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Abstract. We prove that every nontrivial solution of f ′′ + A(z)f ′ + Q(z)f = 0 is of infinite

order, where A(z) is an entire function satisfying λ(A) < ρ(A) < ∞ and some restrictions, and Q(z)

is a non-constant polynomial. This result gives partial solutions to a question posed by Gundersen.

Related results are also given.

1. Introduction and main results

We use the standard notations of Nevanlinna theory of meromorphic functions in
this paper, such as, T (r, f),m(r, f), N(r, f) and so on; for more detail, see [11, 14, 26].
For a meromorphic function f in the complex plane C, the order of growth and the
lower order of growth are defined as

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
, µ(f) = lim inf

r→∞

log+ T (r, f)

log r
,

respectively. If f is an entire function, then the Nevanlinna characteristic T (r, f) can
be replaced with logM(r, f), where M(r, f) = max|z|=r |f(z)| is the usual maximum
modulus of f , see [26, p. 10]. Let λ(f) denote the exponent of convergence of the
zeros of f . Obviously, λ(f) ≤ ρ(f) for every meromorphic function f .

The growth of solutions of the following equation

f ′′ + A(z)f ′ +B(z)f = 0(1.1)

is studied in this paper, where A(z) and B(z) ( 6≡ 0) are entire functions. There are
many results in the literature that concern the order of growth of solutions of (1.1),
see [14] and [15]. For the case of a transcendental entire function B(z), the following
result is a summary of results derived from Gundersen [9], Hellerstein, Miles and
Rossi [12], and Ozawa [23].
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Theorem 1.1. Suppose that A(z) and B(z) are entire functions satisfying one

of the following conditions:

(i) ρ(A) < ρ(B);
(ii) A(z) is a polynomial and B(z) is a transcendental entire function;

(iii) ρ(B) < ρ(A) ≤ 1
2
.

Then every nontrivial solution of (1.1) is of infinite order.

Motivated by Theorem 1.1, many parallel results written thereafter focus on the
case ρ(A) ≥ ρ(B) and B(z) is a transcendental entire function; see, for example,
[3, 16, 18, 19, 24, 25]. Regarding the case of a polynomial B(z), there are many
results concerning the growth of solutions of the following special equation

f ′′ + e−zf ′ +Q(z)f = 0,(1.2)

where Q(z) is a polynomial.
Frei [4] proved that (1.2) has a nontrivial solution of finite order if and only if

Q(z) = −n2, where n is a positive integer. The case where Q(z) is non-constant
is more difficult to resolve, and the following result is a summary of results derived
from Amemiya and Ozawa [1], Gundersen [6], and Ozawa [23].

Theorem 1.2. Let Q(z) = bmz
m + bpz

p + · · ·+ b0 be a non-constant polynomial

(bm 6= 0) satisfying one of the following conditions:

(i) m is odd;

(ii) m is even and m ≥ 2p+ 3;
(iii) m = 2 and b1 = b0 = 0;
(iv) m is even and bm(−1)

m
2 is not real and negative.

Then every nontrivial solution of (1.2) is of infinite order.

Motivated by Theorem 1.2, Langley [17] obtained the following general result
which completely resolves the growth problem of solutions of (1.2).

Theorem 1.3. Let Q(z) be a non-constant polynomial. Then all nontrivial

solutions of

f ′′ + Ae−zf ′ +Q(z)f = 0

have infinite order, for any A ∈ C\{0}.

From Theorem 1.3, a natural idea is whether every nontrival solution of (1.2) is
of infinite order if e−z is replaced by a more general entire function. Accordingly,
Gundersen [10, Question 5.1] posed the following question.

Gundersen’s Question. If A(z) is an entire function with λ(A) < ρ(A) < ∞,
and Q(z) = bmz

m + · · ·+ b0 is a non-constant polynomial, then does every nontrivial
solution of

f ′′ + A(z)f ′ +Q(z)f = 0(1.3)

have infinite order?

Here we consider Gundersen’s Question and prove the following result.

Theorem 1.4. Let A(z) = υ(z)eP (z), where υ(z) ( 6≡ 0) is an entire function

and P (z) = anz
n + · · · + a0 is a polynomial of degree n, such that ρ(υ) < n. Let

Q(z) = bmz
m+· · ·+b0 be a non-constant polynomial of degree m. Then all nontrivial

solutions of (1.3) have infinite order if one of the following conditions holds:

(i) m+ 2 < 2n;

(ii) m+ 2 > 2n and m+ 2 6= 2kn for all integers k;
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(iii) m+ 2 = 2n and
a2n
bm

is not real and negative.

From Theorem 1.4, it follows that Gundersen’s Question holds for the case of
m + 2 < 2n, and we get partial results on Gundersen’s Question for the case of
m+ 2 ≥ 2n.

It seems interesting to find a special transcendental entire function A(z) with
λ(A) = ρ(A) such that every nontrivial solution of (1.3) is of infinite order. To this
end, we note that there are many studies in the literature concerning the growth of
solutions of the following equation

w′′ + P (z)w = 0,(1.4)

where P (z) is a non-constant polynomial. Solutions of (1.4) have some striking
properties, see Lemma 2.2 below in Section 2. From Lemma 2.2, it is usually the
case that λ(A) = ρ(A) when A(z) is a nontrivial solution of (1.4). A new idea, in
which the properties of solutions of (1.4) are considered, is used to study the growth
of solutions of complex differential equations, see, for example, [21, 25]. Here the
idea will be used again to study the case of λ(A) = ρ(A), and we get the following
result.

Theorem 1.5. Let A(z) be a nontrivial solution of (1.4), where P (z) = anz
n +

· · ·+a0 is a polynomial of degree n ≥ 1. Let Q(z) = bmz
m+ · · ·+ b0 be a polynomial

of degree m ≥ 1. Then all nontrivial solutions of (1.3) have infinite order if one of

the following conditions holds:

(i) m < n;

(ii) m > n and m+ 2 6= k(n+ 2) for all integers k;
(iii) m = n and an

bm
is not real and positive.

By using the proofs of Theorems 1.4 and 1.5, the conditions of Theorems 1.4
and 1.5 show that, on most rays from the origin, the coefficient A(z) has either fast
growth or small growth, so we also find the following conditions to show that all
nontrivial solutions of (1.3) have infinite order.

Theorem 1.6. Let A(z) be a transcendental entire function of finite order with

the following property: there exists a set H ⊆ R of linear measure zero, such that

for each real θ 6∈ H , either

(i) r−N |A(reiθ)| → ∞ as r → ∞, for each N > 0; or

(ii) there exists n ≥ 0, possibly depending on θ, such that n + 1 < ρ(A) and

A(reiθ) = O(rn) as r → ∞.

If Q(z) = bmz
m + · · · + b0 is a non-constant polynomial with m + 2 < 2ρ(A), then

every nontrivial solution of (1.3) is of infinite order.

2. Auxiliary results

In this section, we collect some lemmas which will be used in proving our theo-
rems. The following lemma on logarithmic derivatives is due to Gundersen [8].

Lemma 2.1. Let f be a transcendental meromorphic function of finite order

ρ(f). Let ε > 0 be a given real constant, and let k and j be two integers such that

k > j ≥ 0. Then there exists a set E ⊂ [0, 2π) that has linear measure zero, such

that if ψ0 ∈ [0, 2π)−E, then there is a constant R0 = R0(ψ0) > 1 such that for all z
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satisfying arg z = ψ0 and |z| ≥ R0, we have
∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ |z|(k−j)(ρ(f)−1+ε).

In order to prove the Theorem 1.5, an auxiliary result is also needed, in which the
properties of solutions of w′′+P (z)w = 0 are described. To this end, some notations
are stated. Let α < β be such that β − α < 2π, and let r > 0. Denote

S(α, β) = {z : α < arg z < β},

S(α, β, r) = {z : α < arg z < β} ∩ {z : |z| < r}.

Let F denote the closure of F . Let A be an entire function of order ρ(A) ∈ (0,∞).
For simplicity, set ρ = ρ(A) and S = S(α, β). We say that A blows up exponentially
in S if for any θ ∈ (α, β),

lim
r→∞

log log |A(reiθ)|

log r
= ρ

holds. We also say that A decays to zero exponentially in S if for any θ ∈ (α, β),

lim
r→∞

log log |A(reiθ)|−1

log r
= ρ

holds.
The following lemma, originally due to Hille [13, Chapter 7.4], see also [7, 20, 22],

plays an important role in proving Theorem 1.5. The method used in proving the
lemma is typically referred to as the method of asymptotic integration.

Lemma 2.2. Let A be a nontrivial solution of w′′ + P (z)w = 0, where P (z) =

anz
n + · · · + a0, an 6= 0. Set θj = 2jπ−arg(an)

n+2
and Sj = S(θj, θj+1), where j =

0, 1, 2, . . . , n+ 1 and θn+2 = θ0 + 2π. Then A has the following properties.

(1) In each sector Sj, A either blows up or decays to zero exponentially.

(2) If, for some j, A decays to zero in Sj , then it must blow up in Sj−1 and Sj+1.

However, it is possible for A to blow up in many adjacent sectors.

(3) If A decays to zero in Sj , then A has at most finitely many zeros in any closed

sub-sector within Sj−1 ∪ Sj ∪ Sj+1.

(4) If A blows up in Sj−1 and Sj, then for each ε > 0, A has infinitely many zeros

in each sector S(θj − ε, θj + ε), and furthermore, as r → ∞,

n(S(θj − ε, θj + ε, r), 0, A) = (1 + o(1))
2
√

|an|

π(n+ 2)
r

n+2

2 ,

where n(S(θj − ε, θj + ε, r), 0, A) is the number of zeros of A in the region

S(θj − ε, θj + ε, r).

The next two lemmas show the asymptotic properties of solutions of w′′+Q(z)w =
0 when the coefficient Q(z) has small growth in some domain.

Lemma 2.3. [17] Let S be the strip

z = x+ iy, x ≥ x0, |y| ≤ 4.

Suppose that Q(z) is analytic in S such that

Q(z) = bmz
m +O(|z|m−2), z ∈ S,
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where m is a positive integer and bm > 0. Then there exists a path Γ tending to

infinity in S such that all solutions of

w′′ +Q(z)w = 0

tend to zero on Γ.

Lemma 2.4. [2] Suppose that Q(z) is analytic in a sector containing the ray

γ : reiθ and that as r → ∞,

|Q(reiθ)| = O(rm)

for some m ≥ 0. Then all solutions of

g′′ +Q(z)g = 0

satisfy

log+ |g(reiθ)| = O(r
m+2

2 )

on γ.

We introduce the definitions of critical rays of exp(P (z)) and Q(z) which are
needed in the proof of our results, where P (z) and Q(z) are polynomials.

Definition 2.5. Let P (z) = anz
n+· · ·+a0 be a polynomial, where an = α+iβ 6=

0. Set δ(P, θ) = α cosnθ − β sin nθ. A ray arg z = θ from the origin is said to be a
critical ray of eP (z) if δ(P, θ) = 0.

Obviously, eP (z) has 2n critical rays, which divide the whole plane into 2n sectors,
where the length of each sector is equal to π

n
, say arg z = θj , arg z = ϕj , θ1 < ϕ1 <

θ2 < ϕ2 < · · · < θn < ϕn < θn+1 = θ1 + 2π, j = 1, 2, . . . , n. It is not hard to see
that the function eP (z) has the property that there are n disjoint sectors satisfying
δ(P, θ) > 0, and n other disjoint sectors satisfying δ(P, θ) < 0, see [19]. Without loss
of generality, set

S+
j (θj , ϕj) = {z : δ(P, θ) > 0, θj < arg z = θ < ϕj}, j = 1, 2, . . . , n,

and

S−
j (ϕj, θj+1) = {z : δ(P, θ) < 0, ϕj < arg z = θ < θj+1}, j = 1, 2, . . . , n.

In order to state later, the following notations are needed. Set

S+ =

n
⋃

j=1

S+
j (θj , ϕj), S− =

n
⋃

j=1

S−
j (ϕj , θj+1),

and

E+ =
n
⋃

j=1

(θj , ϕj), E− =
n
⋃

j=1

(ϕj , θj+1).

Definition 2.6. Let Q(z) = bmz
m+ · · ·+ b0 be a polynomial with bm 6= 0. A ray

arg z = θ from the origin is said to be a critical ray of Q(z) if arg bm + (m+ 2)θ = 0
(mod 2π).

The next lemma gives the asymptotic properties on most rays of the function
υ(z) exp(P (z)) in Theorem 1.4.

Lemma 2.7. [2] Let P (z) be a polynomial of degree n ≥ 1, and let ε > 0 be a

given constant. Let υ(z) ( 6≡ 0) be analytic for all z of sufficiently large modulus, and

of order less than n. Consider the function A(z) = υ(z) exp(P (z)) on a ray arg z = θ.
Then there exists a set E ⊂ [0, 2π) with linear measure zero, such that
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(i) If θ ∈ E+ −E, there exists a R(θ) > 1 such that for r > R(θ),

|A(reiθ)| ≥ exp((1− ε)δ(P, θ)rn).

(ii) If θ ∈ E− −E, there exists a R(θ) > 1 such that for r > R(θ),

|A(reiθ)| ≤ exp((1− ε)δ(P, θ)rn).

Lemma 2.8. Let A(z) be an entire function satisfying lim
r→∞

|A(reiφ)| = 0 for

φ ∈ (θ, ϕ), where θ, ϕ are two real constants such that 0 < ϕ − θ < 2π. Then for

any η ∈ (0, ϕ−θ
4
), there exists a positive constant M such that the following three

statements hold.

(i) A(z) is uniformly continuous in S1 = S(θ + 2η, ϕ− 2η) ∩ {z : |z| ≥ 1};
(ii) |A′(reiν)| ≤ M

sin η
for ν ∈ (θ + 2η, ϕ− 2η) and r > 2;

(iii) |
´ reiν

z0
A(t) dt| < Mr+Mr0(2π− 1) for ν ∈ (θ+2η, ϕ− 2η) and r > 2, where

z0 = r0e
iθ0 is a given point in S(θ + η, ϕ− η).

Proof. Obviously, there exists a positive constant M such that |A(z)| ≤ M for
z ∈ S(θ + η, ϕ− η). Note that

d(z, ∂S(θ, ϕ)) ≥ sin η, z ∈ S1,

where d(z, ∂S(θ, ϕ)) denotes the distance between z and the boundary of S(θ, ϕ).
(i) For any given ε ∈ (0,M), there exists a δ < ε sin η

4M
, such that for any z1, z2 ∈ S1

with |z1 − z2| < δ, we get

|ζ − z2| ≥ |ζ − z1| − |z1 − z2| ≥
sin η

2
−

sin η

4
=

sin η

4
,

where we denote by γ the circle |ζ−z1| =
sin η
2

. Then it follows from Cauchy’s formula
that

|A(z1)− A(z2)| =

∣

∣

∣

∣

1

2πi

ˆ

γ

A(ζ)

ζ − z1
dζ −

1

2πi

ˆ

γ

A(ζ)

ζ − z2
dζ

∣

∣

∣

∣

≤
1

2π

ˆ

γ

|A(ζ)||z1 − z2|

|ζ − z1||ζ − z2|
|dζ |

≤
1

2π
·M |z1 − z2| ·

1
sin η
2

· sin η
4

· 2π ·
sin η

2
≤

4M

sin η
|z1 − z2| < ε.

So A(z) is uniformly continuous in S1.
(ii) Suppose that ν ∈ (θ + 2η, ϕ − 2η) and r > 2, we denote by γ1 the circle

|ζ − reiν | = sin η. By the Cauchy’s formula we deduce that

|A′(reiν)| =

∣

∣

∣

∣

1

2πi

ˆ

γ1

A(ζ)

(ζ − reiν)2
dζ

∣

∣

∣

∣

≤
M

2π
·

1

(sin η)2
· 2π sin η =

M

sin η
.

(iii) Let z0 = r0e
iθ0 ∈ S(θ+η, ϕ−η) be a given point. For any ν ∈ (θ+2η, ϕ−2η),

and r > 2, we get
∣

∣

∣

∣

∣

ˆ reiν

z0

A(t) dt

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

ˆ ν

θ0

A(r0e
iθ)ir0e

iθdθ

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ r

r0

A(xeiν)eiνdx

∣

∣

∣

∣

≤Mr0|ν − θ0|+M(r − r0) ≤Mr0(2π − 1) +Mr. �
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3. Proof of Theorem 1.4

Suppose that arg z = θj , ϕj are 2n critical rays of eP (z), j = 1, 2, . . . , n, θn+1 =

θ1 +2π. Note that by a suitable translation, for instance, z = ξ− bm−1

mbm
, the equation

(1.3) is turned into the following form

f ′′ + A1(ξ)f
′ +Q1(ξ)f = 0,

where A1(ξ) satisfies λ(A1) < ρ(A1) <∞, and

Q1(ξ) = bmξ
m + cm−2ξ

m−2 + · · · , m ≥ 2,

or

Q1(ξ) = bmξ, m = 1.

Hence we assume directly that Q(z) in (1.3) has the following form

Q(z) = bmz
m + bm−2z

m−2 + · · ·+ b0.

Now suppose on the contrary to the assertion that there exists a nontrivial solu-
tion f of (1.3) with ρ(f) <∞. By (1.3), we get

f ′′

f
+ A(reiθ)

f ′

f
+Q(reiθ) = 0.(3.1)

By using Lemma 2.1, there exists a set E1 ⊂ [0, 2π) with linear measure zero and a
positive number K, such that for all sufficiently large r and θ 6∈ E1, we have

∣

∣

∣

∣

f ′′(reiθ)

f(reiθ)

∣

∣

∣

∣

≤ rK ,

∣

∣

∣

∣

f ′(reiθ)

f(reiθ)

∣

∣

∣

∣

≤ rK .(3.2)

By using Lemma 2.7, for any θ ∈ ([0, 2π) ∩ E+)− (E1 ∪ E2) and positive number ε,
there exists a positive number R1(θ), such that

|A(reiθ)| ≥ exp((1− ε)δ(P, θ)rn)(3.3)

holds for r > R1(θ), where E2 ⊂ [0, 2π) with linear measure zero. Combining (3.1),
(3.2) and (3.3), for any θ ∈ ([0, 2π) ∩ E+)− (E1 ∪ E2), we get

f ′(reiθ)

f(reiθ)
= o(

1

r2
)

as r → ∞. By the Phragmén–Lindelöf principle, f(reiθ) tends to a nonzero finite
constant for θ ∈ E+, without loss of generality, say

f(reiθ) → 1(3.4)

as r → ∞ with θ ∈ E+. Meanwhile, for any θ ∈ ([0, 2π) ∩ E−) − (E1 ∪ E2) and ε
given above, by using Lemma 2.7 again, there exists a positive number R2(θ), such
that

|A(reiθ)| ≤ exp((1− ε)δ(P, θ)rn)(3.5)

holds for r > R2(θ). This implies that for θ ∈ ([0, 2π) ∩ E−)− (E1 ∪ E2),

lim
r→∞

|A(reiθ)| = 0.

Let 0 < η ≤ min{ π
5ρ(f)

, θi+1−ϕi

5
}. By Lemma 2.8, we know that both |A(reiθ)| and

|A′(reiθ)| are bounded in every sector S−
i (ϕi + 2η, θi+1 − 2η), i = 1, 2, . . . , n.
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Set f(z) = g(z) exp(−1
2

´ z
A(t)dt). Then g(z) satisfies the following equation

g′′ + (Q(z)−
A2(z)

4
−
A′(z)

2
)g = 0.(3.6)

Hence, for ν ∈ (ϕi + 2η, θi+1 − 2η), we obtain that
∣

∣

∣

∣

Q(reiν)−
A2(reiν)

4
−
A′(reiν)

2

∣

∣

∣

∣

= O(rm)

as r → ∞. It is not hard to see from Lemma 2.4 that for every nontrivial solution
g(z) of (3.6),

log+ |g(reiν)| = O(r(m+2)/2)

as r → ∞ with ν ∈ (ϕi + 2η, θi+1 − 2η). By (iii) of Lemma 2.8, for ν ∈
⋃n

i=1(ϕi +
2η, θi+1 − 2η),

log+ |f(reiν)| ≤ log+ |g(reiν)|+
Mr(1 + o(1))

2
= O(r(m+2)/2)

as r → ∞. Combining (3.4) and the Phragmén–Lindelöf principle, for any θ ∈ [0, 2π),
we get

log+ |f(reiθ)| = O(r(m+2)/2)

as r → ∞. That implies that

ρ(f) ≤
m+ 2

2
.(3.7)

(1) If the condition (i) holds, then ρ(f) < n = ρ(A). This is a contradiction
with equation (1.3). Therefore, we know that every nontrivial solution of (1.3) is of
infinite order.

(2) If the condition (ii) holds, then π
n
6= 2kπ

m+2
for any integers k. Therefore, for any

given i, i = 1, 2, . . . , n, there can exist at most one ray among the two rays arg z = ϕi,
arg z = θi+1 that could be a critical ray of Q(z). For the sector S−

i (ϕi, θi+1), without
loss of generality, we suppose that arg z = θi+1 is not a critical ray of Q(z). Then
there must exist a critical ray of Q(z), say arg z = φ0, such that θi+1 − φ0 <

2π
m+2

.

By using similar reasoning as in [17], set z = xeiφ0 , and then (3.6) becomes to

d2g

dx2
+

[

Q2(x) + e2iφ0(−
A2(xeiφ0)

4
− eiφ0

A′(xeiφ0)

2
)

]

g = 0,

where Q2(x) = α1x
m +O(xm−2) and α1 > 0.

By Lemma 2.8 and Lemma 2.3, there exists a path Γφ0
tending to infinity, such

that arg z → φ0 on Γφ0
and g(z) → 0 on Γφ0

. Therefore, there exists a sector
S(φ0−ε, θi+1+2ε), such that f(z) → 0 on Γφ0

and f(z) → 1 on the ray arg z = θi+1+ε.
Combining θi+1−φ0+3ε < 2π

m+2
and the Phragmén–Lindelöf principle (see [5, p. 104]),

we get that ρ(f) > m+2
2

, and this contradicts with (3.7).

(3) Suppose that the condition (iii) holds. Then we assert that eP (z) and Q(z)
cannot have a common critical ray. Otherwise, there exists a real number φ1 such
that δ(P, φ1) = 0 and arg bm + (m+ 2)φ1 = 0 (mod 2π). This implies that

α cosnφ1 − β sin nφ1 = 0,
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where an = α + iβ. Thus

√

α2 + β2

(

α
√

α2 + β2
cosnφ1 −

β
√

α2 + β2
sinnφ1

)

= 0.

Set ϕ = arg an, then
√

α2 + β2(cosϕ cosnφ1 − sinϕ sinnφ1) = 0.

So,

φ1 =
k1π + π/2− arg an

n
,

where k1 is integer. On the other hand, arg bm + (m + 2)φ1 = 2k2π, where k2 is
integer. Thus

φ1 =
2k2π − arg bm

m+ 2
=

2k2π − arg bm
2n

.

Combining the two lines above, we get

(2k1 + 1− 2k2)π = 2 arg an − arg bm.

Therefore,

(2k1 + 1− 2k2 + 2k3)π = arg
a2n
bm
,

where k3 is integer. This contradicts with the fact that a2n
bm

is not real and negative.

Thus Q(z) has just one critical ray in every sector S−
i (ϕi, θi+1), i = 1, 2, . . . , n.

Therefore we suppose that arg z = φ1 is a critical ray of Q(z) in S−
1 (ϕ1, θ2). Then

θ2 − φ1 <
π

n
=

2π

m+ 2
, φ1 − ϕ1 <

π

n
=

2π

m+ 2
.

By using similar reasoning as in the proof of (ii), we get ρ(f) > m+2
2

, which contradicts
with (3.7). This completes the proof. �

4. Proof of Theorems 1.5 and 1.6

We prove Theorems 1.5 and 1.6 by using similar reasoning as in the proof of
Theorem 1.4. Thus we point out only the important steps. Suppose that there exists
a nontrivial solution f of (1.3) with ρ(f) <∞.

Proof of Theorem 1.5. We divide the proof into two cases.

Case 1. Suppose that A(z) blows up exponentially in every sector Sj , j =
0, 1, . . . n + 1, where Sj is defined in Lemma 2.2. We deduce as in the proof of
Theorem 1.4 that

f(reiθ) → 1

as z → ∞, for every θ in each Sj . Then by the Phragmén–Lindelöf principle and
Liouville’s theorem, f(z) must be a constant, and this contradicts with equation
(1.3).

Case 2. Suppose that A(z) decays to zero exponentially in some sector Sj0. By
using similar reasoning as in the proof of Theorem 1.4, we also obtain (3.7).

If the condition (i) holds, then ρ(f) ≤ m+2
2

< n+2
2

= ρ(A). This contradicts with
(1.3).

If the condition (ii) holds, then 2π
n+2

6= 2kπ
m+2

for any integer k. Then there can
exist at most one ray among the two rays arg z = θj0 , arg z = θj0+1 that could be a
critical ray of Q(z). Without loss of generality, we suppose that arg z = θj0+1 is not a
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critical ray of Q(z). Then there must exist a critical ray of Q(z), say arg z = φ0, such
that θj0+1 − φ0 <

2π
m+2

. By using similar reasoning as in the proof of Theorem 1.4,
there exists a path Γφ0

in Sj0 tending to infinity, such that arg z → φ0 on Γφ0
, while

f(z) → 0 on Γφ0
. On the other hand, by (ii) of Lemma 2.2, we know that A(z) must

blow up exponentially in Sj0+1. For any given ε ∈ (0,
2π/(m+2)−θj0+1+φ0

3
), there exists

a sector S(φ0 − ε, θj0+1 + 2ε), such that f(z) → 1 on the ray arg z = θj0+1 + ε and
f(z) → 0 on Γφ0

. Noting that θj0+1−φ0+3ε < 2π
m+2

and using the Phragmén–Lindelöf

principle, we get that ρ(f) > m+2
2

, and this contradicts with (3.7).
If the condition (iii) holds, then we assert that arg z = θj are not critical rays

of Q(z), j = 0, 1, . . . , n + 1. Otherwise, suppose that there exists at least one ray
among the n + 2 rays arg z = θj that is a critical ray of Q(z), say arg z = θj′,
j′ ∈ {0, 1, 2, . . . , n+ 1}. Then arg bm + (m+ 2)θj′ = 2k1π, where k1 is integer. Thus

θj′ =
2k1π − arg bm

m+ 2
=

2k1π − arg bm
n+ 2

.

On the other hand,

θj′ =
2j′π − arg an

n+ 2
.

Therefore,
(2j′ − 2k1)π = arg an − arg bm.

This implies

(2j′ − 2k1 + 2k2)π = arg
an
bm
,

where k2 is integer. This contradicts with the fact that an
bm

is not real and positive.

Thus Q(z) has just one critical ray in Sj0. If arg z = φ1 is the critical ray of Q(z) in
Sj0, then

θj0+1 − φ1 <
2π

n+ 2
=

2π

m+ 2
, φ1 − θj0 <

2π

n + 2
=

2π

m+ 2
.

By using a similar discussion as in (ii) above, we get ρ(f) > m+2
2

, and this contradicts
with (3.7). This completes the proof. �

Proof of Theorem 1.6. Let θ ∈ [0, 2π) − H . Suppose that θ satisfies the condi-
tion (i). By using similar reasoning as in the proof of Theorem 1.4, we get

f(reiθ) → 1 as r → ∞.(4.1)

Suppose that θ satisfies the condition (ii). If we set

f(z) = g(z) exp

(

−
1

2

ˆ z

A(t) dt

)

,

then g(z) satisfies the equation

g′′ + (Q(z)−
A2(z)

4
−
A′(z)

2
)g = 0.(4.2)

Since θ ∈ [0, 2π)−H and θ satisfies the condition (ii), then
∣

∣

∣

∣

Q(reiθ)−
A2(reiθ)

4
−
A′(reiθ)

2

∣

∣

∣

∣

= O(rK) as r → ∞,

where K = max{2n,m}.
It is not hard to see from Lemma 2.4 that for every nontrivial solution g of (4.2),

log+ |g(reiθ)| = O(r(K+2)/2) as r → ∞.
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Furthermore, we have

log+ |f(reiθ)| ≤ log+ |g(reiθ)|+ |

ˆ reiθ

A(t) dt|

≤ O

(

r(K+2)/2 +

ˆ r

|t|n| dt|

)

≤ O(r(K+2)/2).

(4.3)

Then it follows from (4.1), (4.3) and the Phragmén–Lindelöf principle that

log+ |f(reiθ)| = O(r(K+2)/2)

as r → ∞ with θ ∈ [0, 2π). That implies that ρ(f) ≤ K+2
2

< ρ(A), which contradicts
with (1.3). This completes the proof. �
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