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Abstract. Recently, Merenkov and Sabitova introduced the notion of a homogeneous planar
set. Using this notion they proved a result for Sierpiński carpet Julia sets of hyperbolic rational
maps that relates the diameters of the peripheral circles to the Hausdorff dimension of the Julia
set. We extend this theorem to Julia sets (not necessarily Sierpiński carpets) of semi-hyperbolic
rational maps, and prove a stronger version of the theorem that was conjectured by Merenkov and
Sabitova.

1. Introduction

In this paper we establish a relation between the size of the Fatou components of
a semi-hyperbolic rational map and the Hausdorff dimension of the Julia set. Before
formulating the results, we first discuss some background.

A rational map f : Ĉ → Ĉ of degree at least 2 is semi-hyperbolic if it has no
parabolic cycles, and all critical points in its Julia set J (f) are non-recurrent. We
say that a point x is non-recurrent if x /∈ ω(x), where ω(x) is the set of accumulation
points of the orbit {fn(x)}n∈N of x.

In our setting, we require that the Julia set J (f) is connected and that there are
infinitely many Fatou components. Let {Dk}k≥0 be the sequence of Fatou compo-
nents, and define Ck := ∂Dk. Since J (f) is connected, it follows that each component
Dk is simply connected, and thus Ck is connected.

We say that the collection {Ck}k≥0 is a packing P and we define the curvature
distribution function associated to P (see below for motivation of this terminology)
by

N(x) = #{k : (diamCk)
−1 ≤ x}(1.1)

for x > 0. Here #A denotes the number of elements in a given set A. Also, the
exponent E of the packing P is defined by

E = inf

{
t ∈ R :

∑
k≥0

(diamCk)
t <∞

}
,(1.2)

where all diameters are in the spherical metric of Ĉ.
In the following, we write a ' b if there exists a constant C > 0 such that

1
C
a ≤ b ≤ Ca. If only one of these inequalities is true, we write a . b or b . a

respectively. We denote the Hausdorff dimension of a set J ⊂ Ĉ by dimH J (see
Section 3). We now state our main result.

https://doi.org/10.5186/aasfm.2018.4323
2010 Mathematics Subject Classification: Primary 37F10; Secondary 30C99.
Key words: Semi-hyperbolic, Hausdorff dimension, circle packings, homogeneous sets.
The author was partially supported by NSF grant DMS-1506099.



426 Dimitrios Ntalampekos

Theorem 1.1. Let f : Ĉ→ Ĉ be a semi-hyperbolic rational map such that the
Julia set J (f) is connected and the Fatou set has infinitely many components. Then

0 < lim inf
x→∞

N(x)

xs
≤ lim sup

x→∞

N(x)

xs
<∞,

whereN is the curvature distribution function of the packing of the Fatou components
of f and s = dimH J (f). In particular N(x) ' xs.

It is remarkable that the curvature distribution function has polynomial growth.
As a consequence, we have the following corollary.

Corollary 1.2. Under the assumptions of Theorem 1.1 we have

lim
x→∞

logN(x)

log x
= E = dimH J (f),

where N is the curvature distribution function, and E is the exponent of the packing
of the Fatou components of f .

This essentially says that one can compute the Hausdorff dimension of the Julia
set just by looking at the diameters of the (countably many) Fatou components,
which lie in the complement of the Julia set.

The study of the curvature distribution function and the terminology is moti-
vated by the Apollonian circle packings. An Apollonian circle packing is constructed
inductively as follows. Let C1, C2, C3 be three mutually tangent circles in the plane
with disjoint interiors. Then by a theorem of Apollonius there exist exactly two cir-
cles that are tangent to all three of C1, C2, C3. We denote by C0 the outer circle that
is tangent to C1, C2, C3 (see Figure 1). For the inductive step we apply Apollonius’s
theorem to all triples of mutually tangent circles of the previous step. In this way,
we obtain a countable collection of circles {Ck}k≥0. We denote by P = {Ck}k≥0 the
Apollonian circle packing constructed this way. If rk denotes the radius of Ck, then
r−1k is the curvature of Ck. The curvatures of the circles in Apollonian packings are
of great interest in number theory because of the fact that if the four initial circles
C0, C1, C2, C3 have integer curvatures, then so do all the rest of the circles in the
packing. Another interesting fact is that if, in addition, the curvatures of all circles
in the packing share no common factor greater than one, then there are infinitely
many circles in the packing with curvature being a prime number. For a survey on
the topic see [Oh].

In order to study the curvatures of an Apollonian packing P one defines the
exponent E of the packing by

E = inf

{
t ∈ R :

∑
k≥0

rtk <∞

}
and the curvature distribution function associated to P by

N(x) = #{k : r−1k ≤ x}

for x > 0. We remark here that the radii rk are measured with the Euclidean metric of
the plane, in contrast to (1.1) where we use the spherical metric. Let Dk be the open
ball enclosed by Ck. The residual set S of a packing P is defined by D0 \

⋃
k≥1Dk.

The set S has fractal nature and its Hausdorff dimension s = dimH S is related to
N(x) and E by the following result of Boyd.
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Theorem 1.3. [Bo1, Bo2] If P is an Apollonian circle packing, then

lim
x→∞

logN(x)

log x
= E = dimH S.

Recently, Kontorovich and Oh proved the following stronger version of this the-
orem:

Theorem 1.4. [KO, Theorem 1.1] If P is an Apollonian circle packing, then

lim
x→∞

N(x)

xs
∈ (0,∞),

where s = E = dimH S. In particular, N(x) ' xs.

C0
C1

C2

C3

Figure 1. An Apollonian circle packing.

In [MS], Merenkov and Sabitova observed that the curvature distribution function
N(x) can be defined also for other planar fractal sets such as the Sierpiński gasket and
Sierpiński carpets. More precisely, if {Ck}k≥0 is a collection of topological circles in
the plane, and Dk is the open topological disk enclosed by Ck, such that D0 contains
Ck for k ≥ 1, and Dk are disjoint for k ≥ 1, one can define the residual set S of
the packing P = {Ck}k≥0 by S = D0 \

⋃
k≥1Dk. A fundamental result of Whyburn

implies that if the disks Dk, k ≥ 1 are disjoint with diamDk → 0 as k → ∞ and
S has empty interior, then S is homeomorphic to the standard Sierpiński carpet
[Wh1]. In the latter case we say that S is a Sierpiński carpet (see Figure 3 for a
Sierpiński carpet Julia set). One can define the curvature of a topological circle Ck
as (diamCk)

−1. Then the curvature distribution function associated to P is defined
as in (1.1) by N(x) = #{k : (diamCk)

−1 ≤ x} for x > 0. Similarly, the exponent E
of P is defined as in (1.2).

In general, the limit limx→∞ logN(x)/log x does not exist, but if we impose fur-
ther restrictions on the geometry of the circles Ck, then we can draw conclusions
about the limit. To this end, Merenkov and Sabitova introduced the notion of ho-
mogeneous planar sets (see Section 4 for the definition). However, even these strong
geometric restrictions are not enough to guarantee the existence of the limit. The
following theorem hints that a self-similarity condition on S would be sufficient for
our purposes.
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Theorem 1.5. [MS, Theorem 6] Assume that f is a hyperbolic rational map
whose Julia set J (f) is a Sierpiński carpet. Then

lim
x→∞

logN(x)

log x
= E = dimH J (f),

where N is the curvature distribution function and E is the exponent of the packing
of the Fatou components of f .

The authors made the conjecture that for such Julia sets we actually have an
analogue of Theorem 1.4, namely limx→∞N(x)/xs ∈ (0,∞), where s = dimH J (f).
Note that Theorem 1.1 partially addresses the issue by asserting that N(x) ' xs.
However, we believe that the limit limx→∞N(x)/xs does not exist in general for Julia
sets. Observe that the conclusion of Theorem 1.1 remains valid if we alter the metric
that we are using in the definition of N(x) in a bi-Lipschitz way. For example, if the
Julia set J (f) is contained in the unit disk of the plane we can use the Euclidean
metric instead of the spherical. On the other hand, the limit of N(x)/xs as x→∞
is much more sensitive to changes of the metric. The following simple example of the
standard Sierpiński carpet provides some evidence that the limit will not exist even
for packings with very “nice” geometry.

The standard Sierpiński carpet is constructed as follows. We first subdivide
the unit square [0, 1]2 into 9 squares of equal size and then remove the interior of
the middle square. We continue subdividing each of the remaining 8 squares into
9 squares, and proceed inductively. The resulting set S is the standard Sierpiński
carpet and its Hausdorff dimension is s = log 8/ log 3. The set S can be viewed as
the residual set of a packing P = {Ck}k≥0, where C0 is the boundary of the unit
square, and Ck, k ≥ 1 are the boundaries of the squares that we remove in each step
in the construction of S. Using the Euclidean metric, note that for each n ∈ N the
quantity N(3n/

√
2) is by definition the number of curves Ck that have diameter at

least
√

2/3n. Thus,

N(3n/
√

2) = 1 + 1 + 81 + 82 · · ·+ 8n−1 = 1 +
8n − 1

7

(note that we also count C0). Since 3n·s = 8n, we have

lim
n→∞

N(3n/
√

2)

(3n/
√

2)s
=

√
2s

7
.

On the other hand, it is easy to see that N(3n/
√

2) = N(3n), since there are no
curves Ck with diameter in the interval [ 1

3n
,
√
2

3n
). Thus, limn→∞N(3n)/(3n)s = 1/7,

and this shows that limn→∞N(x)/xs does not exist. In general, if one can show that
there exists some constant c > 0, c 6= 1 such that N(x) = N(cx) for large x, then the
limit will not exist.

We also note that in Theorem 1.1 one might be able to weaken the assumption
that f is semi-hyperbolic, but the assumption that f has connected Julia set is
necessary, since there exist rational maps whose Fatou components (except for two
of them) are nested annuli, and in fact in this case there exist infinitely many Fatou
components with “large” diameters (see [Mc1, Proposition 7.2]). Thus, if N(x) is
the number of Fatou components whose diameter is at least 1/x, we would have
N(x) =∞ for large x.

The proof of Theorem 1.1 will be given in two main steps. In Section 3, using
the self-similarity of the Julia set we will establish relations between the Hausdorff
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dimension of the Julia set and its Minkowski dimension (see Section 3 for the def-
inition). Then in Section 4 we will observe that the Julia sets of semi-hyperbolic
maps are homogeneous sets, satisfying certain geometric conditions (see Section 4 for
the definition). These conditions allow one to relate the quantity N(x)/xs with the
Minkowski content of the Julia set. Using these relations, and the results of Section
3, the proof of Theorem 1.1 will be completed.

Before proceeding to the above steps, we need some important distortion esti-
mates for semi-hyperbolic rational maps that we establish in Section 2, and we will
refer to them as the Conformal Elevator. These are the key estimates that we will
use in establishing geometric properties of the Julia set. Similar estimates have been
established for sub-hyperbolic rational maps in [BLM, Lemma 4.1].

C \D0

Dk

Figure 2. The standard Sierpiński carpet. Figure 3. The Julia set of f(z) = z2 − 1
16z2 .

Acknowledgements. The author would like to thank his advisor, Mario Bonk,
for many useful comments and suggestions, and for his patient guidance. He also
thanks the anonymous referees for their careful reading of the manuscript and their
thoughtful comments.

2. Conformal elevator for semi-hyperbolic maps

The heart of this section is Lemma 2.1 and the whole section is devoted to proving
it.

Let f : Ĉ → Ĉ be a semi-hyperbolic map with J (f) 6= Ĉ; in particular, by
Sullivan’s classification and the fact that semi-hyperbolic rational maps have neither
parabolic cycles (by definition) nor Siegel disks and Herman rings ([Ma, Corollary]),
f must have an attracting or superattracting periodic point. Conjugating f by a
rotation of the sphere Ĉ, we may assume that ∞ is a periodic point in the Fatou
set. Furthermore, conjugating again with a Euclidean similarity, we can achieve that
J (f) ⊂ 1

2
D, where D denotes the unit disk in the plane. Note that these operations

do not affect the conclusion of Theorem 1.1, since a rotation is an isometry in the
spherical metric that we used in the definition of N(x), and a scaling only changes the
limits by a factor. Furthermore, since the boundaries Ck of the Fatou components
Dk have been moved away from ∞, the diameters of Ck in spherical metric are
comparable to the diameters in the Euclidean metric. This easily implies that the
conclusion of Theorem 1.1 is not affected if we define N(x) = #{k : (diamCk)

−1 ≤ x}
using instead the Euclidean metric for measuring the diameters.

In this section the Euclidean metric will be used in all of our considerations.
By semi-hyperbolicity (see [Ma, Theorem II(b)]) and compactness of J (f), there
exists ε0 > 0 such that for every x ∈ J (f) and for every connected component W
of f−n(B(x, ε0)) the degree of fn : W → B(x, ε0) is bounded by some fixed constant
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D0 > 0 that does not depend on x,W, n. Furthermore, we can choose an even
smaller ε0 so that the open ε0-neighborhood of J (f) that we denote by Nε0(J (f))
is contained in D, and avoids the poles of f that must lie in the Fatou set. Then
f is uniformly continuous in Nε0/2(J (f)) in the Euclidean metric, and in particular,
there exists δ0 > 0 such that for any U ⊂ Nε0/2(J (f)) with diamU < δ0 we have
diam f(U) < ε0/2.

Let p ∈ J (f), 0 < r ≤ δ0/2 be arbitrary, and define B := B(p, r). Since
for large N ∈ N we have fN(B) ⊃ J (f) (e.g. see [Mil, Corollary 14.2]), there
exists a largest n ∈ N such that diam fn(B) < ε0/2. By the choice of n, we have
diam fn+1(B) ≥ ε0/2. Using the uniform continuity and the choice of δ0, it follows
that diam fn(B) ≥ δ0, thus

δ0 ≤ diam fn(B) ≤ ε0/2.(2.1)

We now state the main lemma.

Lemma 2.1. There exist constants γ, r1, K1, K2 > 0 independent of B = B(p, r)
(and thus of n) such that:

(a) If A ⊂ B is a connected set, then
diamA

diamB
≤ K1(diam fn(A))γ.

(b) B(fn(p), r1) ⊂ fn(B(p, r/2)).
(c) For all u, v ∈ B we have

|fn(u)− fn(v)| ≤ K2
|u− v|
diamB

.

This lemma asserts that any ball of small radius centered at the Julia set can be
blown up to a certain size, using some iterate fn, with good distortion estimates. For
hyperbolic rational maps (i.e., no parabolic cycles and no critical points on the Julia
set) the map fn would actually be bi-Lipschitz and part (c) of the above lemma would
be true with ' instead of ≤. However, in the semi-hyperbolic case, the presence of
critical points on the Julia set prevents such good estimates, but part (a) of the
lemma restores some of them.

In order to prepare for the proof we need some distortion lemmas. Using Koebe’s
distortion theorem (e.g., see [Po, Theorem 1.3]) one can derive the following lemma.

Lemma 2.2. Let g : D→ C be a univalent map and let 0 < ρ < 1. Then there
exists a constant Cρ > 0 that depends only on ρ, such that

1

Cρ
|g′(0)||u− v| ≤ |g(u)− g(v)| ≤ Cρ|g′(0)||u− v|

for all u, v ∈ B(0, ρ).

We will be using the notation |g(u) − g(v)| 'ρ |g′(0)||u − v|. We also need the
next lemma.

Lemma 2.3. Let g : Ĉ→ Ĉ be a semi-hyperbolic rational map with J (g) 6= Ĉ
and assume that J (g) is connected. Then there exists ε > 0 such that for all
x ∈ J (g), each component of g−m(B(x, ε)) is simply connected, for all m ∈ N.

Proof. As before, by conjugating, we may assume that ∞ is a periodic point in
the Fatou set, and the Julia set is “far” from the poles of g. By semi-hyperbolicity (see
[Ma, Theorem II(c)]), for each x ∈ J (g) and η > 0, there exists ε > 0 such that each
component of g−m(B(x, ε)) has Euclidean diameter less than η, for all m ∈ N. By
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compactness of J (g), we may take ε > 0 to be uniform in x. We choose a sufficiently
small η such that the 3η-neighborhood N3η(J (g)) of J (g) does not contain any poles
of g.

We claim that each component of g−m(B(x, ε)) is simply connected. If this was
not the case, there would exist an open component W of g−m0(B(x, ε)), and a non-
empty family of compact components {Vi}i∈I of C \W . Thus diamVi ≤ diamW <
η for i ∈ I. Assume that m0 ∈ N is the smallest such integer. Note that W
intersects the Julia set J (g), because gm0(W ) = B(x, ε) does so. Hence, we have
W ⊂ Nη(J (g)). Since Vi, i ∈ I and W share at least one common boundary point,
it follows that Vi ⊂ N2η(J (g)), and in particular Vi does not contain any poles of g,
i.e., ∞ /∈ g(Vi) for all i ∈ I.

By the choice of m0 the set g(W ) ⊂ g−m0+1(B(x, ε)) is a simply connected set
in the η-neighborhood of J (g). Note that

⋃
i∈I g(Vi) cannot be entirely contained in

g(W ), otherwise W would not be a component of g−m0(B(x, ε)). Thus, there exists
some Vi =: V and a point w0 ∈ (Ĉ \ g(W )) ∩ g(V ). We connect the point w0 to ∞
with a path γ ⊂ Ĉ\ g(W ), and then we lift γ under g to a path α ⊂ Ĉ that connects
a preimage z0 ∈ V of w0 to a pole of g (see [BM, Lemma A.16] for path-lifting under
branched covers). The path α cannot intersect W , so it stays entirely in V . This
contradicts the fact that V contains no poles. �

Now we are ready to start the proof of Lemma 2.1. Since diam fn(B) < ε0/2,
for x = fn(p) ∈ J (f) we have fn(B) ⊂ B(x, ε0/2), and for the component Ω
of f−n(B(x, ε0)) that contains B we have that the degree of fn : Ω → B(x, ε0) is
bounded by D0. Lemma 2.3 implies that we can refine our choice of ε0 such that Ω
is also simply connected.

fn

ψ φ

Ω

B

B(x, ε0)

fn(B)

p x

ψ(B) φ(fn(B))

Figure 4. The commutative diagram (2.2).
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Let ψ : Ω → D be the Riemann map that maps the center p of B to 0, and
φ : B(x, ε0) → D be the translation of x to 0, followed by a scaling by 1/ε0, so we
obtain the following diagram:

(2.2)
Ω B(x, ε0)

D D

fn

ψ φ

The proof will be done in several steps. First we prove that ψ(B) is contained
in a ball of fixed radius smaller than 1. Second, we show a distortion estimate for ψ,
namely it is roughly a scaling by 1/ diamB. In the end, we complete the proofs of
(a),(b),(c), using lemmas that are generally true for proper maps.

We claim that there exists ρ > 0, independent of B such that

ψ(B) ⊂ B(0, ρ) ⊂ D.(2.3)

This will be derived from the following modulus distortion lemma. We include first
some definitions.

If Γ is a family of curves in C, we define the modulus of Γ, denoted by mod(Γ),
as follows. A function ρ : C→ [0,∞] is called admissible for mod(Γ) ifˆ

γ

ρ ds ≥ 1

for all curves γ ∈ Γ. Then

mod(Γ) := inf
ρ

ˆ
C

ρ(z)2 dm2(z),

where m2 denotes the 2-dimensional Lebesgue measure, and the infimum is taken
over all admissible functions. The modulus has the monotonicity property, namely
if Γ1,Γ2 are path families and Γ1 ⊂ Γ2, then

mod(Γ1) ≤ mod(Γ2).

Another important property of modulus is conformal invariance: if Γ is a curve
family in an open set U ⊂ C and g : U → V is conformal, then

mod(Γ) = mod(g(Γ)).

We direct the reader to [LV, pp. 132–133] for more background on modulus.
If U is a simply connected region, and V is a connected subset of U with V ⊂ U ,

we denote by mod(U \ V ) the modulus of the curve family that separates V from
C \ U .

Lemma 2.4. Let U,U ′ ⊂ C be simply connected regions, and g : U → U ′ be a
proper holomorphic map of degree D.

(a) If V ′ is a Jordan region with V ′ ⊂ V ′ ⊂ U ′, and V is a component of g−1(V ′),
then

mod(U ′ \ V ′) ≤ Dmod(U \ V ).

(b) If V is a Jordan region with V ⊂ V ⊂ U , and V ′ = g(V ), then

mod(U \ V ) ≤ mod(U ′ \ V ′).
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A particular case of this lemma is [Mc2, Lemma 5.5], but we include a proof of
the general statement since we were not able to find it in the literature.

Proof. Using the conformal invariance of modulus we may assume that U and
U ′ are bounded Jordan regions.

We first show (a). Using a conformal map, we map the annulus U ′ \ V ′ to the
circular annulus D \ B(0, r), and by composing with g, we assume that we have a
proper holomorphic map g : U \V → D\B(0, r), of degree at most D. We divide the
annulusD\B(0, r) into nested circular annuli centered at the origin A′1, . . . , A′k, k ≤ D
such that each A′i does not contain any critical value of g in its interior. Note that

1

2π
log(1/r) = mod(D \B(0, r)) =

k∑
i=1

mod(A′i),

where we denote by mod(A′i) the modulus of curves that separate the complementary
components of the annulus A′i. We fix ε > 0. By making the annuli A′i a bit thinner,
we can achieve that ∂A′i does not contain any critical value of g, and

k∑
i=1

modA′i ≥ mod(D \B(0, r))− ε.(2.4)

Let Ai be a preimage of A′i, so that A1, . . . , Ak are nested annuli separating V from
C \U , and avoiding the critical points of g. Note that g : Ai → A′i is a covering map
of degree di ≤ D, thus modAi = modA′i/di ≥ modA′i/D. This implies that

mod(U \ V ) ≥
k∑
i=1

mod(Ai) ≥
k∑
i=1

mod(A′i)/D.(2.5)

To see the first inequality, note that an admissible function ρ for mod(U \ V ) yields
admissible functions ρ|Ai

for mod(Ai). Combining (2.5) and (2.4) we obtain

mod(U \ V ) ≥ 1

D

(
mod(D \B(0, r))− ε

)
.

Letting ε→ 0 one concludes the proof.
The inequality in (b) follows from Poletskĭı’s inequality [Ri, Chapter II, Section 8].

Since holomorphic maps are 1-quasiregular (see [Ri, Chapter I] for definition and
background), we have

mod(g(Γ)) ≤ mod(Γ)(2.6)

for all path families Γ in U . First we shrink the regions U and U ′ as follows. Consider
a Jordan curve γ′1 very close to ∂U ′ such that γ′1 encloses a region U ′1 that contains
V ′ and all critical values of g. Then U1 := g−1(U ′1) is a Jordan region that contains
V and all critical points of g.

Let Γ be the family of paths in U1\V that connect ∂V to ∂U1 and avoid preimages
of critical values of g, which are finitely many. Also, note that g(Γ) ⊃ Γ′, where Γ′ is
the family of paths in U ′1 \ V ′ that connect ∂V ′ to ∂U ′1, and avoid the critical values
of g. To see this, observe that any such path γ′ has a lift γ ⊂ U1 \ V that starts at
∂V and ends at ∂U1.

Using monotonicity of modulus and (2.6) we have mod(Γ′) ≤ mod(g(Γ)) ≤
mod(Γ). If Γ̃ is the family of all paths in U1 \ V that connect ∂V to ∂U1, then
Γ̃ differs from Γ by a family of zero modulus. The same is true for the corresponding
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family Γ̃′ in U ′1 \ V ′. Thus, we have mod(Γ̃′) ≤ mod(Γ̃). By reciprocality of the
modulus and monotonicity, it follows that

mod(U1 \ V ) ≤ mod(U ′1 \ V ′) ≤ mod(U ′ \ V ).

Finally, observe that the path family separating V from C \U can be written as
an increasing union of families separating V from sets of the form C \ U1, where U1

gets closer and closer to U . Writing mod(U \V ) as a limit of moduli of such families,
one obtains the desired inequality. �

We now return to the proof of (2.3). Applying Lemma 2.4(a) to g = fn : Ω →
B(x, ε0), and using the fact that fn(B) ⊂ B(x, ε0/2) along with monotonicity of
modulus we obtain

1

2π
log 2 = mod(B(x, ε0) \B(x, ε0/2)) ≤ D0 mod(Ω \B).

Since modulus is invariant under conformal maps, we have

1

2π
log 2 ≤ D0 mod(D \ ψ(B)).(2.7)

If ζ ∈ ψ(B) is such that |ζ| = sup{|z| : z ∈ ψ(B)} then by Grötzsch’s modulus
theorem (see [LV, p.54]) we have mod(D \ ψ(B)) ≤ µ(|ζ|), where µ : (0, 1)→ (0,∞)
is a strictly decreasing bijection. Thus, by (2.7) µ(|ζ|) is uniformly bounded below,
and by monotonicity there exists ρ ∈ (0, 1) such that |ζ| ≤ ρ. Hence, ψ(B) ⊂ B(0, ρ),
which proves (2.3).

Now, the version of Koebe’s theorem in Lemma 2.2 yields

|u− v| 'ρ |(ψ−1)′(0)||ψ(u)− ψ(v)|(2.8)

for all u, v ∈ B. We claim that |(ψ−1)′(0)| ' diamB, so (2.8) can be rewritten as

|u− v| ' diamB|ψ(u)− ψ(v)|(2.9)

for all u, v ∈ B. Using (2.8), in order to prove our claim, it suffices to show that
diamψ(B) ' 1. Note that by (2.1) we have diam fn(B) ' 1, and since φ is a scaling
by a fixed factor, we have diamφ(fn(B)) ' 1. Using Lemma 2.4(b) for the diagram
(2.2), and Grötzsch’s modulus theorem we obtain

mod(D \ ψ(B)) ≤ mod(D \ φ(fn(B))) ≤ µ(|ζ|),

where ζ ∈ φ(fn(B)) is the furthest point from the origin. Since 0, ζ ∈ φ(fn(B)), we
have |ζ| ' diamφ(fn(B)) ' 1. Monotonicity of µ implies that µ(|ζ|) . 1, thus

mod(D \ ψ(B)) . 1.

On the other hand, if α ∈ ψ(B) is the furthest from the origin, we have diamψ(B) '
|α|, and B(0, |α|) ⊃ ψ(B), thus by monotonicity of modulus

mod(D \B(0, |α|)) ≤ mod(D \ ψ(B)) . 1.

This shows that log(1/|α|) . 1, so |α| & 1, and this implies that diamψ(B) ' 1, as
claimed.

Before proving part (a) of Lemma 2.1, we include a general lemma for proper
self-maps of the disk.
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Lemma 2.5. Let P : D → D be a proper holomorphic map of degree D, with
P (0) = 0, and fix ρ ∈ (0, 1). There exists a constant C > 0 depending only on D, ρ
such that for each connected set A ⊂ B(0, ρ) one has

diamA ≤ C(diamP (A))1/D.

Proof. Let A be a connected subset of D, and assume first that 0 ∈ A. Define
ζ to be the furthest point of P (A), so P (A) ⊂ B(0, |ζ|), and diamP (A) ' |ζ|, since
0 ∈ P (A). LetW be the component of P−1(B(0, |ζ|)) that contains A, and consider α
to be the furthest point of W , so W ⊂ B(0, |α|). Using Grötzsch’s modulus theorem
and Lemma 2.4(a) we have

µ(|α|) ≥ mod(D \W ) ≥ 1

D
mod(D \B(0, |ζ|)) =

1

2πD
log

1

|ζ|
.(2.10)

The following lemma gives us the asymptotic behavior of µ as r → 0 (see [Ah,
pp. 72–76]).

Lemma 2.6. There exists r0 ∈ (0, 1) such that for 0 < r ≤ r0 we have

1

2π
log

2

r
≤ µ(r) ≤ 1

2π
log

8

r
.

Using this lemma, if |α| ≤ r0, then by (2.10) one has |α| ≤ 8|ζ|1/D. If |α| > r0,
then using (2.10) and the monotonicity of µ one obtains a uniform lower bound for
|ζ|, thus |α| ≤ 1 . |ζ|1/D. In all cases

diamA ≤ diamW . |α| . |ζ|1/D ' (diamP (A))1/D.(2.11)

In the above we only assumed that 0 ∈ A. Now we drop this assumption, and
consider a connected set A ⊂ B(0, ρ). By Schwarz’s lemma we have |P (z)| ≤ |z|,
so P (A) ⊂ P (B(0, ρ)) ⊂ B(0, ρ). Let z0 ∈ A, and w0 = P (z0) ∈ P (A). Consider
Möbius transformations φ and ψ of the disk that move z0 and w0 to 0 respectively.
Applying the previous case to ψ ◦ P ◦ φ−1 and the connected set φ(A) one has

diamφ(A) . diamψ(P (A))1/D.

However, since A,P (A) ⊂ B(0, ρ), it follows (e.g. by direct computation using
the formulas of the Möbius transformations φ, ψ) that diamφ(A) ' diamA and
diamψ(P (A)) ' diamP (A) with constants depending only on ρ. �

In our case, let P = φ ◦ fn ◦ ψ−1 : D → D, which is a proper map of degree
bounded by D0, that fixes 0. Now, let A ⊂ B be a connected set. Using (2.9), and
Lemma 2.5 applied to ψ(A) ⊂ B(0, ρ), one has

diamA ' diamB · diamψ(A) . diamB · (diamP (ψ(A)))1/D0

= diamB · (diamφ(fn(A)))1/D0 ' diamB · (diam fn(A))1/D0 ,

where in the end we used the fact that φ is a scaling by a fixed factor.
For the proof of part (b), we will need again a lemma for proper maps of the

disk.

Lemma 2.7. Let P : D → D be a proper holomorphic map of degree D, with
P (0) = 0, and fix r0 ∈ (0, 1). Then there exists r1 > 0 that depends only on D, r0
such that B(0, r1) ⊂ P (B(0, r0)).
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Proof. Let B(0, r1) ⊂ P (B(0, r0)) be a ball of maximal radius, and let W be the
component of P−1(B(0, r1)) that contains 0. Note that W contains a point z with
|z| = r0. Lemma 2.4(a) and Grötzsch’s modulus theorem yield

1

2π
log

1

r1
= mod(D \B(0, r1)) ≤ Dmod(D \W ) ≤ Dµ(r0).

Monotonicity of µ now yields a uniform lower bound for r1. �

In our case, Koebe’s distortion theorem in (2.9) implies that ψ(1
2
B) contains a ball

B(0, r0) where r0 is independent of B. Now, Lemma 2.7 applied to P = φ ◦ fn ◦ ψ−1
shows that P (ψ(1

2
B)) contains some ball B(0, r1), independent of B. Since φ is

only scaling by a certain factor, we obtain that fn(1
2
B) contains some ball B(x, r2),

independent of B.
Finally, we show part (c). We first need the following lemma.

Lemma 2.8. Let P : D→ D be a proper holomorphic map of degree D. Then
for ρ ∈ (0, 1) the restriction P : B(0, ρ) → D is K-Lipschitz, where K depends only
on D, ρ.

Proof. Each proper self-map of the unit disk is a finite Blaschke product, so we
can write P (z) = eiθ

∏D
i=1 Pi(z), where Pi(z) = (z− ai)/(1− aiz), ai ∈ D. Note that

for |z| < ρ we have

|P ′i (z)| ≤ 1

|1− aiz|2
≤ 1

(1− ρ)2
.

Thus

|P ′(z)| =

∣∣∣∣∣
D∑
i=1

P ′i (z)
∏
j 6=i

Pj

∣∣∣∣∣ ≤
D∑
i=1

|P ′i (z)| ≤ D

(1− ρ)2
=: K

for z ∈ B(0, ρ). �

For u, v ∈ B by (2.3) one has ψ(u), ψ(v) ∈ B(0, ρ). Thus, applying Lemma 2.8
to P = φ ◦ fn ◦ ψ−1, and using (2.9) we obtain

|fn(u)− fn(v)| ' |φ(fn(u))− φ(fn(v))| = |P (ψ(u))− P (ψ(v))|

. |ψ(u)− ψ(v)| ' |u− v|
diamB

.

This completes the proof of Lemma 2.1. �

3. Hausdorff and Minkowski dimensions

For a metric space (X, d) and s ∈ [0,∞) the s-dimensional Hausdorff measure of
X is defined as

Hs(X) = lim
δ→0
Hs
δ(X),

where Hs
δ(X) = inf{

∑
i∈I(diamUi)

s} and the infimum is taken over all covers of X
by open sets {Ui}i∈I of diameter at most δ. Then the Hausdorff dimension of (X, d)
is

dimH X = inf{s : Hs(X) <∞} = sup{s : Hs(X) =∞} ∈ [0,∞].

The Minkowski dimension is another useful notion of dimension for a fractal set
X ⊂ Rn. For ε > 0 we define n(ε) to be the maximal number of disjoint open balls of
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radii ε > 0 centered at points x ∈ X. We then define the upper and lower Minkowski
dimensions, respectively, as

dimMX = lim sup
ε→0

log n(ε)

log(1/ε)
, dimMX = lim inf

ε→0

log n(ε)

log(1/ε)
.

If the two numbers agree, then we say that their common value dimM X is the
Minkowski, or else, box dimension of X.

It is easy to see that the definition of the Minkowski dimension is not affected
if n(ε) denotes instead the smallest number of open balls of radii ε > 0 centered at
X, that cover X. The important difference between the Hausdorff and Minkowski
dimensions is that in the Hausdorff dimension we are taking into account coverings
{Ui}i∈I with different weights (diamUi)

s attached to each set, but in the Minkowski
dimension we are considering only coverings of sets with equal diameters. It easily
follows from the definitions that we always have

dimH X ≤ dimMX ≤ dimMX.

From now on, n(ε) will denote the maximal number of disjoint open balls of radii
ε, centered at points x ∈ X. Based on the distortion estimates that we developed
in Section 2, and using results of [Fal] and [SU] we have the following result that
concerns the Hausdorff and Minkowski dimensions of Julia sets of semi-hyperbolic
maps.

Theorem 3.1. Let f : Ĉ→ Ĉ be a semi-hyperbolic rational map with J (f) 6= Ĉ
and s := dimH J (f). We have

(a) 0 < Hs(J (f)) <∞,
(b) dimM J (f) = s = dimH J (f),
(c) There exists a constant C > 0 such that for all ε > 0

1

C
≤ n(ε)εs ≤ C,

where n(ε) is the maximal number of disjoint open balls of radii ε (in the spherical
metric), centered in J (f).

Proof. By considerations as in the beginning of Section 2, we may assume that
J (f) ⊂ D, and use the Euclidean metric which is comparable to the spherical metric.
This will only affect the constant in part (c) of the theorem.

The parts (a) and (b) follow from [SU, Theorem 1.11(e) and (g)]. Also, if
B1, . . . , Bn(ε) are disjoint balls of radius ε > 0 centered at J (f) then the collec-
tion 2B1, . . . , 2Bn(ε) covers J (f), where 2Bi has the same center as Bi but twice the
radius. Thus, we have

Hs
ε(J (f)) ≤ n(ε)(2ε)s.

Taking limits, and using (a), we obtain

0 < Hs(J (f)) ≤ 2s lim inf
ε→0

n(ε)εs

which shows the left inequality in (c).
For the right inequality in (c), we use the following result of Falconer.

Theorem 3.2. [Fal, Theorem 4] Let (F, d) be a compact metric space with
s = dimH F <∞. Suppose that there exist K0, r0 > 0 such that for any ball B ⊂ F
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of radius r < r0 there is a mapping ψ : F → B satisfying

K0r · d(x, y) ≤ d(ψ(x), ψ(y))

for all x, y ∈ F . Then lim supε→0 n(ε)εs <∞.

We remark that the mapping ψ : F → B need not be continuous. It remains
to show that this theorem applies in our case. To show the existence of ψ we will
carefully use the distortion estimates of Lemma 2.1. Let r0 be so small that for r < r0
and p ∈ J (f) the conclusions of Lemma 2.1 are true for the ball B = B(p, r). In
particular, there exists r1, independent of B, such that

B(fn(p), r1) ⊂ fn(B)(3.1)

for some n ∈ N.
For each ball B(q, r1), q ∈ J (f), there exists m ∈ N such that fm : B(q, r1) ∩

J (f) → J (f) is surjective (e.g. see [Mil, Corollary 14.2]). We choose the smallest
such m. Compactness of J (f) allows us to choose a uniform m ∈ N, independent of
q ∈ J (f). By the analyticity of fm, there exists a constant K1 > 0 such that for all
u, v ∈ J (f) we have

|fm(u)− fm(v)| ≤ K1|u− v|.(3.2)

Also, by Lemma 2.1(c), there exists K2 independent of B such that

|fn(u)− fn(v)| ≤ K2
|u− v|
diamB

(3.3)

for u, v ∈ B. Here n depends on the ball B and is defined as in the comments
preceding Lemma 2.1.

Now, we can construct the desired ψ : J (f)→ B. Let g : J (f)→ B(fn(p), r1)∩
J (f) be any right inverse of the surjective map fm : B(fn(p), r1) ∩ J (f) → J (f).
Also, the inclusion (3.1) allows us to define a right inverse h : B(fn(p), r1)∩J (f)→
B ∩ J (f) of fn, restricted on a suitable subset of B. Now, let ψ = h ◦ g : J (f) →
B ∩ J (f), and observe that by (3.3), and (3.2) we have

|ψ(u)− ψ(v)| = |h(g(u))− h(g(v))| ≥ diamB

K2

|g(u)− g(v)|

≥ diamB

K1K2

|u− v| = 2

K1K2

r|u− v|.

Thus, the hypotheses of Theorem 3.2 are satisfied with K0 = 2/(K1K2). �

4. Homogeneous sets and Julia sets

Let P = {Ck}k≥0 be a packing, as defined in the Introduction, where Ck are
topological circles, surrounding topological open disks Dk (in the plane or the sphere)
such that D0 contains Ck for k ≥ 1, and Dk, k ≥ 1 are disjoint. Then the set
S = D0 \

⋃
k≥1Dk is the residual set S of the packing P .

In the following, one can use the Euclidean or spherical metric, but it is convenient
to consider C0 = ∂D0 as the boundary of the unbounded component of the packing
P (see Figures 1 and 3), and use the Euclidean metric to study the other disks
Dk, k ≥ 1. Thus, we will restrict ourselves to the use of the Euclidean metric in this
section.

Following [MS], we say that the residual set S is homogeneous if it satisfies
properties (1), (2) and (3), or (1), (2) and (4) below.
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(1) Each Dk, k ≥ 1 is a uniform quasi-ball. More precisely, there exists a con-
stant α ≥ 1 such that for each Dk there exist inscribed and circumscribed,
concentric circles of radii rk and Rk respectively with

Rk

rk
≤ α.

(2) There exists a constant β ≥ 1 such that for each p ∈ S and 0 < r ≤ diamS
there exists a circle Ck intersecting B(p, r) such that

1

β
r ≤ diamCk ≤ βr.

(3) The circles Ck are uniformly relatively separated. This means that there exists
δ > 0 such that

∆(Cj, Ck) :=
dist(Cj, Ck)

min{diamCj, diamCk}
≥ δ

for all j 6= k.
(4) The disks Dk, k ≥ 1 are uniformly fat. By definition, this means that there

exists τ > 0 such that for every ball B(p, r) centered at Dk that does not
contain Dk, we have

m2(Dk ∩B(p, r)) ≥ τr2,

where m2 denotes the 2-dimensional Lebesgue measure. (Here one can use
the spherical measure for packings on the sphere.)

Condition (1) means that the sets Dk look like round balls, while (2) says that
the circles Ck exist in all scales and all locations in S. Condition (3) forbids two
“large” circles Ck to be close to each other in some uniform manner. Note that
this only makes sense when Dk, k ≥ 1 are disjoint, e.g., in the case of a Sierpiński
carpet. Finally, (4) is used to replace (3) when we are working with fractals such as
the Sierpiński gasket, or generic Julia sets regarded as packings, where Dk are not
disjoint. We now summarize some interesting properties of homogeneous sets, that
are not needed though for the proof of Theorem 1.1.

A set E ⊂ Rn is said to be porous if there exists a constant 0 < η < 1 such that
for all sufficiently small r > 0 and all x ∈ E, there exists a point y ∈ Rn such that

B(y, ηr) ⊂ B(x, r) \ E.

A Jordan curve γ ⊂ C is called a K-quasicircle if for all x, y ∈ γ there exists a subarc
γ0 of γ joining x and y with diam γ0 ≤ K|x − y|. The (Ahlfors regular) conformal
dimension of a metric space (X, d), denoted by (AR)CdimX, is the infimum of the
Hausdorff dimensions among all (Ahlfors regular) metric spaces that are quasisym-
metrically equivalent to (X, d). For more background see Chapters 10 and 15 in
[He].

Proposition 4.1. Let S be the residual set of a packing P , satisfying (1) and
(2). Then

(a) S is locally connected,
(b) S is porous,
(c) dimH S ≤ 2− δ, where δ > 0 depends only on the constants in (1), (2).

Furthermore, if instead of (1) and (2) we only assume that S satisfies (3) and the
topological circles Ck = ∂Dk are uniform quasicircles, then CdimS > 1.
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Proof. By (1), each Dk contains a ball of diameter comparable to diamDk. Thus,
summing the areas of the sets Dk, and noting that they are all contained in D0 ⊂ C,
we see that for each ε > 0, there can only be finitely many sets Dk with diamDk > ε.
We conclude that S is locally connected (see [Mil, Lemma 19.5]).

Condition (2) implies that for r ≤ diamS, every ball B(p, r) centered at S
intersects a curve Ck of diameter comparable to r. Let c < 1 and consider the
ball B(p, cr) ⊂ B(p, r). Then B(p, cr) intersects a curve Ck of diameter comparable
to cr, and if c is sufficiently small but uniform, then Ck ⊂ B(p, r). Thus B(p, r)
contains a curve Ck of diameter comparable to r. By (1), Dk contains a ball of
radius comparable to diamDk and thus comparable to r (note that here we use the
Euclidean metric). Hence, B(p, r)\S contains a ball of radius comparable to r. This
completes the proof that S is porous.

It is a standard fact that a porous set E ⊂ Rn has Hausdorff dimension bounded
away from n, quantitatively (see [Sa, Theorem 3.2]). Thus, (b) implies (c).

For our last assertion we will use a criterion of Mackay [Mac, Theorem 1.1]
which asserts that a doubling metric space which is annularly linearly connected
has conformal dimension strictly greater than 1. A connected metric space X is
annularly linearly connected (abbr. ALC) if there exists some L ≥ 1 such that for
every p ∈ X, r > 0, and x, y ∈ X in the annulus A(p, r, 2r) := B(p, 2r)\B(p, r) there
exists an arc J ⊂ X joining x to y that lies in a slightly larger annulus A(p, r/L, 2Lr).

It suffices to show that S is ALC. The idea is simple, but the proof is technical, so
we only provide a sketch. Let x, y ∈ A(p, r, 2r)∩S, and consider a path γ ⊂ A(p, r, 2r)
(not necessarily in S) that joins x and y. The idea is to replace the parts of the path
γ that lie in the complementary components Dk of S by arcs in Ck = ∂Dk and then
make sure that the resulting arc stays in a slightly larger annulus A(p, r/L, 2Lr).
The assumption that the curves Ck are quasicircles guarantees that the subarcs that
we will use are not too “large”, and condition (3) guarantees that the “large” curves
Ck do not block the way from x to y, since these curves are not allowed to be very
close to each other.

Using (3), we can find uniform constants a, L1 ≥ 1 such that there exists at
most one curve Ck0 with diamCk0 ≥ r/a that intersects B(p, r/L1). We call a curve
Ck large if its diameter exceeds r/a, and otherwise we call it small. We enlarge
slightly the annulus (maybe using a larger L1) to an annulus A(p, r/L1, 2rL1) so that
B(p, 2rL1) contains all small curves Ck that intersect γ. We now check all different
cases.

If γ meets the large Ck0 that intersects B(p, r/L1), using the fact that Ck0 is a
quasicircle, we can enlarge the annulus to an annulus A(p, r/L2, 2rL2) with a uniform
L2 ≥ 1, so that x can be connected to y by a path in A(p, r/L2, 2rL2) \ Dk0 . We
call the resulting path γ. Note that here we have to assume that Ck0 6= C0, so that
the path γ does not lie in the unbounded component of the packing and it passes
through several curves Ck on the way from x to y. The case Ck0 = C0, which occurs
only when x, y ∈ D0, is similar and in the previous argument we just have to choose
a path γ that lies in A(p, r/L2, 2rL2)∩D0. We still assume that B(p, 2rL2) contains
all small curves Ck that intersect γ.

If γ meets a small Ck that does not intersect B(p, r/L2), then we can replace
the subarcs of γ that lie in Dk with arcs in Ck that have the same endpoints. The
resulting arcs will lie in the annulus by construction. Next, if γ meets a small Ck
that does intersect B(p, r/L2), we follow the same procedure as before, but now we
have to choose the sub-arcs of Ck carefully, so that they do not approach p too much.
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This can be done using the assumption that the curves Ck are uniform quasicircles.
The resulting arcs will lie in a slightly larger annulus A(p, r/L3, 2rL3), where L3 ≥ 1
is a uniform constant.

Finally, if γ intersects a large Ck which does not meet B(p, r/L3) we can use
the assumption that Ck is a quasicircle to replace the subarcs of γ that lie in Dk

with subarcs of Ck that have diameter comparable to r. Thus, a larger annulus
A(p, r/L4, 2rL4) will contain the arcs of Ck that we obtain in this way.

We need to ensure that this procedure indeed yields a path that joins x and y
inside A(p, r/L4, 2rL4). This follows from the fact that diamDk → 0. The latter
fact follows from the assumption that the curves Ck are uniform quasicircles, which
in turn implies that each Dk contains a ball of radius comparable to diamDk, i.e.,
(1) is true (for a proof of this assertion see [Bo, Proposition 4.3]). �

Next, we continue our preparation for the proof of Theorem 1.1. From now
on, we will be using a slightly more general definition for a packing P = {Ck}k≥0,
suitable for Julia sets, where the sets Dk are allowed to be simply connected open
sets and Ck = ∂Dk (so they are not necessarily topological circles). Making abuse of
terminology, we still call Ck a “curve”.

As we will see in Lemma 4.3, a homogeneous set has the special property that
there is some important relation between the curvature distribution function N(x)
and the maximal number of disjoint open balls n(ε), centered at S. Thus, consid-
erations about the residual set S, which are reflected by n(ε), can be turned into
considerations about the complementary components Dk, which are comprised in
N(x).

The following lemma is proved in [MS] and its proof is based on area and counting
arguments.

Lemma 4.2. [MS, Lemma 3] Assume that S is the residual set of a packing
P = {Ck}k≥0 that satisfies (1) and (3) (or (1) and (4)). For any β > 0, there exist
constants γ1, γ2 > 0 depending only on β and the constants in (1), (3) (or (1), (4))
such that for any collection C of disjoint open balls of radii r > 0 centered in S we
have the following statements:

(a) There are at most γ1 balls in C that intersect any given Ck with

diamCk ≤ βr.

(b) There are at most γ2 curves Ck intersecting any given ball in 2C and satisfying
1

β
r ≤ diamCk,

where 2C denotes the collection of open balls with the same centers as the
ones in C, but with radii 2r.

Using this lemma one can prove a relation between the curvature distribution
function N(x) = #{k : (diamCk)

−1 ≤ x} (using the Euclidean metric) and the
maximal number n(ε) of disjoint open balls of radius ε, centered at S. Namely,
we have the following lemma.

Lemma 4.3. Assume that the residual set S of a packing P satisfies (1), (2) and
(3) or (1), (2) and (4). Then there exists a constant C > 0 such that for all small
ε > 0 we have

1

C
n(ε) ≤ N(β/ε) ≤ Cn(ε),
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where β is the constant in (2).

The proof is essentially included in the proof of [MS, Proposition 2] but we include
it here for completeness.

Proof. Let C be a maximal collection of disjoint open balls of radius ε, centered
at S. For each ball C ∈ C, by condition (2) there exists Ck such that Ck ∩C 6= ∅ and
1
β
ε ≤ diamCk ≤ βε. On the other hand, Lemma 4.2(a) implies that for each such
Ck there exist at most γ1 balls in C that intersect it. Thus

n(ε) = #C ≤ γ1 ·#
{
k :

1

β
ε ≤ diamCk ≤ βε

}
≤ γ1N(β/ε).

Conversely, note that by the maximality of C, it follows that 2C covers S. Hence,
if Ck is arbitrary satisfying diamCk ≥ 1

β
ε, it intersects a ball 2C in 2C. For each

such ball 2C, Lemma 4.2(b) implies that there exist at most γ2 curves Ck with
diamCk ≥ 1

β
ε that intersect it. Thus

N(β/ε) = #

{
k : diamCk ≥

1

β
ε

}
≤ γ2 ·#2C = γ2n(ε). �

Finally, we proceed to the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. By considerations as in the beginning of Section 2, we
assume that J (f) ⊂ D, and we will use the Euclidean metric since this does not
affect the conclusion of the Theorem. Let C0 be the boundary of the unbounded
Fatou component, Dk, k ≥ 1 be the sequence of bounded Fatou components, and
Ck = ∂Dk. Then P = {Ck}k≥0 can be viewed as a packing, and S = J (f) is
its residual set. Note, though, that the sets Ck need not be topological circles in
general, as we already remarked. This, however, does not affect our considerations,
since it does not affect the conclusions of lemmas 4.2 and 4.3, as long as the other
assumptions hold for Ck and the simply connected regions Dk enclosed by them. We
will freely use the terminology “curves” for the sets Ck.

By Theorem 3.1 we have that the quantity n(ε)εs is bounded away from 0 and
∞ as ε → 0, where s = dimH J (f). If we prove that J (f) is a homogeneous
set, satisfying (1), (2) and (4), then using Lemma 4.3, it will follow that N(x)/xs is
bounded away from 0 and ∞ as x→∞, and in particular

0 < lim inf
x→∞

N(x)

xs
≤ lim sup

x→∞

N(x)

xs
<∞

which will complete the proof.
Julia sets of semi-hyperbolic rational maps are locally connected if they are con-

nected (see [Yin, Theorem 1.2] and also [Mih, Proposition 10]), and thus for each
ε > 0 there exist finitely many Fatou components with diameter greater than ε (see
[Wh2, Theorem 4.4, pp. 112–113]).

First we show that condition (1) in the definition of homogeneity is satisfied.
The idea is that the finitely many large Fatou components are trivially quasi-balls,
as required in (1), so there is nothing to prove here, but the small Fatou components
can be blown up with good control to the large ones using Lemma 2.1. The dis-
tortion estimates allow us to control the size of inscribed circles of the small Fatou
components.

Let d0 ≤ (1/4K1)
1/γ, where K1, γ are the constants appearing in Lemma 2.1.

We also make d0 even smaller so that for r ≤ d0 and p ∈ J (f) the conclusions of
Lemma 2.1 are true. Since there are finitely many curves Ck with diamCk > d0/2,
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for these Ck there exist concentric inscribed and circumscribed circles with radii
rk and Rk respectively, such that Rk/rk ≤ α, for some α > 0. This implies that
2rk ≤ diamCk ≤ 2Rk ≤ 2αrk.

If Ck is arbitrary with diamCk ≤ d0/2, then for p ∈ Ck and r = 2 diamCk, by
Lemma 2.1(a) there exists n ∈ N such that

r/2

2r
=

diamCk
diamB(p, r)

≤ K1(diam fn(Ck))
γ.

Note that the Fatou component Dk is mapped under fn onto a Fatou component
D′k. Since fn is proper, the boundary Ck of Dk is mapped onto C ′k := ∂D′k. Then
the above inequality can be written as

diamC ′k ≥ (1/4K1)
1/γ ≥ d0.

Hence, C ′k is one of the “large” curves, for which there exists a inscribed ball B(q′, r′k)
such that 2r′k ≤ diamC ′k ≤ 2αr′k. Observe that r′k ≥ d0/2α.

Let q ∈ Dk ⊂ B(p, r) be a preimage of q′ under fn, and W ⊂ Dk be the
component of f−n(B(q′, r′k)) that contains q. For each u ∈ ∂W , by Lemma 2.1(c)
one has

r′k = |fn(q)− fn(u)| ≤ K2
|q − u|

2r
.

Thus
diamCk
|q − u|

=
r/2

|q − u|
≤ K2

4r′k
≤ αK2

2d0
.

Letting Rk = diamCk, and rk = infu∈∂W |q − w|, one obtains Rk/rk ≤ αK2/2d0, so
(1) is satisfied with α′ = max{α, αK2/2d0}.

Similarly, we show that condition (2) is also true. Let r1 be the constant in
Lemma 2.1(b) and consider d0 ≤ r1/2 so small that the conclusions of Lemma 2.1
are true for p ∈ J (f) and r ≤ d0. Note that by compactness of J (f) there exists
β > 0 such that for d0 ≤ r ≤ diamJ (f) and p ∈ J (f) there exists Ck such that
Ck ∩B(p, r) 6= ∅ and

1

β
r ≤ diamCk ≤ βr.(4.1)

Indeed, one can cover J (f) with finitely many balls B1, . . . , BN of radius d0/2 cen-
tered at J (f), such that each ball Bj contains a curve Ck(j). This is possible because
every ball Bj centered in the Julia set must intersect infinitely many Fatou compo-
nents, otherwise fn would be a normal family in Bj. In particular, by local connec-
tivity “most" Fatou components are small, and thus one of them, say Dk(j), will be
contained in Bj. Now, if B(p, r) is arbitrary with p ∈ J (f), r ≥ d0, we have that
p ∈ Bj for some j ∈ {1, . . . , N}, and thus Bj ⊂ B(p, r). Since r ∈ [d0, diamJ (f)]
lies in a compact interval, (4.1) easily follows, by always using the same finite set
of curves Ck(1), . . . , Ck(N) that correspond to B1, . . . , BN , respectively. We may also
assume that diamCk(j) < r1/2 for each of these curves.

Now, if r < d0, p ∈ J (f), by Lemma 2.1(b) we have B(fn(p), r1) ⊂ fn(B(p, r))
for some n ∈ N. By the previous, B(fn(p), r1/2) intersects some C ′k = Ck(j) with
diamC ′k < r1/2, thus C ′k ⊂ B(fn(p), r1). Hence, B(p, r) contains a preimage Ck of
C ′k, and by Lemma 2.1(a), (c) we obtain

1

K2

diamC ′k ≤
diamCk

diamB(p, r)
≤ K1(diamC ′k)

γ.
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However, C ′k was one of the finitely many curves that we chose in the previous
paragraph. This and the above inequalities impliy that diamCk ' diamB(p, r) = 2r
with uniform constants. This completes the proof of (2).

Finally, we will prove that condition (4) of homogeneity is satisfied. This follows
easily from the fact that the Fatou components of a semi-hyperbolic rational map
are uniform John domains in the spherical metric [Mih, Proposition 9]. Since we are
only interested in the bounded Fatou components, we can use instead the Euclidean
metric. A domain Ω ⊂ C is a λ-John domain (0 < λ ≤ 1) if there exists a basepoint
z0 ∈ Ω such that for all z1 ∈ Ω there exists an arc γ ⊂ Ω connecting z1 to z0 such
that for all z ∈ γ we have

δ(z) ≥ λ|z − z1|,
where δ(z) := dist(z, ∂Ω).

In our case, the bounded Fatou components Dk, k ≥ 1 are uniform John domains,
i.e., John domains with the same constant λ ≤ 1. Let B(p, r) be a ball centered at
some Dk that does not contain Dk. We will show that there exists a uniform constant
τ > 0 such that

m2(Dk ∩B(p, r)) ≥ τr2.(4.2)

If B(p, r/2) ⊂ Dk, then m2(Dk ∩ B(p, r)) ≥ m2(B(p, r/2)) = πr2/4, so (4.2) is true
with τ = π/4. Otherwise, ∂B(p, r/2) intersects Ck = ∂Dk at a point z1. We split in
two cases:

Case 1. The basepoint z0 satisfies |z0 − p| ≥ r/4. Then consider a path γ ⊂ Dk

from z0 to p, as in the definition of a John domain, such that δ(z) ≥ λ|z − p| for all
z ∈ γ. In particular let z2 ∈ γ be a point such that |z2− p| = r/4, thus δ(z2) ≥ λr/4.
Since λ ≤ 1, we have B(z2, λr/4) ⊂ Dk ∩B(p, r/2), hence

m2(Dk ∩B(p, r)) ≥ m2(B(z2, λr/4)) = πλ2r2/4.

Case 2. The basepoint z0 lies in B(p, r/4). Consider a point z3 ∈ Dk close to z1 ∈
∂Dk∩∂B(p, r/2) such that |z0−z3| ≥ r/4. Then, by the definition of a John domain
for z = z0, we have δ(z0) ≥ λ|z0 − z3| ≥ λr/4. Hence, B(z0, λr/4) ⊂ Dk ∩B(p, r/2),
so

m2(Dk ∩B(p, r)) ≥ πλ2r2/4.

Summarizing, (4) is true for τ = πλ2/4. �

Remark 4.4. Even when the Julia set of a semi-hyperbolic map is a Sierpiński
carpet, the uniform relative separation of the peripheral circles Ck in condition (3)
need not be true. In fact, it is known that for such Julia sets condition (3) is true
if and only if for all critical points c ∈ J (f), ω(c) does not intersect the boundary
of any Fatou component; see [QYZ, Proposition 3.9]. Recall that ω(c) is the set of
accumulation points of the orbit {fn(c)}n∈N.

Remark 4.5. In [QYZ, Proposition 3.7] it is shown that if the boundaries of
Fatou components of a semi-hyperbolic map f are Jordan curves, then they are
actually uniform quasicircles. If, in addition, they are uniformly relatively separated
(i.e., condition (3)), Proposition 4.1 implies that ARCdimJ (f) ≥ CdimJ (f) > 1.

On the other hand, if f is a semi-hyperbolic polynomial with connected Julia
set, then not all boundaries of Fatou components are Jordan curves. In fact, J (f)
coincides with the boundary of a single Fatou component A which is a John domain,
and is called the basin of attraction of ∞; [CJY, Theorem 1.1]. According to a
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recent result of Kinneberg [Ki, Theorem 1.1], which is based on [Car, Theorem 1.2],
boundaries of planar John domains have Ahlfors regular conformal dimension equal
to 1, if they are connected. Therefore, ARCdimJ (f) = 1, in contrast to the previous
case.

Next, we prove Corollary 1.2.

Proof of Corollary 1.2. Let s = dimH J (f). By Theorem 1.1 there exists a
constant C > 0 such that

1

C
xs ≤ N(x) ≤ Cxs(4.3)

for all x > 0. Taking logarithms, one obtains
log(1/C)

log x
+ s ≤ logN(x)

log x
≤ s+

logC

log x
.

Letting x→∞ yields limx→∞ logN(x)/ log x = s which completes part of the proof.
Recall that the exponent E of the packing of the Fatou components of f is defined

by

E = inf

{
t ∈ R :

∑
k≥0

(diamCk)
t <∞

}
and it remains to show that E = s. Note that for t=0 the sum E(t) :=

∑
k≥0(diamCk)

t

diverges. Also, since for semi-hyperbolic rational maps there are only finitely many
“large” Fatou components, if E(t0) =∞, then E(t) =∞ for all t ≤ t0. If t < s, using
(4.3), one has∑
k≥0

(diamCk)
t = lim

n→∞

∑
k≥0

diamCk≥1/n

(diamCk)
t ≥ lim inf

n→∞

1

nt
N(n) ≥ lim inf

n→∞

1

C
ns−t =∞.

This implies that E ≥ s.
Conversely, assume that t > s. Since there are only finitely many “large” Fatou

components, we only need to take into account the sets Ck with diamCk ≤ 1 in the
sum

∑
(diamCk)

t. Using again (4.3) we have∑
k≥0

diamCk≤1

(diamCk)
t =

∞∑
n=1

∑
k≥0

1/2n<diamCk≤1/2n−1

(diamCk)
t

≤
∞∑
n=1

1

2(n−1)tN(2n) ≤ C2t
∞∑
n=1

1

2n(t−s)
<∞.

Hence E ≤ s, which completes the proof. �
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