

Γ
(
2κ1+1

p

)
· · ·Γ

(
2κn+1

p

)

Γ
(
2k+n

p
+ 1

)

=
2n

Γ
(
2k+n

p
+ 1

)
Γ
(
2κ1+1

p
+ 1

)
· · ·Γ

(
2κn+1

p
+ 1

)

(2κ1 + 1) · · · (2κn + 1)
.

In particular,

|Bp(0, 1)| =
2n

pn

Γ
(
1
p

)
· · ·Γ

(
1
p

)

Γ
(
n
p
+ 1

) = 2n
Γn

(
1
p
+ 1

)

Γ
(
n
p
+ 1

) .
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Hence

MX(u; x,R) =
1

|Bp(0, 1)|

∑

κ∈Nn
0

1

(2κ)!

∂2ku(x)

∂x2κ
R2k

ˆ

Bp(0,1)

z2κ dz

=

∞∑

k=0

Γ
(
n
p
+ 1

)

Γn
(
1
p

)
Γ
(
n+2k

p
+ 1

)
∑

|κ|=k

Γ
(
2κ1+1

p

)
· · ·Γ

(
2κn+1

p

)

(2κ)!

∂2ku(x)

∂x2κ
R2k,

which implies (9).
To prove the uniform convergence of the series (9) on a compact subset K ⋐ Ω

note that by the Cauchy inequalities we can find (R1, . . . , Rn) ∈ R
n
+ such that for

any x ∈ K and any ℓ = (l1, . . . , ln) ∈ N
n
0 ,

∣∣∣∂
|ℓ|u(x)

∂xℓ

∣∣∣ ≤ C

Rl1
1 · · ·Rln

n

l1! · · · ln!.

Since for any ε > 0 one can find Cε such that

(11)

(
s

e

)s

≤ Γ(s+ 1) ≤ Cε

(
(1 + ε)s

e

)s

for s ≥ 0

we derive that the series (9) converges for |R| < min(R1, . . . , Rn). �

Theorem 6. (Converse to the mean-value property) Let 1 ≤ p ≤ ∞, X =
(Rn, ‖ · ‖p, λ), Ω ⊂ R

n, ǫ ∈ C0(Ω,R+) and u ∈ C∞(Ω). If the series

M̃X(x,R) =
∞∑

k=0

D(n, p, k)
∑

κ∈Nn
0
,|κ|=k

D(p, κ)
∂2ku(x)

∂x2κ
R2k,

where D(n, p, k) and D(n, κ) are given by (10), is locally uniformly convergent in

{(x,R) : x ∈ Ω, |R| < ǫ(x)}, then u ∈ A(Ω) and MX(u; x,R) = M̃X(x,R) for x ∈ Ω
and 0 < R < min

(
ǫ(x), dist(x, ∂Ω)

)
.

Proof. Fix a compact set K ⋐ Ω and set ǫ = infx∈K ǫ(x) > 0. Then the
assumption implies that

1

(2k)!

∑

κ∈Nn
0
,|κ|=k

(
2k

2κ

)
Γ
(
2κ1+1

p
+ 1

)
· · ·Γ

(
2κn+1

p
+ 1

)

(2κ1 + 1) · · · (2κn + 1)Γ
(
n+2k

p
+ 1

) ∂
2ku(x)

∂x2κ
R2k → 0

as k → ∞ uniformly on K × {|R| ≤ ǫ1} with any ǫ1 < ǫ. Hence for any ǫ1 < ǫ there
exists a constant C(ǫ1) < ∞ such that for k ∈ N0,

sup
x∈K

∑

κ∈Nn
0
,|κ|=k

(
2k

2κ

)
Γ
(
2κ1+1

p
+ 1

)
· · ·Γ

(
2κn+1

p
+ 1

)

Γ
(
n+2k

p
+ 1

) ∂2ku(x)

∂x2κ
≤

C(ǫ1)

ǫ2k1
(2k)!.

Since by (11) the coefficient of ∂2ku(x)
∂x2κ in the above expression is not less then δk

(
k
κ

)

with some δ > 0 we conclude that for any compact set K ⋐ Ω one can find C < ∞
and L < ∞ such that

sup
x∈K

|∆ku(x)| ≤ CL2k(2k)! for k ∈ N0.

But by [4, Theorem] this inequality implies that u ∈ A(Ω). Finally, by Theorem 5

we get M̃X(x,R) = MX(u; x,R). �
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Finally let us remark that Theorems 5 and 6 remain valid also for 0 < p < 1.
In fact Definitions 1 and 2 make sense if ρ is only a (non necessary symmetric)
pseudometric.

Added in proof. The uniqueness property for the analytic functions on MMS will
be studied in a subsequent paper.
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