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Abstract. In this short note, we extend a local Tb theorem that was proved in [4] to a full

multilinear local Tb theorem.

1. Introduction

In [4], we proved (in collaboration with Grau de la Herran) a multilinear local Tb
theorem for square functions, and applied it to prove a local Tb theorem for singular
integrals. The local Tb theorem for singular integrals had “local Tb type” testing
conditions for the operator T on pseudo-accretive collections b = {biQ}1≤i≤m, but
tested the adjoints of T on the constant function 1; see [4] for more details on this.

There has been interest recently in multilinear local Tb theorems for square func-
tion and singular integrals, for example in the works [6], [1], [5] and [7]. In particular,
in [7], the authors are interested in multilinear local Tb theorems that test all ad-
joints of a multilinear operator T on pseudo-accretive systems, rather than only on
the operator itself; two examples are in [7] and the authors cite these as a feature
of their multilinear local Tb result for a class of n-linear forms known as perfect
Calderón–Zygmund operators. In this note, we show that our result from [4] can be
easily extended to a local Tb theorem for Calderón–Zygmund operators where T and
all of its adjoints are tested on pseudo-accretive systems.

The following local Tb theorem for multilinear singular integral operators, which
is an extension of Theorem 1.2 from [4], is the main result of the article.

Theorem 1.1. Let T be a continuous m linear operator from S × · · ·×S into

S ′ with a standard Calderón–Zygmund kernel K. Suppose that T ∈ WBP and for

each j = 0, 1, . . . , m there exist 2 ≤ q <∞ and 1 < qi,j <∞ with 1
qj

=
∑m

i=1
1

qi,j
and

an m-compatible collection of pseudo-accretive systems bj = {bi,jQ }1≤i≤m indexed by

dyadic cubes Q such that

ˆ

Q

(
ˆ ℓ(Q)

0

|QtT
∗j(Ptb

1,j
Q , . . . , Ptb

m,j
Q )(x)|2

dt

t

) qj

2

dx . |Q|.(1)

Then T is bounded from Lp1 × · · · × Lpm into Lp for all 1 < pi < ∞ such that
1
p
= 1

p1
+ · + 1

pm
. Here we assume that this estimate holds for any approximation to
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the identity Pt with smooth compactly supported kernels and any Littlewood–Paley–

Stein projection operators Qt whose kernels also are smooth compactly supported

function.

The precise meaning of (1) is the following: For any ϕ, ψ ∈ C∞
0 such that ϕ̂(0) = 1

and ψ̂(0) = 0, (1) holds for Ptf = ϕt ∗ f , Qtf = ψt ∗ f , ϕt(x) = 1
tn
ϕ(x

t
), and

ψt(x) =
1
tn
ψ(x

t
), where the constant is independent of the dyadic cube Q, but may

depend on ϕ and ψ.
We prove this theorem by applying the square function estimates that were also

proved in [4], but with a few minor modifications to allow for the extension to The-
orem 1.1. This note is intended to be an addendum to the article [4]. So the reader
should refer to that article for definitions, discussion, and history related to these
results.

2. A few definitions and results from [4]

Define the family of multilinear of operators {Θt}t>0

Θt(f1, . . . , fm)(x) =

ˆ

Rmn

θt(x, y1, . . . , ym)

m∏

i=1

fi(yi) dyi(2)

where θt : R
(m+1)n → C and the square function

S(f1, . . . , fm)(x) =

(
ˆ ∞

0

|Θt(f1, . . . , fm)(x)|
2dt

t

) 1

2

(3)

associated to {Θt}t>0, where fi for i = 1, . . . , m are initially functions in C∞
0 (Rn).

Also assume that θt satisfies for all x, y1, . . . , ym, x
′, y′1, . . . , y

′
m ∈ R

n

|θt(x, y1, . . . , ym)| .
t−mn

∏m

i=1(1 + t−1|x− yi|)N+γ
,(4)

|θt(x, y1, . . . , ym)− θt(x, y1, . . . , y
′
i, . . . , ym)| . t−mn(t−1|yi − y′i|)

γ,(5)

|θt(x, y1, . . . , ym)− θt(x
′, y1, . . . , ym)| . t−mn(t−1|x− x′|)γ(6)

for some N > n and 0 < γ ≤ 1. The following results were proved in [4].

Theorem. Let Θt and S be defined as in (2) and (3) where θt satisfies (4)–
(6). Suppose there exist qi, q > 1 for i = 1, . . . , m with 1

q
=
∑m

i=1
1
qi

and functions

b = {biQ}1≤i≤m indexed by dyadic cubes Q ⊂ R
n such that for every dyadic cube Q

ˆ

Rn

|biQ|
qi ≤ B1|Q|,(7)

1

B2

≤

∣∣∣∣∣
1

|Q|

ˆ

Q

m∏

i=1

biQ(x) dx

∣∣∣∣∣ ,(8)

∣∣∣∣∣
1

|R|

ˆ

R

m∏

i=1

biQ(x) dx

∣∣∣∣∣ ≤ B3

m∏

i=1

∣∣∣∣
1

|R|

ˆ

R

biQ(x) dx

∣∣∣∣(9)

for all dyadic subcubes R ⊂ Q,

ˆ

Q

(
ˆ ℓ(Q)

0

|Θt(b
1
Q, . . ., b

m
Q )(x)|

2dt

t

) q

2

dx ≤ B4|Q|.(10)
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Then S satisfies

‖S(f1, . . . , fm)‖Lp .

m∏

i=1

‖f‖Lpi(11)

for all 1 < pi <∞ and 2 ≤ p <∞ satisfying 1
p
= 1

p1
+ · · ·+ 1

pm
.

If {bQ} satisfies (7) and (8), we say that {bQ} is a pseudo-accretive system. We
say that b = {biQ}1≤i≤m is an m-compatible, or just compatible, collection of pseudo-
accretive systems if they satisfy (7)–(9).

In Theorem 1.1, we only impose that bj = {bi,jQ }1≤i≤m is anm-compatible pseudo-
accretive system for each j = 0, 1, . . . , m. In particular, bj must satisfy (7)–(9) for
each j = 0, 1, . . . , m, but there is no dependence between pseudo-accretive systems
bj and bk for j 6= k.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let Pt be a smooth approximation to identity operators
with smooth compactly supported kernels. Then it follows that P 2

t f → f as t→ 0+

and P 2
t f → 0 as t → ∞ in S for f ∈ S0. Here S0 is the subspace of Schwartz

functions satisfying |f̂(ξ)| ≤ CM |ξ|M for all M ∈ N. There exist Littlewood–Paley–

Stein projection operators Q
(i)
t for i = 1, 2 with smooth compactly supported kernels

such that t d
dt
P 2
t = Q

(2)
t Q

(1)
t = Qt. Using these operators, we decompose T for fi ∈ S0,

i = 0, . . . , m

〈T (f1, . . . , fm), f0〉 =

ˆ ∞

0

t
d

dt

〈
T (P 2

t f1, . . . , P
2
t fm), P

2
t f0
〉 dt
t

=

m∑

i=0

〈
ˆ ∞

0

QtT
∗i(P 2

t f1, . . . , Ptfi−1, Ptf0, Ptfi+1 . . . , P
2
t fm)

dt

t
, fi

〉

=

m∑

i=0

〈Ti(f1, . . . , fi−1, f0, fi+1, . . . , fm), fi〉 ,(12)

where we take the last line in (12) as the definition of Ti for i = 0, 1, . . . , m. It follows
that Ti is a multilinear singular integral operator with standard kernel

Ki(x, y1, . . . , ym) =

ˆ ∞

0

〈
T ∗i(ϕy1

t , . . . , ϕ
ym
t ), ψx

t

〉 dt
t
,

Also let Θi
t be the multilinear operator associated to

θit(x, y1, . . . , ym) = Q
(1)
t T ∗i(ϕy1

t , . . . , ϕ
ym
t )(x),

and let Si be the square function associated to Θi
t. Note that θit(x, y1, . . . , ym) 6=

〈T ∗i(ϕy1
t , . . . , ϕ

ym
t ), ψx

t 〉, and that Ti is not actually the integral of Θi
t (one has Qt

and the other has Q
(1)
t ). Furthermore, by the hypotheses on T ∗i and by the local Tb

theorem for square functions from [4], it follows that Si is bounded from L2m × · · ·×
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L2m into L2. Therefore we have

〈Ti(f1, . . . , fm), f0〉 =

ˆ ∞

0

ˆ

Rn

QtT
∗i(P 2

t f1, . . . , P
2
t fm)(x)f0(x)dx

dt

t

=

ˆ ∞

0

ˆ

Rn

Q
(1)
t T ∗i(P 2

t f1, . . . , P
2
t fm)(x)Q

(2) ∗
t f0(x)dx

dt

t

≤ ‖Si(f1, . . . , fm)‖L2

∣∣∣∣∣

∣∣∣∣∣

(
ˆ ∞

0

|Q
(2) ∗
t f0|

2dt

t

) 1

2

∣∣∣∣∣

∣∣∣∣∣
L2

. ‖f1‖L2m · · · ‖fm‖L2m‖f0‖L2.

Hence Ti is bounded from L2m×· · ·×L2m into L2, and by the multilinear Calderón–
Zygmund theory developed by Grafakos and Torres in [2, 3], it follows that Ti also
bounded from Lp1 × · · · × Lpm into Lp for all 1 < p1, . . . , pm < ∞ with 1

p
= 1

p1
+

· · · + 1
pm

for each i = 0, 1, . . . , m. In particular, it follows that Ti is bounded from

Lm+1 × · · · × Lm+1 into L
m+1

m for each i = 0, 1, . . . , m. Then continuing from (12),
we have

| 〈T (f1, . . . , fm), f0〉 | ≤

m∑

i=0

| 〈Ti(f1, . . . , fi−1, f0, fi+1, . . . , fm), fi〉 |

≤

m∑

i=0

‖Ti(f1, . . . , fi−1, f0, fi+1, . . . , fm)‖
L

m+1
m

‖fi‖Lm+1

.

m∏

j=0

‖fj‖Lm+1 .

Therefore T is bounded from Lm+1 × · · ·Lm+1 into L
m+1

m . Then it again follows
from the multilinear Calderón–Zygmund theory in [2, 3] that T is bounded from
Lp1 × · · · × Lpm into Lp for all 1 < p1, . . . , pm <∞ such that 1

p
= 1

p1
+ · · ·+ 1

pm
. �
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