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Abstract. The precise behavior of the quasi-hyperbolic metric near a C1,1-smooth part of the

boundary of a domain in R
n is obtained.

1. Introduction and results

Let D be a proper subdomain of Rn. Define the quasi-hyperbolic metric of D by

hD(a, b) = inf
γ

ˆ

γ

‖du‖

dD(u)
, a, b ∈ D,

where ‖ · ‖ is the Euclidean norm, dD = dist(·, ∂D) and the infimum is taken over all
rectifiable curves γ in D joining a to b. By [5, Lemma 1], the infimum is attained, and
any extremal curve is called quasi-hyperbolic geodesic (for short, geodesic). It turns
out that the geodesics are C1,1-smooth (see [8, Corollary 4.8]). The quasi-hyperbolic
metric arises in the theory of quasi-conformal maps.

This paper is devoted to the boundary behavior of hD. First, we point out the
following general lower bound.

Proposition 1. [4, Lemma 2.6] If D is a proper subdomain of Rn, then

hD(a, b) ≥ 2 log
dD(a) + dD(b) + ‖a− b‖

2
√

dD(a)dD(b)
, a, b ∈ D.

Observe that equality occurs if n = 1 (then D is an open interval or ray).
From now, we assume that n ≥ 2. Throughout the paper, we will say that ζ is a

Cα-smooth boundary point of D if and only if it admits a neighborhood in which ∂D
is Cα-smooth.

Recall that a C1-smooth boundary point ζ of a domain D in R
n is said to be Dini-

smooth if the inner unit normal vector n to ∂D near ζ is a Dini-continuous function.

This means that there exists a neighborhood U of ζ such that
´ 1

0
ω(t)
t
dt < +∞, where

ω(t) = ω(n, ∂D ∩ U, t) := sup{‖nx − ny‖ : ‖x− y‖ < t, x, y ∈ ∂D ∩ U}

is the respective modulus of continuity.
If
´ 1

0
ω(t) log t

t
dt > −∞, then the point ζ is called log-Dini smooth.
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The following relations between different notions of smoothness are clear: C1,ε =⇒
log-Dini =⇒ Dini =⇒ C1.

Theorem 2. [9, Theorem 7] Let ζ be a Dini-smooth boundary point of a domain

D in R
n. Then for any constant c > 1 +

√
2
2

there exists a neighborhood U of ζ such

that

hD(a, b) ≤ 2 log

(

1 +
c‖a− b‖

√

dD(a)dD(b)

)

, a, b ∈ D ∩ U.

Since hD is an inner metric, we get an upper bound of hD, similar to the lower
bound from Proposition 1.

Corollary 3. [9, Corollary 8] Let D be a Dini-smooth bounded domain in R
n.

Then there exists a constant c > 0 such that

hD(a, b) ≤ 2 log

(

1 +
c‖a− b‖

√

dD(a)dD(b)

)

, a, b ∈ D.

Set now

sD(a, b) = 2 sinh−1 ‖a− b‖

2
√

dD(a)dD(b)

= 2 log
‖a− b‖+

√

‖a− b‖2 + 4dD(a)dD(b)

2
√

dD(a)dD(b)
, a, b ∈ D.

Note that hD = sD if D is a half-space in R
n (cf. [12, (2.8)]).

The following sharp result holds in the C1-smooth case.

Proposition 4. [9, Proposition 6(a)] If ζ is a C1-smooth boundary point of a

domain D in R
n, then

lim
a,b→ζ
a6=b

hD(a, b)

sD(a, b)
= 1.

Since the proof of this proposition is not long, we shall include it for completeness.

Corollary 5. [9, Proposition 6(b) and p. 3] If D is a C1-smooth bounded domain

in R
n, then

qD(a, b) =

{

hD(a,b)
sD(a,b)

, a, b ∈ D, a 6= b,

1, otherwise,

is a continuous function on R
n ×R

n.

The main goal of this paper is to prove the following result related to Proposi-
tion 4.

Theorem 6. If ζ is a C1,1-smooth boundary point of a domain D in R
n, then

lim
a,b→ζ

(hD(a, b)− sD(a, b)) = 0.

Note that Theorem 6 and Proposition 4 say the same only if sD and 1/sD are
bounded.

The assumption about regularity in Theorem 6 can be weakened in the plane.

Proposition 7. If ζ is a log-Dini smooth boundary point of a domain D in R
2,

then

lim
a,b→ζ

(hD(a, b)− sD(a, b)) = 0.
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The above results imply the following optimal version of Theorem 2.

Corollary 8. Let ζ be a C1,1-smooth boundary point of a domain D in R
n or ζ

be a log-Dini smooth boundary point of a domain D in R
2. Then for any constant

c > 1 there exists a neighborhood U of ζ such that

hD(a, b) ≤ 2 log

(

1 +
c‖a− b‖

√

dD(a)dD(b)

)

, a, b ∈ D ∩ U.

The rest of the paper is organized as follows: Section 2 contains the proofs of
Propositions 4, 7 and Corollary 8. Section 3 contains the proof of Theorem 6. It
should be mentioned that the three proofs use different flattening maps. Section 4
contains the proof of a result analogous to Corollary 8 for the Kobayashi distance.

2. Proofs of Propositions 4, 7 and Corollary 8

Proof of Proposition 4. After translation and rotation, we may assume that ζ = 0
and that there is a neighborhood U of 0 such that

D′ := D ∩ U = {x ∈ U : r(x) := x1 + f(x′) > 0},

where points of Rn are denoted by x = (x1, x
′), with x′ ∈ R

n−1, and f is a C1-smooth
function in R

n with f(0) = 0 and ∇f(0) = 0.
Let c > 1 and θ(x) = (r(x), x′). We may shrink U such that

(1) c−1‖x− y‖ ≤ ‖θ(x)− θ(y)‖ ≤ c‖x− y‖, x, y ∈ U.

Choose now a neighborhood V ⊂ U of 0 such that dD′ = dD on D ∩ V. The
regularity of D implies that it is a uniform domain near ζ in the sense of [5]. Using,
for example, [5, Corollary 2], one can find a neighborhood W ⊂ V of 0 such that any

geodesic joining points in D̃ = D ∩W is contained in D ∩ V . Then hD = hD′ on D̃2.
Set R

n
+ = {x ∈ R

n : x1 > 0}. Using the above arguments, we may shrink W

such that hRn
+
= hθ(D′) on (θ(D̃))2.

On the other hand, (1) implies that (cf. [12, Exercise 3.17])

c−2hD′(z, w) ≤ hθ(D′)(θ(z), θ(w)) ≤ c2hD′(z, w), z, w ∈ D′.

Let z, w ∈ D̃. Then

c−2hD(z, w) ≤ hRn
+
(θ(z), θ(w)) ≤ c2hD(z, w).

Using (1) again, we get that

hRn
+
(θ(z), θ(w)) = 2 sinh−1 ‖θ(z)− θ(w)‖

2
√

rD(z)rD(w)
≤ 2 sinh−1 c2‖z − w‖

2
√

dD(z)dD(w)

≤ c2sD(z, w).

We obtain in the same way that

hRn
+
(θ(z), θ(w)) ≥ c−2sD(z, w).

So
c−4hD(z, w) ≤ sD(z, w) ≤ c4hD(z, w)

which implies the desired result. �

Proof of Proposition 7. We may find a neighborhood U of ζ such that D ∩ U is
a bounded simply connected log-Dini smooth domain. Using an argument from the
previous proof, we may replace D by D ∩ U .
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The Kellogg–Warschawski theorem (cf. [11, Theorem 3.5]) implies that there ex-

ists a conformal map f̃ from the unit disc D to D which extends to a C1-diffeomorph-
ism between D to D such that f̃(ζ) = 1 and

|f̃ ′(z)− f̃ ′(w)| ≤ ω̃∗(|z − w|), z, w ∈ D,

where ω̃∗(s) =
´ s

0
ω̃(t)
t
dt + s

´ +∞
s

ω̃(t)
t2
dt (s ≥ 0) and ω̃ : R+ → R

+ is a bounded

continuous function with
´ 1

0
ω̃(t) log t

t
dt > −∞.

Then f(z) = f̃
(

1−z
1+z

)

maps conformally R
2
+ onto D and

|f ′(z)− f ′(w)| ≤ ω∗(|z − w|), z, w ∈ G = R
2
+ ∩D,

where ω∗ is defined from ω in the same way as ω̃∗.
The equality

f(w)− f(z)− f ′(z)(w − z) = (w − z)

ˆ 1

0

(f ′(z + t(w − z))− f ′(z)) dt

implies that
|f(w)− f(z)− f ′(z)(w − z)| ≤ |w − z|ω∗(|w − z|)

(since ω∗ is an increasing function). It follows that

(2) |dD(f(z))− |f ′(z)|dR2
+
(z)| ≤ dR2

+
(z)ω∗(dR2

+
(z)), z ∈ G.

Since D is a uniform domain, there exists a neighborhood V of ζ such that any
geodesic γ joining points a = f(α) and b = f(β) in D ∩ V is contained in f(G). It
follows by (2) that one may find a constant C > 0 (independent of a and b) such that

hR2
+
(α, β) ≤

ˆ

f−1◦γ

|du|

dR2
+
(u)

≤

ˆ

γ

|dv|

dD(v)
+ C

ˆ

γ

ω∗(dD(v))

dD(v)
|dv|.

The first summand is equal to hD(a, b).
We claim that the second summand tends to 0 as a, b → ζ . Indeed, denote by

t the natural parameter of γ by arc length and by l = l(γ) the Euclidean length of
γ. Since D is a uniform domain, then [5, Corollary 2] provides a constant c > 0
(independent of a and b) such that c · l ≤ |a − b| and dD(γ(t)) ≥ c · max{t, l − t}.

Using that ω∗(s)
s

is a decreasing function, we get
ˆ

γ

ω∗(dD(v))

dD(v)
|dv| ≤

2

c

ˆ cl/2

0

ω∗(t)

t
dt.

It is easy to check the log-Dini condition for ω is is equivalent to the fact that the
last integral tends to 0 as l → 0 which implies our claim.

Hence
lim inf
a,b→ζ

(hD(a, b)− hR2
+
(α, β)) ≥ 0.

The opposite inequality

lim sup
a,b→ζ

(hD(a, b)− hR2
+
(α, β)) ≤ 0

follows in the same way by taking the geodesic joining α and β.
Using (2), we have that

(3) lim
a,b→ζ
a6=b

|a− b|

2
√

dD(a)dD(b)
·
2
√

dR2
+
(α)dR2

+
(β)

|α− β|
= 1.
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Since hR2
+
= sR2

+
and sinh−1 qt < log q + sinh−1 t for q > 1, t > 0, then

lim
a,b→ζ

(sD(a, b)− hR2
+
(α, β)) = 0

which completes the proof. �

Proof of Corollary 8. We may assume that c = 2c′ − 1 ∈ (1, 3]. By Proposition 4,
Theorem 6 and Proposition 7, one may find a neighborhood U of ζ such that for
a, b ∈ D ∩ U,

hD(a, b) ≤ c′sD(a, b), hD(a, b) ≤ sD(a, b) + log c′.

Then the result follows by the inequalities sinh−1 t

2
< log(1 + t) (t > 0), (1 + t)c

′

<

1 + ct (0 < t < 1) and c′(1 + t) < 1 + ct (t > 1). �

3. Proof of Theorem 6

Theorem 6 will follow from Propositions 9 and 11 below.
For convenience, we assume that D is a domain in R

n+1 (n ≥ 1). We first localize
the problem. We choose local coordinates so that ζ = 0 and T0∂D = {0} × R

n.
Denote points in R

n+1 by x̄ = (x0, x) ∈ R × R
n. We also write R

n+1
+ = {x̄ ∈

R
n+1 : x0 > 0}.

There are a ball U ⊂ R
n+1 centered at (0, 0) and a function f ∈ C1,1(U ∩R

n,R)
such that f(0) = 0 and Df(0) = 0 and

(4) D ∩ U = {x̄ ∈ U : x0 > f(x)} .

By shrinking the radius of U further we may assume that the projection which to
x̄ ∈ U ∩ D associates π(x̄), the closest point in ∂D is well-defined, and that U ⊂
π−1(U ∩D) (see [1, Lemma 4.11], or the proof of Lemma 10 (1) below).

Proposition 9. lim infa,b→0 (hD(a, b)− sD(a, b)) ≥ 0.

We can define a map ϕ on U by

ϕ(x̄) = (f(x), x) + x0nx,

where nx is the inward unit normal to ∂D at the point (f(x), x).

Lemma 10. (1) There exists a ball U0 ⊂ U centered at 0 such that ϕ|U0 is a

bilipschitz homeomorphism and for any x̄ ∈ U0 ∩R
n+1
+ ,

dDϕ(x̄) = ‖ϕ(x̄)− (f(x), x)‖ = x0.

(2) Furthermore, if f ∈ Cα(U ∩ R
n,R), for some α ≥ 2, then ϕ|U0 is a Cα−1-

diffeomorphism, and there exists a ball U1 ⊂ U0 centered at 0 and a constant

C > 0 such that for any x̄ ∈ U1 ∩R
n+1
+ and any vector v ∈ R

n+1,

‖Dϕ(x̄) · v‖ ≥ (1− Cx0)‖v‖,

where Dϕ(x̄) stands for the differential of ϕ taken at the point x̄.
(3) In the general case where f ∈ C1,1(U ∩R

n,R), then there exists a C > 0 such

that for any C1 curve γ : [t1, t2] −→ U1 ∩R
n+1
+ , ϕ ◦ γ is rectifiable and for any

F ∈ C([t1, t2],R+),
ˆ t2

t1

F (t)|dϕ ◦ γ(t)| ≥

ˆ t2

t1

F (t)|dγ(t)| − C

ˆ t2

t1

F (t)dD(γ(t))|dγ(t)|.
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Proof. Part (1) of the lemma is classical (see [1, Theorem 4.8]). The main point
is to prove that the domain has positive reach, that is to say that there exists δ > 0
such that if x ∈ D and dD(x) < δ, then this distance is attained at a single point,
which will be the intersection of ∂D and the unique normal line to it containing x
(see [1]). In other words, for x ∈ U well chosen and x0 < δ, ϕ is one-to-one.

We quickly recall the proof. Suppose ‖∇f(x)−∇f(x′)‖ ≤ L‖x − x′‖ for (0, x),
(0, x′) ∈ U1, then, taking without loss of generality the projection to ∂D to be (0, 0),
for some θ ∈ (0, 1),

‖(y0, 0)− (f(x), x)‖2 = y20 − 2y0∇f(θx) · x+ f(x)2 + ‖x‖2

≥ y20 + ‖x‖2 − 2y0L‖x‖
2 > y20

for y0 < 1/2L and x 6= 0.
Notice that a lemma in [6, Appendix], explained in detail in [7], shows that even

though nx can only be expected to be continuous with bounded derivatives, and in
general of class Cα−1 when ϕ ∈ Cα, the function x̄ 7→ dD(x̄) has the same regularity
as ϕ.

We now prove part (2). Let (e0, e1, . . . , en) be the standard basis of Rn+1. Let
ẽj = ∂f

∂xj
(x)e0 + ej , for 1 ≤ j ≤ n. They form a basis of the tangent space to

∂D at (x, f(x)) and 〈nx, ẽj〉 = 0 for 1 ≤ j ≤ n. Then Dϕ(x̄) · e0 = nx, and
Dϕ(x̄) · ej = ẽj + x0

∂nx

∂xj
, for 1 ≤ j ≤ n.

Given v =
∑n

0 vjej ,

Dϕ(x̄) · v =

(

v0nx +
n
∑

1

vj ẽj

)

+ x0

n
∑

1

vj
∂nx

∂xj
=: V1 + V0.

Clearly, ‖V0‖ = O(x0)‖v‖. By the orthogonality of nx to the tangent space,

‖V1‖
2 = v20 +

∥

∥

∥

∥

∥

n
∑

1

vj ẽj

∥

∥

∥

∥

∥

2

= v20 +

∥

∥

∥

∥

∥

n
∑

1

vjej +

(

n
∑

1

vj
∂f

∂xj
(x)

)

e0

∥

∥

∥

∥

∥

2

= v20 +
n
∑

1

v2j +

∣

∣

∣

∣

∣

n
∑

1

vj
∂f

∂xj
(x)

∣

∣

∣

∣

∣

2

≥ ‖v‖2.

In the case where f ∈ C1,1, then ϕ ◦ γ is only a Lipschitz map. By Rademacher’s
theorem (see e.g. [2, Theorem 3.1.6]), it is almost everywhere differentiable and the
fundamental theorem of calculus holds. We then perform the same calculation as in
case (2), where the integrands are defined a.e. �

Proof of Proposition 9. Using Lemma 10, the proof repeats the second part of
the proof of Proposition 7. Suppose that ζ = 0 and that the domain D is given by
a local representation as above. We may assume that the points a, b ∈ D are in a
small enough neighborhood of 0 so that the geodesic γ which joins them is entirely
contained in the range of invertibility of ϕ and Lemma 10 holds; we write a = ϕ(ᾱ),
b = ϕ(β̄), γ = ϕ(γ̃), where γ̃ is an arc in R

n+1
+ . Then

hD(a, b) =

ˆ

γ

‖du‖

dD(u)
≥

ˆ

γ̃

‖dv‖

d
R

n+1
+

(v)
− C · l(γ̃) ≥ h

R
n+1
+

(ᾱ, β̄)− C ′‖ᾱ− β̄‖,
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where C ′ > 0 is a constant independent of a and b. Note that h
R

n+1
+

= s
R

n+1
+

. Since

the differential of ϕ at x̄ tends to the identity as x→ 0, it follows that

lim
a,b→ζ

(s
R

n+1
+

(ᾱ, β̄)− sD(a, b)) = 0

which completes the proof. �

Proposition 11. lim supa,b→0 (hD(a, b)− sD(a, b)) ≤ 0.

The proof is similar to that of Proposition 9, using a modification of the map ϕ
which depends on a and b.

Proof. We again assume that a, b ∈ D, and the geodesic connecting them, all
lie in a neighborhood of ζ small enough so that any point in it has a unique closest
point on ∂D. Let a′, b′ be the respective closest points. We take new coordinates
(and obtain a new function f) so that a′ = 0 (instead of ζ = 0 as in the proof of
Proposition 9) and

D ∩ U = {x̄ ∈ U : x0 > f(x1, . . . , xn)}.

We may also assume that b′2 = · · · = b′n = 0. Shrinking the radius r of U , we
may replace x1 by σ1(x1) such that for σ = (f(σ1, 0, . . . , 0), σ1, 0, . . . , 0) one has
‖σ′‖ = 1 (in other words, σ is parametrized by arc length). Note that r can be
chosen independently of a and b. Let ℓ be the length of the curve σ from a′ to b′, so
that σ(0) = a′, σ(ℓ) = b′.

Consider the map ϕ from R
2
+ (near 0) to D defined by

ϕ(x0, x1) = σ(x1) + x0nσ(x1),

where nσ(x1) is the inward unit normal to ∂D at the point σ(x1). Then dD(ϕ(x̄)) = x0
if x0 is small enough, and if α = (dD(a), 0) and β = (dD(b), ℓ), we have ϕ(α) = a,
ϕ(β) = b.

Lemma 12. There exist a neighborhood U of ζ, a neighborhood V of 0 and a

constant C > 0 such that for any a, b ∈ D ∩ U and x̄ ∈ R
2
+ ∩ V and any vector

v ∈ R
2, then α, β ∈ V and

‖Dϕ(x̄) · v‖ ≤ (1 + Cx0)‖v‖.

Proof. As in the proof of Lemma 10 (2), in the C2-smooth case,

Dϕ(x̄) · e0 = nσ(x1), Dϕ(x̄) · e1 = σ′(x1) + x0
∂nσ(x1)

∂x1
.

Because ‖σ′‖ = 1 and is tangent to ∂D, (σ′(x), nx) form an orthonormal system,
so that Dψ(x̄) differs from a linear isometric embedding by a term bounded by
∥

∥

∥

∂nσ(x1)

∂x1

∥

∥

∥
x0.

Geometric considerations show that
∥

∥

∥

∂nσ(x1)

∂x1

∥

∥

∥
≤ 1

R
whenever there exist two balls

B1, B2 of radius R, tangent to each side of ∂D at σ(x1). The argument in the proof
of Lemma 10 (1) shows there exists δ > 0 (depending only on the neighborhood U0

mentioned in that lemma) such that there exist two such balls of radius δ at each
point in U0 ∩ ∂D.

As in the proof of Lemma 10 (3), the C1,1-smooth case follows by applying
Rademacher’s theorem. �

The proof of Proposition 11 can be finished similarly to that of Proposition 9.
Let γ be the geodesic joining α to β in R

2
+. Let U, V be as in Lemma 12. Shrinking
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V if needed so that ϕ(V ) ⊂ U , we have dD(ϕ(u)) = dR2
+
(u) for any u ∈ γ. Since

ϕ ◦ γ is a curve joining a to b in D, using Lemma 12, we get

hD(a, b) ≤

ˆ ℓ

0

‖Dϕ(γ(t)) · γ′(t)‖

dD(ϕ ◦ γ(t))
dt ≤ hR2

+
(α, β) + Cl(γ)

< sR2
+
(α, β) + Cπ‖α− β‖

(here π is the Ludolphine number, not the projection). The differential of ϕ is close
to a linear isometric embedding of R2 in R

n+1 and hence we have the asymptotic
relation (3) and

lim
a,b→ζ

(sR2
+
(α, β)− sD(a, b)) = 0,

which completes the proof. �

4. An upper estimate for the Kobayashi distance

Let D be a domain in C
n. The Kobayashi (pseudo) distance kD is obtained from

the Lempert function

lD(a, b) = inf{tanh−1 |α| : ∃ϕ ∈ O(D, D) with ϕ(0) = a, ϕ(α) = b}, a, b ∈ D.

The Lempert function does not always satisfy the triangle inequality, but setting

kD(a, b) := inf

{

m−1
∑

j=0

lD(aj , aj+1) : aj ∈ D, a0 = a, am = b, m ≥ 1

}

,

one does obtain a (pseudo) distance, which is the largest that is dominated by lD.
Recall that kD is the integrated form of the Kobayashi (pseudo) metric

κD(a;X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = a, αϕ′(0) = X}, a ∈ D, X ∈ C
n.

Note that Theorem 2 and Proposition 7 (even in the Dini-smooth case) hold
for 2kD instead of hD (see [9, Theorem 7] and [10, Proposition 6]). Moreover, the
following result corresponds to Proposition 4.

Proposition 13. [9, Proposition 5(a)] If ζ is a C1-smooth boundary point of a

domain D in C
n, then

lim sup
a,b→ζ
a6=b

2kD(a, b)

hD(a, b)
≤ 1.

It turns out that Corollary 8 also holds for 2kD instead of hD. This gives the
optimal version of [3, Proposition 2.5] in the C1,1-smooth case.

Proposition 14. Let ζ be a C1,1-smooth boundary point of a domain D in C
n

or ζ be a log-Dini smooth boundary point of a domain D in C. Then for any constant

c > 1 there exists a neighborhood U of ζ such that

kD(a, b) ≤ log

(

1 +
c‖a− b‖

√

dD(a)dD(b)

)

, a, b ∈ D ∩ U.

Proof. Having in mind Corollary 8, it is enough to show that

lim sup
a,b→ζ
a6=b

2kD(a, b)− hD(a, b)

‖a− b‖
< +∞.

Since kD is the integrated form of κD and the lengths of the quasi-hyperbolic
geodesics joining points in D near ζ are bounded up to a multiplicative constant by
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the Euclidean distances between the points, the last inequality will be a consequence
of the following one:

lim sup
a→ζ

‖X‖=1

(

2κD(a;X)−
1

dD(a)

)

< +∞.

To see this, note that there exists an r > 0 such that any a ∈ D near ζ is
contained in a (unique) ball Bn(ã, r) ⊂ D with r − ‖a− ã‖ = dD(a) (the inner ball
condition). It remains to use that for such an a and ‖X‖ = 1 one has that

κD(a;X) ≤ κBn(ã,r)(a;X) ≤
r

r2 − ‖a− ã‖2
<

1

2dD(a)
+

1

4r
. �
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