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Abstract. Using the Bessel pairs in the sense of Ghoussoub and Moradifam [16], we provide the

necessary and sufficient conditions on a pair of positive functions so that the Hardy type inequalities

in the spirit of Badiale–Tarantello [3] hold. We also set up the requirements for a pair of potentials

so that the Hardy–Rellich type inequalities with radial derivatives are valid.

1. Introduction

We first recall the celebrated Hardy inequality in R
N , N ≥ 3: Let u ∈ D1,2

(

R
N
)

with N ≥ 3. Then u2

|x|2
∈ L1

(

R
N
)

. Moreover,

(1.1)

(

N − 2

2

)2 ˆ

RN

u2

|x|2
dx ≤

ˆ

RN

|∇u|2 dx

and
(

N−2
2

)2
is the best possible constant.

It is well-known that the optimal constant
(

N−2
2

)2
is never achieved. Hence, we

may ask for the improved versions of the Hardy inequalities where extra nonnegative
terms can be added to the LHS of (1.1). On the whole space R

N , Ghoussoub and
Moradifam showed in [18] that there is no strictly positive V ∈ V 1 ((0,∞)) such that
the inequality

ˆ

RN

|∇u|2 dx−

(

N − 2

2

)2 ˆ

RN

u2

|x|2
dx ≥

ˆ

RN

V (|x|) u2 dx

holds for all u ∈ C∞
0

(

R
N
)

. However, the situation on bounded domain is different.
Indeed, let Ω be a bounded domain in R

N , N ≥ 3, with 0 ∈ Ω. Then Brezis and
Vázquez proved in [8] that for all u ∈ W

1,2
0 (Ω):

(1.2)

ˆ

Ω

|∇u|2 dx−

(

N − 2

2

)2 ˆ

Ω

u2

|x|2
dx ≥ z20ω

2

N

N |Ω|−
2

N

ˆ

Ω

u2 dx

where ωN is the volume of the unit ball and z0 = 2.4048... is the first zero of the Bessel

function J0 (z). The constant z20ω
2

N

N |Ω|−
2

N is optimal when Ω is a ball. However,

z20ω
2

N

N |Ω|−
2

N is not attained in W
1,2
0 (Ω). Hence, it is natural to conjecture that

z20ω
2

N

N |Ω|−
2

N

´

Ω
u2 dx is just a first term of an infinite series of extra terms that can

be added to the RHS of (1.2). This problem was investigated by many authors. See
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[1, 6, 9, 10, 13, 14, 15, 20, 21, 22, 23, 27, 28, 36], to name just a few. See also the
books [24, 31] that are by now standard references on Hardy inequalities.

In [16, 17], Ghoussoub and Moradifam proved the following result to improve,
extend and unify several results about the Hardy type inequalities:

Theorem A. Let 0 < R ≤ ∞, V and W be positive radial C1-functions on

BR \{0} such that
´ R

0
1

rN−1V (r)
dr = ∞ and

´ R

0
rN−1V (r) dr < ∞. Then the following

are equivalent:

(1) (V,W ) is a N -dimensional Bessel pair on (0, R).

(2)

ˆ

BR

V (x) |∇u|2 dx ≥ β (V,W ;R)

ˆ

BR

W (x) |u|2 dx for all u ∈ C∞
0 (BR) with

β (V,W ;R) being the best constant.

Here we say that a couple of C1-functions (V,W ) is a N -dimensional Bessel pair
on (0, R) if there exists c > 0 such that the ordinary differential equation

y′′(r) +

(

N − 1

r
+

Vr (r)

V (r)

)

y′(r) +
cW (r)

V (r)
y(r) = 0

has a positive solution on the interval (0, R). Also, β (V,W ;R) is defined as the
supremum of such c. It can be also verified that (V,W ) is a N -dimensional Bessel
pair on (0, R) if and only if

(

rN−1V, rN−1W
)

is a 1-dimensional Bessel pair on (0, R).
See the book [17] for more properties and examples about the N -dimensional Bessel
pair.

It has been observed that we can improve the Hardy inequalities using the radial
derivative as follows: Using the ideas in [28], for ε > 0, we denote

Uε (x) =

(

x1

ε+ |x|2
u2, . . . ,

xN

ε+ |x|2
u2

)

.

Applying the divergence theorem for the smooth vector field Uε, we obtain
ˆ

RN

Nε+ (N − 2) |x|2

(

ε+ |x|2
)2 u2(x) dx = −2

ˆ

RN

(x · ∇u)u (x)

ε+ |x|2
dx

≤ 2

ˆ

RN

|x| |u (x)|

ε+ |x|2

∣

∣

∣

∣

x

|x|
· ∇u

∣

∣

∣

∣

dx

≤ 2

(

ˆ

RN

(

|x| |u (x)|

ε+ |x|2

)2

dx

)
1

2

(

ˆ

RN

∣

∣

∣

∣

x

|x|
· ∇u

∣

∣

∣

∣

2

dx

)
1

2

.

Hence, letting ε ↓ 0, we obtain

(1.3)

(

N − 2

2

)2 ˆ

RN

u2

|x|2
dx ≤

ˆ

RN

∣

∣

∣

∣

x

|x|
· ∇u

∣

∣

∣

∣

2

dx ≤

ˆ

RN

|∇u|2 dx.

Of course, the constant
(

N−2
2

)2
is still optimal.

It can be noted that x
|x|

· ∇u is actually the radial gradient of u. Indeed, in the

polar coordinate,
∣

∣

∣

x
|x|

· ∇u

∣

∣

∣
= |∂ru (rσ)| while |∇u| =

(

|∂ru (rσ)|
2 +

|∇SN−1u(rσ)|
2

r2

)
1

2

.

Obviously, (1.3) is (1.1) when u is radial. We would also like to mention here the
role of the operator R = x

|x|
· ∇ in the literature. One of the interesting problems

is to investigate the Hardy and Hardy–Rellich inequalities on general homogeneous
groups. However, as explained in [34], since these spaces do not have to be stratified
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or even graded, the concept of horizontal gradients do not make sense. Thus, it is
logical to work with the full gradient. On the other hand, unless the homogeneous
groups are abelian, the full gradient is not homogeneous. Nevertheless, on the ho-
mogeneous groups, we can define the operator R that is homogeneous of order −1
and is analogous to the usual Euclidean gradient and to the radial derivative x

|x|
· ∇

on R
n. Hence, it is important and interesting to investigate the functional and geo-

metric inequalities under the radial derivative operator R = x
|x|

· ∇. Actually, the

Hardy type inequalities with radial gradient have been intensively studied recently.
See [20, 21, 27, 32, 36], for example.

Motivated by the results in [16, 17] and the above observation, it was proved in
[25, 26] the following result:

Theorem B. Let 0 < R ≤ ∞, V and W be positive radial functions on BR\{0}.
Then the following are equivalent:

(A)

ˆ

BR

V (x) |∇u|2 dx ≥

ˆ

BR

W (x) |u|2 dx for all u ∈ C∞
0 (BR).

(B)

ˆ

BR

V (x) |∇u|2 dx ≥

ˆ

BR

W (x) |u|2 dx for all radial functions u ∈ C∞
0 (BR).

(C)

ˆ

BR

V (x)
∣

∣

∣

x
|x|

· ∇u

∣

∣

∣

2

dx ≥

ˆ

BR

W (x) |u|2 dx for all u ∈ C∞
0 (BR).

It is worth mentioning here that in statement (B) of Theorem B, the Hardy
inequality just holds for radial functions. Noting that since V and W are just positive
radial functions, we can not apply the classical Schwarz rearrangement arguments to
deduce (A) in general. In [26], to show (B) ⇒ (C) ⇒ (A) ⇒ (B), we use the ideas in
[16, 37] to decompose the functions u in C∞

0 (BR) into spherical harmonics and then
will only work with radial components.

In [3], instigated by a nonlinear elliptic equation arising in astrophysics, Badiale
and Tarantello investigated the following Hardy type inequalities:

ˆ

RN

|u (x)|p

|y|p
dx ≤ CN,k,p

ˆ

RN

|∇u (x)|p dx

where x = (y, z) ∈ R
k × R

N−k. The optimal constant CN,k,p =
(

p

k−p

)p
was also

conjectured in [3] and then verified in [35]. Stimulated by this result and the devel-
opments in [16, 17, 25, 26], we will prove in this note the following result:

Theorem 1.1. Let V and W be positive radial C1-functions on R
k \ {0} such

that
´∞

0
1

rk−1V (r)
dr = ∞ and

´∞

0
rk−1V (r) dr < ∞. Then the following are equivalent:

(1)
(

rk−1V, rk−1W
)

is a 1-dimensional Bessel pair on (0,∞).

(2)

ˆ

RN−k

ˆ

Rk

V (|y|)
∣

∣

∣

y

|y|
· ∇yu (y, z)

∣

∣

∣

2

dy dz ≥ c

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz for

all u ∈ C∞
0

(

R
N
)

for some c > 0.

(3)

ˆ

RN−k

ˆ

Rk

V (|y|) |∇yu (y, z)|
2
dy dz ≥ c

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz for all

u ∈ C∞
0

(

R
N
)

for some c > 0.

(4)

ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz ≥ c

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz for all

u ∈ C∞
0

(

R
N
)

for some c > 0.

Moreover, β
(

rk−1V, rk−1W ;∞
)

is the optimal constant.
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As a consequence of Theorem 1.1, we can get the following version of the Heisen-
berg–Pauli–Weyl uncertainly principle: Let V and W be positive radial C1−functions
on R

k \ {0} such that
´∞

0
1

rk−1V (r)
dr = ∞,

´∞

0
rk−1V (r) dr < ∞ and

(

rk−1V, rk−1W
)

is a 1-dimensional Bessel pair on (0,∞). Then we have:

β
(

rk−1V, rk−1W ;∞
)

(
ˆ

RN−k

ˆ

Rk

|u (y, z)|2 dy dz

)2

= β
(

rk−1V, rk−1W ;∞
)

(

ˆ

RN−k

ˆ

Rk

√

W (|y|) |u (y, z)|
|u (y, z)|
√

W (|y|)
dy dz

)2

≤

(
ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz

)

(

ˆ

RN−k

ˆ

Rk

|u (y, z)|2

W (|y|)
dy dz

)

≤

(

ˆ

RN−k

ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇yu (y, z)

∣

∣

∣

∣

2

dy dz

)(

ˆ

RN−k

ˆ

Rk

|u (y, z)|2

W (|y|)
dy dz

)

.

An example is the 1-dimensional Bessel pair
(

rk−1, rk−1r−2
)

on (0,∞). In this case,

β
(

rk−1, rk−1r−2;∞
)

=
(

k−2
2

)2
and thus,

(
ˆ

RN−k

ˆ

Rk

|∇u (y, z)|2 dy dz

)(
ˆ

RN−k

ˆ

Rk

|y|2 |u (y, z)|2 dy dz

)

≥

(

ˆ

RN−k

ˆ

Rk

∣

∣

∣

∣

y

|y|
· ∇yu (y, z)

∣

∣

∣

∣

2

dy dz

)

(
ˆ

RN−k

ˆ

Rk

|y|2 |u (y, z)|2 dy dz

)

≥

(

k − 2

2

)2(ˆ

RN−k

ˆ

Rk

|u (y, z)|2 dy dz

)2

.

Especially, when k = N , we recover the well-known Heisenberg–Pauli–Weyl uncer-
tainly principle which is one of the most famous problems in mathematical physics
and classical Fourier analysis alike:

N − 2

2

ˆ

RN

u2 dx ≤

(
ˆ

RN

|x|2 u2 dx

)
1

2

(
ˆ

RN

|∇u|2 dx

)
1

2

.

We also mention the paper [33] where the Heisenberg–Pauli–Weyl uncertainly prin-
ciple on homogeneous groups is discussed.

Along the same line of thought, we also get the following characterization in the
spirit of [16, 18, 19]:

Theorem 1.2. Let p > 1, V and W be positive radial C1-functions on R
k \{0}.

Assume that there is a positive function φ ∈ C2 (0,∞) such that

(1.4)
(

rk−1V (r) |φ′|
p−2

φ′
)′

+ rk−1W (r)φp−1 ≤ 0 on (0,∞)

and

lim
r↓0

rk−1V (r)φ (r) |φr (r)|
p−2

φr (r)

∣

∣

∣

∣

u (r)

φ (r)

∣

∣

∣

∣

p

= 0.

Then we have
ˆ

RN−k

ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇yu (y, z)

∣

∣

∣

∣

p

dy dz ≥

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|p dy dz

for all u ∈ C∞
0

(

R
N
)

.
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We now concern the well-known Hardy–Rellich inequality: for u ∈ C∞
0 (RN \{0}),

N ≥ 5:
(

N (N − 4)

4

)2 ˆ

RN

u2

|x|4
dx ≤

ˆ

RN

|∆u|2 dx.

Many research papers have tried to investigate the improved Hardy–Rellich inequal-
ities of the form

ˆ

RN

|∆u|2 dx−

(

N (N − 4)

4

)2 ˆ

RN

u2

|x|4
dx ≥

ˆ

RN

W (|x|) u2 dx

where W is certain explicit radially symmetric potential of order lower than 1
|x|4

. For

examples, see [2, 5, 7, 11, 12, 29, 30, 34]. Again, in [16, 17], the authors have proved
the following general result to complete, simplify and improve many known results:

Theorem C. Let 0 < R ≤ ∞, V and W be positive radial C1-functions on

BR \{0} such that
´ R

0
1

rN−1V (r)
dr = ∞ and

´ R

0
rN−1V (r) dr < ∞. Then the following

are equivalent:

(1) (V,W ) is a N -dimensional Bessel pair on (0, R).

(2)

ˆ

BR

V (x) |∆u|2 dx ≥ c

ˆ

BR

W (x) |∇u|2 dx+(N − 1)

ˆ

BR

(

V (x)

|x|2
− Vr(x)

|x|

)

|∇u|2 dx

for all radial functions u ∈ C∞
0 (BR) for some c > 0 with β (V,W ;R) being

the best constant.

In addition, if W (x)− 2V (x)

|x|2
+ 2Vr(x)

|x|
− Vrr (x) ≥ 0 on (0, R), then the above are

equivalent to

ˆ

BR

V (x) |∆u|2 dx

≥ β (V,W ;R)

ˆ

BR

W (x) |∇u|2 dx+ (N − 1)

ˆ

BR

(

V (x)

|x|2
−

Vr (x)

|x|

)

|∇u|2 dx

for all u ∈ C∞
0 (BR) with β (V,W ;R) being the best constant.

Our next motivation is as follows: There is no analog of homogeneous Laplacian
or sub-Laplacian on general homogeneous groups. Moreover, there may be even no
homogeneous hypoelliptic left-invariant differential operators. Indeed, the existence
of such an operator would imply that the group must be graded. Hence, as above,
it is natural to set up versions of the Hardy–Rellich inequalities using the radial
derivatives R = x

|x|
· ∇. In fact, we will prove the following result:

Theorem 1.3. Let 0 < R ≤ ∞, V and W be positive radial C1-functions on

BR \{0} such that
´ R

0
1

rN−1V (r)
dr = ∞ and

´ R

0
rN−1V (r) dr < ∞. Then the following

are equivalent:

(1) (V,W ) is a N -dimensional Bessel pair on (0, R) .

(2)

ˆ

BR

V (|x|)
∣

∣

∣
R2u+ N−1

|x|
Ru

∣

∣

∣

2

dx

≥ c

ˆ

BR

W (|x|) |Ru|2 dx + (N − 1)

ˆ

BR

(

V (|x|)

|x|2
− Vr(|x|)

|x|

)

|Ru|2 dx for all u ∈

C∞
0 (BR) for some c > 0 with β (V,W ;R) being the best constant.
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For example, using Theorem 1.3 for a suitable explicit Bessel pair (see [16, 17]),
we could obtain the following result:

ˆ

BR

∣

∣

∣

∣

R2u+
N − 1

|x|
Ru

∣

∣

∣

∣

2

dx ≥
N2

4

ˆ

BR

|Ru|2

|x|2
dx+

z20
R2

ˆ

BR

|Ru|2 dx.

This Hardy–Rellich type inequality seems new in the literature. Again, many exam-
ples and properties of Bessel pair were provided in [17]. Hence, from Theorem 1.3
we can get various versions of the Hardy–Rellich type inequalities with the operator
R2 + N−1

|x|
R. This also enables us to investigate the Hardy–Rellich type inequalities

in the settings of homogeneous groups. See [34] for example.

2. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. First, assume that
(

rk−1V, rk−1W
)

is a 1-dimensional

Bessel pair on (0,∞). Fix z ∈ R
N−k, by Theorem A and Theorem B, we get

ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇yu (y, z)

∣

∣

∣

∣

2

dy ≥ β
(

rk−1V, rk−1W ;∞
)

ˆ

Rk

W (|y|) |u (y, z)|2 dy.

Hence
ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz ≥

ˆ

RN−k

ˆ

Rk

V (|y|) |∇yu (y, z)|
2
dy dz

≥

ˆ

RN−k

ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇yu (y, z)

∣

∣

∣

∣

2

dy dz

≥

ˆ

RN−k

β
(

rk−1V, rk−1W ;∞
)

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz

= β
(

rk−1V, rk−1W ;∞
)

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz.

Now, we will show that β
(

rk−1V, rk−1W ;∞
)

is the best constant using the idea in
[35]. By choosing u (y, z) = f (y) g (z), we have

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz =

ˆ

Rk

W (|y|) |f (y)|2 dy

ˆ

RN−k

|g (z)|2 dz

and
ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz

≤

ˆ

RN−k

ˆ

Rk

V (|y|) [|∇f (y)| |g (z)|+ |f (y)| |∇g (z)|]2 dy dz

≤ (1 + ε)2
ˆ

RN−k

ˆ

Rk

V (|y|) |∇f (y)|2 |g (z)|2 dy dz

+ C (ε)

ˆ

RN−k

ˆ

Rk

V (|y|) |f (y)|2 |∇g (z)|2 dy dz.
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Hence,
ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz
ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz

≤ (1 + ε)2

ˆ

Rk

V (|y|) |∇f (y)|2 dy
ˆ

Rk

W (|y|) |f (y)|2 dy

+ C (ε)

ˆ

Rk

V (|y|) |f (y)|2 dy
ˆ

Rk

W (|y|) |f (y)|2 dy

ˆ

RN−k

|∇g (z)|2 dz
ˆ

RN−k

|g (z)|2 dz

.

By noting that

inf
g∈C∞

0 (RN−k)

ˆ

RN−k

|∇g (z)|2 dz
ˆ

RN−k

|g (z)|2 dz

= 0,

and letting ε ↓ 0, we obtain

inf

ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz
ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz

≤ inf

ˆ

Rk

V (|y|) |∇f (y)|2 dy
ˆ

Rk

W (|y|) |f (y)|2 dy

= β
(

rk−1V, rk−1W ;∞
)

.

Now, assume that we have
ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz ≥ c

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz

for all u ∈ C∞
0 (BR) for some c > 0. For any f ∈ C∞

0

(

R
k
)

and g ∈ C∞
0

(

R
N−k

)

, we
set

u (y, z) = f (y) g (z) .

As above, from
ˆ

RN−k

ˆ

Rk

V (|y|) |∇yu (y, z)|
2
dy dz ≥ c

ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz

we get

(1 + ε)2

ˆ

Rk

V (|y|) |∇f (y)|2 dy
ˆ

Rk

W (|y|) |f (y)|2 dy
+ C (ε)

ˆ

Rk

V (|y|) |f (y)|2 dy
ˆ

Rk

W (|y|) |f (y)|2 dy

ˆ

RN−k

|∇g (z)|2 dz
ˆ

RN−k

|g (z)|2 dz

≥

ˆ

RN−k

ˆ

Rk

V (|y|) |∇u (y, z)|2 dy dz
ˆ

RN−k

ˆ

Rk

W (|y|) |u (y, z)|2 dy dz
≥ c

By noting again that

inf
g∈C∞

0 (RN−k)

ˆ

RN−k

|∇g (z)|2 dz
ˆ

RN−k

|g (z)|2 dz
= 0,
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and letting ε ↓ 0, we get
ˆ

Rk

V (|y|) |∇f (y)|2 dy ≥ c

ˆ

Rk

W (|y|) |f (y)|2 dy

for any f ∈ C∞
0

(

R
k
)

. Hence, by Theorem A,
(

rk−1V, rk−1W
)

is a 1-dimensional
Bessel pair on (0,∞). �

Proof of Theorem 1.2. It is enough to prove that
´

RkV (|y|)
∣

∣

y

|y|
· ∇f (y)

∣

∣

p
dy ≥

´

RkW (|y|) |f (y)|p dy for all f ∈ C∞
0

(

R
k
)

. We first assume that f is radial. In this
case, we need to show that

ˆ ∞

0

(

rk−1V (r)
)

|fr|
p
dr ≥

ˆ ∞

0

(

rk−1W (r)
)

|f |p dr.

We set

g (r) =
f (r)

φ (r)
.

Then

fr (r) = gr (r)φ (r) + φr (r) g (r) .

By an elementary inequality, we get

|fr (r)|
p = |gr (r)φ (r) + φr (r) g (r)|

p

≥ |φr (r)|
p |g (r)|p + φ |φr (r)|

p−2
φr (r) (|g (r)|

p)r .

Hence
ˆ ∞

0

rk−1V (r) |fr|
p
dr

≥

ˆ ∞

0

rk−1V (r) |φr (r)|
p |g (r)|p +

ˆ ∞

0

rk−1V (r)φ |φr (r)|
p−2

φr (r) (|g (r)|
p)r

=

ˆ ∞

0

rk−1V (r) |φr (r)|
p |g (r)|p −

ˆ ∞

0

(

rk−1V (r)φ |φr (r)|
p−2

φr (r)
)

r
|g (r)|p

= −

ˆ ∞

0

(

rk−1V (r) |φr (r)|
p−2

φr (r)
)

r
φ |g (r)|p .

We note that by assumptions we have

−

ˆ ∞

0

(

rk−1V (r) |φr (r)|
p−2

φr (r)
)

r
φ |g (r)|p ≥

ˆ ∞

0

rk−1W (r)φp−1φ |g (r)|p .

Thus
ˆ ∞

0

rk−1V (r) |fr|
p
dr ≥

ˆ ∞

0

rk−1W (r) |f |p dr.

In the general case, we set

F (r) =









1
ˆ

Sk−1

dσ

ˆ

Sk−1

|f (rσ)|p dσ









1

p

.
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By Hölder’s inequality, we can deduce that

|Fr (r)| ≤









1
ˆ

Sk−1

dσ

ˆ

Sk−1

|fr (rσ)|
p
dσ









1

p

.

Now, we note that
ˆ

Rk

W (|y|) |F |p dy =

(
ˆ

Sk−1

dσ

)
ˆ ∞

0

rk−1W (r) |F |p dr

=

(
ˆ

Sk−1

dσ

)
ˆ ∞

0

rk−1W (r)
1

ˆ

Sk−1

dσ

ˆ

Sk−1

|f (rσ)|p dσdr

=

ˆ ∞

0

ˆ

Sk−1

W (r) |f (rσ)|p rk−1dσdr

=

ˆ

Rk

W (|y|) |f |p dx.

Also
ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇F

∣

∣

∣

∣

p

dy =

(
ˆ

Sk−1

dσ

)
ˆ ∞

0

rk−1V (r) |Fr|
p
dr

≤

(
ˆ

Sk−1

dσ

)
ˆ ∞

0

rk−1V (r)

∣

∣

∣

∣

∣

∣

∣

∣

1
ˆ

Sk−1

dσ

ˆ

Sk−1

|fr (rσ)|
p
dσ

∣

∣

∣

∣

∣

∣

∣

∣

p

dr

=

ˆ ∞

0

ˆ

Sk−1

V (r) |fr (rσ)|
p
rk−1dσdr

=

ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇f

∣

∣

∣

∣

p

dy.

Since F is radial, we deduce
ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇f

∣

∣

∣

∣

p

dy ≥

ˆ

Rk

V (|y|)

∣

∣

∣

∣

y

|y|
· ∇F

∣

∣

∣

∣

p

dx

≥

ˆ

Rk

W (|y|) |F |p dx =

ˆ

Rk

W (|y|) |f |p dx. �

3. Proof of Theorem 1.3

Let u ∈ C∞
0 (Ω). We then extend u as zero outside Ω and may consider that

u ∈ C∞
0

(

R
N
)

. Hence, we can decompose u into spherical harmonics as follows:

u =
∞
∑

k=0

uk =
∞
∑

k=0

fk (r)φk (σ) ,

where φk (σ) are the orthonormal eigenfunctions of the Laplace–Beltrami operator
with corresponding eigenvalues ck = k (N + k − 2), k ≥ 0. We note that the corre-
sponding components fk are in C∞

0 (Ω) and satisfy fk (r) = O
(

rk
)

, f ′
k (r) = O

(

rk−1
)
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as r ↓ 0. In particular,

φ0 (σ) = 1, c0 = 0 and f0 (r) =
1

|∂Br|

ˆ

∂Br

u ds.

We have the following result:

Lemma 3.1. Assume that the decomposition of u into the spherical harmonics is

u =
∑∞

k=0uk =
∑∞

k=0fk (r)φk (σ) and assume that V is a positive radial C1-function

on R
N \ {0}. Then we have

ˆ

RN

V (|x|) |u|2 dx =

∞
∑

k=0

ˆ

RN

V (|x|) |fk (|x|)|
2
dx,

ˆ

RN

V (|x|) |Ru|2 dx =

∞
∑

k=0

ˆ

RN

V (|x|) |∇fk (|x|)|
2
dx,

ˆ

RN

V (|x|)

∣

∣

∣

∣

R2u+
N − 1

|x|
Ru

∣

∣

∣

∣

2

dx =

∞
∑

k=0

ˆ

RN

V (|x|) |∆fk (|x|)|
2
dx.

Proof. By polar coordinate and direct computations, we get

ˆ

RN

V (|x|) |u|2 dx =

ˆ ∞

0

ˆ

SN−1

V (r)

∣

∣

∣

∣

∣

∞
∑

k=0

fk (r)φk (σ)

∣

∣

∣

∣

∣

2

rN−1dr dσ

=
∞
∑

k=0

ˆ

RN

V (|x|) |fk (|x|)|
2
dx.

Also
ˆ

RN

V (|x|) |Ru|2 dx =

ˆ ∞

0

ˆ

SN−1

V (r)

∣

∣

∣

∣

∣

∞
∑

k=0

∂uk

∂r

∣

∣

∣

∣

∣

2

rN−1dr dσ

=

ˆ ∞

0

ˆ

SN−1

V (r)

∣

∣

∣

∣

∣

∞
∑

k=0

f ′
k (r)φk (σ)

∣

∣

∣

∣

∣

2

rN−1dr dσ

=
∞
∑

k=0

∣

∣S
N−1
∣

∣

ˆ ∞

0

V (r) |f ′
k (r)|

2
rN−1dr

=
∞
∑

k=0

ˆ

RN

V (|x|) |∇fk (|x|)|
2
.

Finally, we have
ˆ

RN

V (x)

∣

∣

∣

∣

R2u+
N − 1

|x|
Ru

∣

∣

∣

∣

2

dx

=

ˆ ∞

0

ˆ

SN−1

V (r)

∣

∣

∣

∣

∣

∞
∑

k=0

(

f ′′
k (r) +

N − 1

r
f ′
k (r)

)

φk (σ)

∣

∣

∣

∣

∣

2

rN−1drdσ

=
∞
∑

k=0

∣

∣S
N−1
∣

∣

ˆ ∞

0

V (r)

∣

∣

∣

∣

(

f ′′
k (r) +

N − 1

r
f ′
k (r)

)∣

∣

∣

∣

2

rN−1drdσ

=
∞
∑

k=0

ˆ

RN

V (x) |∆fk (|x|)|
2
dx �
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We are now ready to prove Theorem 1.3:

Proof of Theorem 1.3. First, assume that (V,W ) is a N -dimensional Bessel pair
on (0, R). Using Theorem C, we have

ˆ

BR

V (x) |∆fk (|x|)|
2
dx ≥ β (V,W ;R)

ˆ

BR

W (x) |∇fk (|x|)|
2
dx

+ (N − 1)

ˆ

BR

(

V (x)

|x|2
−

Vr (x)

|x|

)

|∇fk (|x|)|
2
dx.

As a consequence
∞
∑

k=0

ˆ

BR

V (x) |∆fk (|x|)|
2
dx ≥ β (V,W ;R)

∞
∑

k=0

ˆ

BR

W (x) |∇fk (|x|)|
2
dx

+ (N − 1)
∞
∑

k=0

ˆ

BR

(

V (x)

|x|2
−

Vr (x)

|x|

)

|∇fk (|x|)|
2
dx.

By Lemma 3.1, we obtain
ˆ

RN

V (x)

∣

∣

∣

∣

R2u+
N − 1

|x|
Ru

∣

∣

∣

∣

2

dx ≥ β (V,W ;R)

ˆ

RN

W (x) |Ru|2 dx

+ (N − 1)

ˆ

RN

(

V (x)

|x|2
−

Vr (x)

|x|

)

|Ru|2 dx.

Now, assume that
ˆ

RN

V (x)

∣

∣

∣

∣

R2u+
N − 1

|x|
Ru

∣

∣

∣

∣

2

dx ≥ c

ˆ

RN

W (x) |Ru|2 dx

+ (N − 1)

ˆ

RN

(

V (x)

|x|2
−

Vr (x)

|x|

)

|Ru|2 dx

for some c > 0. Then, for any radial function u ∈ C∞
0 (BR), we get

ˆ

BR

V (x) |∆u|2 dx ≥ c

ˆ

BR

W (x) |∇u|2 dx+ (N − 1)

ˆ

BR

(

V (x)

|x|2
−

Vr (x)

|x|

)

|∇u|2 dx.

Hence (V,W ) is a N -dimensional Bessel pair on (0, R) by Theorem C. �
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