
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 43, 2018, 391–399

INVARIANT GRADIENT IN REFINEMENTS OF
SCHWARZ AND HARNACK INEQUALITIES

Petar Melentijević

University of Belgrade, Faculty of Mathematics
Studentski trg 16; 11000 Beograd, Serbia; petarmel@matf.bg.ac.rs

Abstract. In this paper we prove a refinement of Schwarz’s lemma for holomorphic mappings

from the unit ball Bn ⊂ C
n to the unit disk D ⊂ C obtained by Kalaj in [3]. We also give some

corollaries of this result and a similar result for pluriharmonic functions. In particular, we give an

improvement of Schwarz’s lemma for non-vanishing holomorphic functions from B
n to D that was

obtained in a recent paper by Dyakonov [2]. Finally, we give a new and short proof of Marković’s

theorem on contractivity of harmonic mappings from the upper half-plane H to the positive reals.

The same result does not hold for higher dimensions, as is shown by given counterexamples.

1. Introduction and notation

1.1. Notation. We use terminology and notation from Rudin [7]. Let B
n

denote the unit ball in C
n, Bn the unit ball in R

n and let Hn denote the upper
half-space in R

n. Specially, H is the upper half-plane in C. By H(Ω) we denote
the space of holomorphic functions on Ω ⊂ C

n. The complex scalar product of
z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn) ∈ C

n is given by

〈z, w〉 =
n∑

j=1

zjwj.

1.2. Bergman and hyperbolic distance. As is well known, the hyperbolic
distance on B

n is given by the expression

d(z, w) = log
1 + |Tw(z)|

1− |Tw(z)|
,

where

Tw(z) =
(1− |w|2) (z − w)− |z − w|2w

1 + |z|2|w|2 − 2Re 〈z, w〉
.

It is easy to check that

(1.1) 1− |Tw(z)|
2 =

(1− |w|2) (1− |z|2)

1 + |w|2|z|2 − 2Re〈z, w〉
.

For more information on the hyperbolic distance and Möbius transformations, one
can consult [1].
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We also use hyperbolic distances in some other domains in C and R
n. Let us

recall that the hyperbolic distance on H is given by

dH(z, w) = 2 tanh-1

∣∣∣∣
z − w

z − w

∣∣∣∣ ,

and on R
+ by

dR+(x, y) = log
y

x
,

for y ≥ x > 0. The hyperbolic distances on Bn and Hn are given by

dBn
(x, y) = cosh−1 (1 + δ(x, y)) , where δ(x, y) =

2‖x− y‖2

(1− ‖x‖2) (1− ‖y‖2)
,

dHn
(x, y) = cosh−1

(
1 +

‖x− y‖2

2xnyn

)
, where xn, yn > 0.

We will use an involutive biholomorphic automorphism ϕw : B
n → B

n given by

ϕw(z) =
1

1− 〈z, w〉

(
w −

〈z, w〉

|w|2
w −

(
1− |w|2

) 1

2

(
z −

〈z, w〉

|w|2
w

))
.

Note that ϕw(0) = w. An easy verification gives

(1.2) 1− |ϕw(z)|
2 =

(1− |w|2) (1− |z|2)

|1− 〈z, w〉|2
.

Bergman distance on B
n is given by the expression

(1.3) ρ(z, w) = log
|1− 〈z, w〉|+

√
|z − w|2 + |〈z, w〉|2 − |z|2|w|2

|1− 〈z, w〉| −
√

|z − w|2 + |〈z, w〉|2 − |z|2|w|2
;

it can be also written in the following form, using ϕw(z):

(1.4) ρ(z, w) = log
1 + |ϕw(z)|

1− |ϕw(z)|
.

Some general information and theorems on Bergman distance can be found in [4].

1.3. M-invariant gradient. For a function f ∈ C1(Bn), we define M-
invariant gradient by expression

D̃f(z) = D (f ◦ ϕz) (0),

where D denotes the complex gradient

Df(z) =

{
∂f

∂zj

}n

j=1

, zj = xj + iyj ,
∂f

∂zj
=

1

2

(
∂f

∂xj
+

1

i

∂f

∂yj

)

and ϕz is aforementioned automorphism of the unit ball Bn. For f ∈ H (Bn),

(1.5)
∣∣∣D̃f(0)

∣∣∣ = |Df(0)| = |f ′(0)| .

The main property of M-invariant gradient is the following invariance property

(1.6)
∣∣∣D̃ (f ◦ ϕz) (0)

∣∣∣ =
∣∣∣D̃f(z)

∣∣∣ .

Basic properties about this notion can be found in [7] and [6]. We will use the
following identity

(1.7)
∣∣∣D̃f(z)

∣∣∣
2

=
(
1− |z|2

) (
|Df(z)|2 − |〈Df(z), z〉|2

)
, f ∈ C1(Bn),
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see [6] for details. On the other hand, the real gradient ∇ is defined by

∇f(z) =

{
∂f

∂xj
,
∂f

∂yj

}
, j = 1, 2 . . . , n, zj = xj + iyj.

For a function f ∈ C1(Bn) we also define M-invariant real gradient

∇̃f(z) = ∇ (f ◦ ϕz) (0).

Analogous formulae hold for ∇̃ and D̃, except for (1.5) where we have only
∣∣∣∇̃f(0)

∣∣∣ = |∇f(0)| ,

for f ∈ C1(Bn).

1.4. Results. Schwarz’s lemma is a fundamental result which states that for a
holomorphic mapping f : D → D, with f(0) = 0, we have

|f(z)| ≤ |z| .

This leads to another inequality which estimates the pseudohyperbolic distance be-
tween images of two points in terms of the pseudohyperbolic distance of points:

∣∣∣∣∣
f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ ≤
∣∣∣∣
z − w

1− zw

∣∣∣∣ ,

and also the magnitude of the derivative at a point z in terms of moduli of z and its
image f(z):

|f ′(z)| ≤
1− |f(z)|2

1− |z|2
.

These basic results have been extended in numerous ways. The one that is of
special interest for us is the following theorem.

Theorem 1. (Kalaj, [3]) If f is a holomorphic mapping of the unit ball Bn ⊂ C
n

into B
m ⊂ C

m, then for m ≥ 2

|f ′(z)| ≤

√
1− |f(z)|2

1− |z|2
, z ∈ B

n,

and for m = 1 we have that

|f ′(z)| ≤
1− |f(z)|2

1− |z|2
, z ∈ B

n.

Here |f ′(z)| denotes the norm of the Frechet derivative of the mapping f. Let
us recall that Frechet derivative of a holomorphic function f : A ⊂ C

n → C
m is

the unique linear mapping L = f ′(z) : Cn → C
m such that f(z + h) − f(z) =

f ′(z)h +O(|h|2).

Corollary 2. (Kalaj) Every holomorphic function f : Bn → D is a contraction

with respect to the hyperbolic metric on both B
n and D.

In section 2, we prove a refined version of Kalaj’s theorem, using the so-called

M-invariant gradient D̃.

Theorem 1.1. For each holomorphic function f : Bn → D we have
∣∣∣D̃f(z)

∣∣∣ ≤ 1− |f(z)|2 , z ∈ B
n,
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while for each holomorphic mapping f : Bn → B
m, m ≥ 2, we have

∣∣∣D̃f(z)
∣∣∣ ≤

√
1− |f(z)|2, z ∈ B

n.

Since |D̃f(z)| ≥ (1− |z|2) |Df(z)| (see section 2) this indeed improves Kalaj’s
theorem. In the case of the unit disc D we give a new technique, while for n ≥ 2 we
only refine the Kalaj’s result.

Theorem 1.2. Every holomorphic function f : Bn → D is a contraction with

respect to Bergman metric on B
n and D.

As a direct consequence we will get

Corollary 1.3. (Schwarz–Pick inequality for several variables) For each holo-

morphic function f : Bn → D we have

(1.8)

∣∣∣∣∣
f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ ≤
√

|z − w|2 + |〈z, w〉|2 − |z|2|w|2

|1− 〈z, w〉|
.

Note that for n = 1, this is the classical Schwarz–Pick inequality.
The following result on plurisubharmonic functions from B

n to (−1, 1) can be
found in[3]:

Theorem 3. Let f be a pluriharmonic function from the unit ball Bn ⊂ C
n to

(−1, 1). Then the following sharp inequality holds

|∇f(z)| ≤
4

π

1− |f(z)|2

1− |z|2
, z ∈ B

n.

Using the M-invariant gradient, we get the following refinement:

Theorem 1.4. For each pluriharmonic function f : Bn → (−1, 1) there holds

the following inequality
∣∣∣∇̃f(z)

∣∣∣ ≤
4

π

(
1− |f(z)|2

)
, z ∈ B

n.

We also deal with Harnack’s inequalities. It is well known that for positive
harmonic functions u : D → R

+ we have

1− |z|

1 + |z|
≤
u(z)

u(0)
≤

1 + |z|

1− |z|
and |∇u(z)| ≤

2u(z)

1− |z|
.

Dyakonov [2] proved the following lemma:

Lemma 4. Suppose f ∈ H(Bn) is a function satisfying 0 < |f(z)| ≤ 1 for all

z ∈ B
n. Then

|Df(z)| ≤
2 |f(z)|

1− |z|2
log

1

|f(z)|
.

Using the M-invariant gradient form of Harnack’s inequality, we prove the fol-
lowing refinement of Dyakonov’s lemma:

Theorem 1.5. For each holomorphic function f : Bn → D without zeros in B
n

we have ∣∣∣D̃f(z)
∣∣∣ ≤ 2 |f(z)| log

1

|f(z)|
, z ∈ B

n.

In section 3, we present a different proof, based only on Harnack’s inequality, of
the following Marković’s theorem.
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Theorem 5. (Marković, [5]) Every harmonic function f : H → R
+ acts as a

contraction with respect to hyperbolic metric considered on both H and R
+.

We investigate the same problem in the upper half-space Hn ⊂ R
n and the unit

ball Bn ⊂ R
n: Are positive harmonic functions contractions if we consider hyperbolic

metric on H
n or Bn and R

+? The answer is “no”, see Section 3.

2. Variations of the Schwarz lemma on the unit ball

Using the Cauchy–Schwarz inequality we obtain:
∣∣∣D̃f(z)

∣∣∣
2

=
(
1− |z|2

) (
|Df(z)|2 − |〈Df(z), z〉|2

)

≥
(
1− |z|2

) (
|Df(z)|2 − |z|2 |Df(z)|2

)

=
(
1− |z|2

)2
|Df(z)|2 ,

and we have proved ∣∣∣D̃f(z)
∣∣∣ ≥

(
1− |z|2

)
|Df(z)| .

Proof of Theorem 1.1. (Case m = 1.) Let us prove Theorem 1.1 in case z = 0,
i.e.

(2.1)
∣∣∣D̃f(0)

∣∣∣ = |Df(0)| ≤ 1− |f(0)|2.

Let us fix ζ = (ζ1, ζ2, . . . , ζn) ∈ ∂Bn and define a one-variable complex function

gζ(z) = f (ζ1z, ζ2z, . . . , ζnz) , z ∈ D.

Note that gζ maps D to D so we can apply Schwarz–Pick lemma to get
∣∣g′ζ(0)

∣∣ ≤ 1− |gζ(0)|
2
.

Since

g′ζ(z) = ζ1
∂f

∂z1
(z) + ζ2

∂f

∂z2
(z) + · · ·+ ζn

∂f

∂zn
(z),

by choosing

ζi =
1

|Df(0)|

∂f

∂zi
(0),

we obtain the needed estimate

|Df(0)| ≤ 1− |g(0)|2 = 1− |f(0)|2.

Applying (2.1) to f ◦ ϕz we get
∣∣∣D̃ (f ◦ ϕz) (0)

∣∣∣ ≤ 1− |(f ◦ ϕz) (0)|
2
.

The left-hand side, by (1.6), is equal to
∣∣∣D̃f(z)

∣∣∣, so we have
∣∣∣D̃f(z)

∣∣∣ ≤ 1− |f(z)|2.

(Case m ≥ 2.) According to [3], we have
∣∣∣D̃f(0)

∣∣∣ = |Df(0)| ≤
√
1− |f(0)|2.

Applying this inequality to the function f ◦ ϕz, we get:
∣∣∣D̃f(z)

∣∣∣ = |D (f ◦ ϕz) (0)| ≤

√
1− |f ◦ ϕz(0)|

2 =
√
1− |f(z)|2. �
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Proof of Theorem 1.2. We have to prove ρ (f(z), f(w)) ≤ ρ(z, w) for a holomor-
phic f : Bn → D. By Corollary 2, we have

d (f(z), f(0)) ≤ d(z, 0).

Since

ρ(z, 0) = log
1 + |z|

1− |z|
= d(z, 0), z ∈ B

n,

and the Bergman and hyperbolic metrics coincide on D, i.e.

ρ (f(z), f(0)) = d (f(z), f(0)) ,

we conclude

(2.2) ρ (f(z), f(0)) ≤ ρ(z, 0).

For prescribed z, w ∈ B
n there exist an automorphism ϕ of the unit ball Bn such

that ϕ(0) = z, ϕ(a) = w. Since ϕ is an isometry in the Bergman metric, we have

ρ(z, w) = ρ (ϕ(0), ϕ(a)) = ρ(0, a).

Using (2.2) with f ◦ ϕ in place of f , we obtain

ρ ((f ◦ ϕ)(0), (f ◦ ϕ)(a)) ≤ ρ(0, a),

which gives

ρ (f(z), f(w)) ≤ ρ(0, a) = ρ(z, w). �

From (1.1) and (1.2) it easily follows that |Tw(z)| ≥ |ϕw(z)|, which leads to
ρ(z, w) ≤ d(z, w). We see that Theorem 1.2 indeed refines Corollary 2.

Proof of Corollary 1.3. By Theorem 1.2 and (1.3) we have

log
1 +

∣∣∣ f(z)−f(w)

1−f(z)f(w)

∣∣∣

1−
∣∣∣ f(z)−f(w)

1−f(z)f(w)

∣∣∣
≤ log

|1− 〈z, w〉|+
√
|z − w|2 + |〈z, w〉|2 − |z|2|w|2

|1− 〈z, w〉| −
√

|z − w|2 + |〈z, w〉|2 − |z|2|w|2

which implies
∣∣∣∣∣
f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ ≤
√

|z − w|2 + |〈z, w〉|2 − |z|2|w|2

|1− 〈z, w〉|
. �

Proof of the Theorem 1.4. The proof is similar to that of Theorem 1.1. For z = 0
we have ∣∣∣∇̃f(0)

∣∣∣ = |∇f(0)| ≤
4

π

(
1− |f(0)|2

)
.

Now, using this inequality for f ◦ ϕz we have, by ∇̃-version of (1.6):
∣∣∣∇̃f(z)

∣∣∣ =
∣∣∣∇̃ (f ◦ ϕz) (0)

∣∣∣ ≤
4

π

(
1− |f ◦ ϕz(0)|

2) = 4

π

(
1− |f(z)|2

)
. �

A consequence of the Harnack’s inequality for a positive harmonic function u in
D is

(2.3) |∇u(z)| ≤
2u(z)

1− |z|2
.

Using Poisson representation we prove this for z = 0 and extend the result to any
z ∈ D using automorphisms ϕz.
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Proof of Theorem 1.5. Let us fix ζ ∈ ∂Bn and apply (2.3) to positive harmonic
function

u(z) = log
1

|Fζ(z)|
,

where Fζ(z) = f (ζ1z, ζ2z, . . . , ζnz) , z ∈ D for point z = 0:

∣∣F ′

ζ(0)
∣∣ ≤ 2 |Fζ(0)| log

1

|Fζ(0)|
= 2|f(0)| log

1

|f(0)|
.

Next

F ′

ζ(0) =
n∑

i=1

ζi
∂f

∂zi
(0),

by choosing

ζi =
1

|Df(0)|

∂f

∂zi
(0),

where |Df(0)| =

√
∑n

i=1

∣∣∣ ∂f∂zi
(0)

∣∣∣
2

, we obtain

|Df(0)| ≤ 2 |f(0)| log
1

|f(0)|
.

Because of (1.5) we get

(2.4)
∣∣∣D̃f(0)

∣∣∣ ≤ 2 |f(0)| log
1

|f(0)|
.

Now, using inequality (2.4) for f ◦ ϕz, z ∈ B
n in place of f , we obtain

∣∣∣D̃f(z)
∣∣∣ =

∣∣∣D̃ (f ◦ ϕz) (0)
∣∣∣ ≤ 2 |(f ◦ ϕz) (0)| log

1

|(f ◦ ϕz) (0)|
= 2 |f(z)| log

1

|f(z)|
,

and Theorem 1.5 is proved. �

3. Marković’s theorem and counterexamples

Here we give a new proof of Marković’s theorem on positive harmonic functions on
the upper half-plane and obtain counterexamples for higher-dimensional analogues.

We will use common Harnack inequality, which estimates the ratio of values of
positive harmonic functions at an arbitrary point z and at the zero:

(3.1)
1− |z|

1 + |z|
≤
v(z)

v(0)
≤

1 + |z|

1− |z|
.

3.1. Marković’s theorem. For every harmonic function v : D → R
+ we can

define harmonic function u : H → R
+ by

u(z) = v(ϕ(z)), where ϕ(z) =
z − i

z + i
,

is a conformal mapping from H to D. Conversely, for every harmonic u : H → R
+

there is a harmonic v : D → R
+ given by v(z) = u(ϕ−1(z)), for which we have

u = v ◦ ϕ.
So, for ζ ∈ H, ζ−i

ζ+i
∈ D, using (3.1) we obtain

v
(

ζ−i

ζ+i

)

v(0)
≤

1 +
∣∣∣ ζ−i

ζ+i

∣∣∣

1−
∣∣∣ ζ−i

ζ+i

∣∣∣
=

1 +
∣∣∣ ζ−i

ζ−i

∣∣∣

1−
∣∣∣ ζ−i

ζ−i

∣∣∣
, i.e.

u(ζ)

u(i)
≤

1 +
∣∣∣ ζ−i

ζ−i

∣∣∣

1−
∣∣∣ ζ−i

ζ−i

∣∣∣
,
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and after taking logarithms of both sides

(3.2) d (u(ζ), u(i)) ≤ d(ζ, i).

Let ψ be a conformal automorphism of the upper half-plane which sends ζ and i
to z and w, respectively. We have

d(ζ, i) = d(ψ(ζ), ψ(i)) = d(z, w)

and

d(u ◦ ψ(ζ), u ◦ ψ(i)) = d(u(z), u(w)),

so (3.2) with u ◦ ψ instead of u gives

d(u(z), u(w)) ≤ d(z, w).

So, Theorem 5 is proved.
Using the method of the above proof, one can show that any positive harmonic

function from D to (0,+∞) is a contraction with respect to hyperbolic metrics on
D and R

+.
In the next subsection we provide counterexamples which show that these results

do not extend to higher dimensions.

3.2. Counterexamples for n ≥ 3.

Example 1. (The unit ball Bn) The following Harnack’s inequality for positive
harmonic functions in the unit ball Bn

1− |x|

(1 + |x|)n−1 ≤
v(x)

v(0)
≤

1 + |x|

(1− |x|)n−1

gives us a clue for counterexamples in higher dimensions.
For n ≥ 3, the hyperbolic metric in the unit ball Bn in R

n is given by

d(x, y) = cosh−1(1 + δ(x, y)) = log
(
1 + δ(x, y) +

√
(1 + δ(x, y))2 − 1

)
,

where

δ(x, y) =
2‖x− y‖2

(1− ‖x‖2)(1− ‖y‖)2

and ‖ · ‖ denotes the usual Euclidean norm.
So, for y = 0 we have

δ(x, 0) =
2‖x‖2

1− ‖x‖2
,

d(x, 0) = log



1 +
2‖x‖2

1− ‖x‖2
+

√(
2‖x‖2

1− ‖x‖2

)2

− 1



 = log
1 + ‖x‖

1− ‖x‖
.

If u : Bn → R
+ is harmonic, then

(3.3) d(u(x), u(0)) ≤ d(x, 0) if and only if
u(x)

u(0)
≤

1 + ‖x‖

1− ‖x‖
.

But, for 1 = (1, 0, . . . , 0) ∈ R
n and n ≥ 3, the function

u(x) =
1− ‖x‖2

‖1− x‖n
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is positive harmonic, and setting x = (t, 0, . . . , 0), 0 < t < 1, inequality (3.3) gives

1− t2

(1− t)n
≤

1 + t

1− t
,

that is (1− t)2 ≤ (1− t)n which cannot hold for n ≥ 3.

Example 2. (The upper half-space) In the case of the upper half-space Hn ⊂ R
n

for n ≥ 3, the hyperbolic metric is given by

d(x, y) = cosh−1

(
1 +

‖x− y‖2

2xnyn

)
,

where x = (x1, x2, . . . , xn) , y = (y1, y2, . . . , yn) and xn, yn > 0.
For x = (0, 0, . . . , t), t > 1 and y = (0, 0, . . . , 1), we have

δ(x, y) = 1 +
‖x− y‖2

2xnyn
= 1 +

(t− 1)2

2t
=
t2 + 1

2t

and

d(x, y) = log
(
δ(x, y) +

√
δ(x, y)2 − 1

)
= log


t2 + 1

2t
+

√(
t2 + 1

2t

)2

− 1


 = log t,

so d(u(x), u(y)) ≤ d(x, y) is equivalent to

(3.4)
u(y)

u(x)
≤ t.

Choosing positive harmonic function u(x) to be

u(x) =
xn

‖x‖n
,

we obtain
u(y)

u(x)
=

1

t1−n
= tn−1,

which cannot be smaller than t for n ≥ 3, for t > 1.
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