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Abstract. We study properties of the α-Green kernel gαD of order 0 < α 6 2 for a domain

D ⊂ R
n, n > 3. This kernel is associated with the Riesz kernel |x− y|α−n, x, y ∈ R

n, in a manner

particularly well known in the case α = 2. Besides the usual principles of potential theory, we

establish for the α-Green kernel the property of consistency. This allows us to prove the completeness

of the cone of positive measures µ on D with finite energy gαD(µ, µ) :=
˜

gαD(x, y) dµ(x) dµ(y) in the

topology defined by the energy norm ‖µ‖gα

D
=

√

gαD(µ, µ), as well as the existence of the α-Green

equilibrium measure for a relatively closed set in D of finite α-Green capacity. The main tool is a

generalization of Cartan’s theory of balayage (sweeping) for the Newtonian kernel to the α-Riesz

kernels with 0 < α < 2.

1. Introduction

The α-Riesz kernel κα of order 0 < α < n, given by κα(x, y) := |x − y|α−n,
x, y ∈ R

n, was studied first by M. Riesz [31], see also Landkof [26]. Throughout this
paper we assume that 0 < α 6 2 and n > 3, n ∈ N.

The main purpose of the present paper is to study properties of the associated
α-Green kernel gαD on a domain D ⊂ R

n. The kernel gαD(x, y) is obtained from the
α-Riesz kernel |x − y|α−n by subtracting the compensating term, which for given
y ∈ D is α-harmonic for x ∈ D and essentially agrees with the α-Riesz kernel off
D. We show that gαD has the basic properties of the classical Green kernel on D
(where α = 2 and D typically is regular in the sense of the solvability of the classical
Dirichlet problem). Besides the complete maximum principle in a form which includes
Frostman’s maximum principle and the domination principle, we establish the energy
principle and the property of consistency which were known before in the classical
case only. Consistency is a property related to the completeness of the cone of
positive measures µ on D with finite energy gαD(µ, µ) :=

˜

gαD(x, y) dµ(x) dµ(y) in

the topology defined by the energy norm ‖µ‖gαD =
√

gαD(µ, µ), cf. [21], and it allows us
for example to prove the existence of the α-Green equilibrium measure for a relatively
closed set in D of finite α-Green capacity. The results obtained generalize those for
the Riesz kernel (see e.g. [26]), corresponding to the case where the α-Riesz capacity
of the complement Dc := R

n\D equals 0. Although the theory of α-Green potentials
recently has obtained an interesting development based on probabilistic arguments,
see e.g. [7, 25], the above-mentioned results are new, and they are obtained in the
framework of the classical potential-analytic approach.

Our main tool is the development of H. Cartan’s [10] and Landkof’s [26] ideas
concerning α-Riesz balayage of Radon measures onto closed sets in R

n. We chiefly
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draw on Cartan’s work, though formulated for α = 2, because the corresponding re-
sults in [26] have not all been completely justified (see Section 3.4 below for details).
For our purpose, where energy of measures plays a key role, such a generalization is
only in part available in the setting of balayage spaces [1] or H-cones [2]. In partic-
ular, the book on balayage spaces by Bliedtner and Hansen [1] studies thoroughly
restrictions to open subsets, corresponding here to the case of α-Green kernels, and
contains a section on the α-Riesz kernels. However, the notion of energy, decisive
for our main results, has been excluded in [1], cf. the Introduction therein. We have
therefore chosen to adopt throughout a classical approach to balayage relative to a
function kernel.

In the next Section 2 we recall some well-known notions and results from the
general theory of potentials of real-valued (signed) Radon measures on a locally
compact Hausdorff space X relative to a positive, symmetric, lower semicontinuous
(l.s.c.) kernel κ : X × X → [0,+∞]. We denote by κµ(x) :=

´

κ(x, y) dµ(y) the
potential of a signed Radon measure µ relative to the kernel κ (whenever defined).

Such a kernel is said to be positive definite if, for every signed Radon measure µ,
the energy κ(µ, µ) :=

˜

κ(x, y) dµ(x) dµ(y) is > 0 whenever defined. Then the set
Eκ of all signed measures of finite energy forms a pre-Hilbert space with the energy
norm ‖µ‖κ :=

√

κ(µ, µ) and the associated inner product, called the mutual energy .
In addition to the energy norm topology (also called the strong topology) on Eκ, we
have the vague topology, even on all of M = M(X), the linear space of all real-
valued signed Radon measures on X. A net (µs) on M converges vaguely to µ ∈ M

if and only if
´

f dµs →
´

f dµ for every f ∈ C0(X), C0(X) being the space of all
continuous functions on X with compact support.1

A positive definite kernel κ is said to be consistent if, for every positive measure µ
of finite energy ‖µ‖2κ = κ(µ, µ), the mutual energy κ(µ, ν) :=

˜

κ(x, y) dµ(x) dν(y) is
vaguely continuous as a function of the positive measure ν of energy norm ‖ν‖κ 6 1.
Equivalently, every strong Cauchy sequence on the cone E+

κ of positive measures of
finite energy converges in that topology to any of its vague cluster points, [21, 22].

In Section 3 we consider the α-Riesz kernels κα, 0 < α 6 2, on R
n, with frequent

reference to [26]. We develop the theory of α-Riesz balayage of a positive measure
µ ∈ M(Rn) onto a closed set A ⊂ R

n, being based mainly on the ideas of Cartan for
α = 2 [10]. The results obtained often seem to coincide with those from [26], but in
fact they are different, being based on different definitions and hence being obtained
by different methods. For example, there is the integral representation

µA =

ˆ

εAy dµ(y)

of the balayée µA of µ onto A in terms of the balayées εAy of the unit Dirac measures
εy. In the literature this integral representation seems to have been more or less taken
for granted, though it has been pointed out in [4, p. 18, Remarque] that it requires
that the family (εAy )y∈Rn is µ-adequate in the sense of [4, Section 3, Définition 1]; see
also counterexamples (without µ-adequacy) in Exercises 1 and 2 at the end of that
section. We therefore bring in Section 3.4 a proof of this adequacy for µ carried by
R

n \ A.
Having proved the integral representation, we are now in a position to use the

relation between εAy and the α-Riesz equilibrium measure γA∗ of A∗, the inverse of

1When speaking of a continuous numerical function we understand that the values are finite real
numbers.
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A relative to the unit sphere. The α-Riesz equilibrium measure γA∗ is treated in
the extended sense where it might have infinite α-Riesz energy, cf. [26, Chapter V,
Section 1, n◦ 1]), while the relation between εAy and γA∗ is given with the aid of
the Kelvin transform, cf. the proof of Theorem 3.12. This approach enables us to
establish the equivalence of α-thinness of A at infinity (alternatively, the equivalence
of the existence of the α-Riesz equilibrium measure γA on A, treated in the extended
sense) with the existence of a non-zero bounded positive measure carried by R

n \ A
for which the total mass decreases strictly under sweeping on A (Theorem 3.22). This
ties up with the principle of positivity of mass (Theorem 3.11), and will be used in
subsequent work of the authors.

The final Section 4 on the α-Green kernels, 0 < α 6 2, is the main part of
the paper. Just as the usual Green function on a domain D in R

n is the difference
between the fundamental harmonic function and its balayée on the complement Dc,
the α-Green kernel gαD on D was introduced and studied by Riesz [31, Chapter IV]
as follows (see also [26, p. 263]):

gαD(x, y) = καεy(x)− καε
Dc

y (x) for all x, y ∈ D.

As easily shown, gαD is l.s.c., > 0, and infinite on the diagonal x = y. It is essentially
known that gαD is symmetric: gαD(x, y) = gαD(y, x). Seemingly new properties are
(as partly indicated above): gαD satisfies the complete maximum principle (in a form
which includes the Frostman maximum principle and the domination principle), the
Evans–Vasilesco continuity principle, and the principle of positivity of mass. Finally,
gαD is ‘perfect ’, that is, it satisfies the energy principle (Theorem 4.9) and it is consis-
tent (Theorem 4.11), which allows us to show that every relatively closed subset F of
D of finite gαD-capacity has a unique α-Green equilibrium measure γF carried by F .
We also provide a description of the properties of the α-Green equilibrium potential
gαDγF and single out its characteristic properties (Theorem 4.12).

2. Basic notions of potential theory on locally compact spaces

2.1. Measures, energies, potentials, capacities. Given a locally compact
(Hausdorff) space X, we denote by M = M(X) the linear space of all real-valued
(signed) Radon measures µ on X, equipped with the vague (weak∗) topology, i.e. the
topology of pointwise convergence on the space C0(X) of all continuous functions on
X with compact support. The vague topology on M is Hausdorff; hence, a vague
limit of any sequence (net) in M is unique (whenever it exists). These and other
notions and results from the theory of measures and integration on a locally compact
space, to be used throughout the paper, can be found in [3, 4, 20] (see also [21] for
a short survey).

We denote by µ+ and µ− the positive and negative parts, respectively, in the
Hahn–Jordan decomposition of a measure µ ∈ M, by |µ| := µ+ + µ− its total
variation, and by Sµ

X = S(µ) its (closed) support . A measure µ is said to be bounded

if |µ|(X) < +∞. Let M
+ = M

+(X) stand for the (convex, vaguely closed) cone of
all positive µ ∈ M.

The following well-known fact (see, e.g., [21, Section 1.1]) will often be used.

Lemma 2.1. Let ψ : X → (−∞,+∞] be a lower semicontinuous (l.s.c.) function

which is > 0 unless X is compact. Then µ 7→
´

ψ dµ is l.s.c. on M
+ in the (induced)

vague topology.
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By a (positive function) kernel κ on X we mean a symmetric l.s.c. function
κ : X × X → [0,+∞] which is strictly positive on the diagonal: κ(x, x) > 0 for all
x ∈ X. For (signed Radon) measures µ, ν on X the potential κµ and the mutual

energy κ(µ, ν) are defined by2

κµ(x) :=

ˆ

κ(x, y) dµ(y), κ(µ, ν) :=

¨

κ(x, y) dµ(x) dν(y),

respectively. For µ = ν, the mutual energy κ(µ, ν) becomes the energy κ(µ, µ) of
µ. Observe that κµ(x), µ ∈ M, is well defined provided κµ+(x) and κµ−(x) are not
both infinite, and then κµ(x) = κµ+(x) − κµ−(x). In particular, if µ > 0, then κµ
is defined everywhere and represents a positive l.s.c. function on X, cf. Lemma 2.1
above. Also note that κ(µ, ν), µ, ν ∈ M, is well defined provided κ(µ+, ν+)+κ(µ−, ν−)
or κ(µ+, ν−) + κ(µ−, ν+) is finite.

Let Eκ = Eκ(X) consist of all µ ∈ M with −∞ < κ(µ, µ) < +∞, the latter
by definition means that κ(µ+, µ+), κ(µ−, µ−) and κ(µ+, µ−) are all finite (see [21,
Section 2.1]).

For a set Q ⊂ X, let M
+(Q) consist of all µ ∈ M

+ concentrated on (or carried

by) Q, which means that X \ Q is locally µ-negligible, or equivalently that Q is µ-
measurable and µ = µQ where µQ denotes the trace (restriction) of µ on Q. If Q is
closed then µ ∈ M

+ is concentrated on Q if and only if S(µ) ⊂ Q. Also note that
if either X is countable at infinity (i.e. X can be represented as a countable union
of compact sets), or µ is bounded, then the concept of local µ-negligibility coincides
with that of µ-negligibility; and hence µ ∈ M

+(Q) if and only if µ∗(X \ Q) = 0,
µ∗(·) being the outer measure of a set. We denote by M

+(Q, q), q ∈ (0,+∞),
the (convex) subcone of M

+(Q) consisting of all µ with µ(Q) = q. Also write
E+
κ (Q, q) := Eκ ∩M

+(Q, q), E+
κ (Q) := Eκ ∩M

+(Q), and E+
κ := E+

κ (X).
In contrast to [23, 24] where a capacity has been treated as a functional acting on

positive numerical functions on X, in the present study we consider the (standard)
concept of capacity as a set function. Thus the (inner) capacity of a set Q relative
to the kernel κ, denoted cκ(Q), is defined as3

(2.1) 1
/

cκ(Q) := inf
µ∈E+

κ (Q,1)
κ(µ, µ).

Obviously, 0 6 cκ(Q) 6 +∞. Furthermore, by [21, p. 153, Eq. 2],

(2.2) cκ(Q) = sup cκ(K) (K ⊂ Q, K compact).

Throughout the paper, we shall often use the fact that cκ(Q) = 0 if and only
if µ∗(Q) = 0 for every µ ∈ E+

κ , µ∗(·) being the inner measure of a set; cf. [21,
Lemma 2.3.1].

As in [26, p. 134], we call a measure µ ∈ M
+ cκ-absolutely continuous if µ(K) = 0

for every compact set K ⊂ X with cκ(K) = 0. It follows from (2.2) that, for such
µ, µ∗(Q) = 0 whenever cκ(Q) = 0. Hence every µ ∈ E+

κ is cκ-absolutely continuous,
but not conversely, cf. [26, pp. 134–135].

2.2. Potential-theoretic principles. Consistency. Among the variety of
potential-theoretic principles investigated for example in the comprehensive work by

2When introducing notation about numerical quantities we assume the corresponding object on
the right to be well-defined—as a finite real number or ±∞.

3Here and in what follows the infimum over the empty set is taken to be +∞. We put 1
/

(+∞) = 0

and 1
/

0 = +∞.
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Ohtsuka [30] (see also the references therein), in the present study we focus mainly
on the following four:

(i) A kernel κ is said to satisfy the continuity principle (Evans–Vasilesco), or to
be regular (Choquet [13]) if, for any µ ∈ M

+ with compact Sµ
X , the potential

κµ is continuous throughout X whenever its restriction to Sµ
X is continuous.

(ii) A kernel κ is said to satisfy Frostman’s maximum principle if, for any µ ∈ M
+

with compact support,

sup
x∈X

κµ(x) = sup
x∈Sµ

X

κµ(x).

(iii) A kernel κ is said to satisfy the complete maximum principle (introduced by
Cartan and Deny [11]) if, for any µ ∈ E+

κ and ν ∈ M
+ such that κµ 6 κν + c

µ-a.e., where c > 0 is a constant, the same inequality holds everywhere on X.
(iv) A kernel κ is called positive definite if κ(µ, µ) > 0 for every (signed) measure

µ ∈ Eκ. And κ is said to be strictly positive definite, or to satisfy the energy

principle if in addition κ(µ, µ) > 0 except if µ = 0.

The complete maximum principle with c = 0 is called the domination principle

(introduced by Cartan [8] under the name second maximum principle).
The above-mentioned principles are not completely independent of one another.

In particular, every kernel satisfying the Frostman maximum principle or the domi-
nation principle is positive definite, [27, 14]. And for a kernel which is finite off the
diagonal and continuous in the extended sense on X×X we have (ii) ⇒ (i), see [28],
[29], [30, Eq. 1.3], and independently [13].

In the rest of this section, κ is assumed to be positive definite. Then Eκ forms a
pre-Hilbert space with the energy seminorm ‖µ‖κ :=

√

κ(µ, µ) and the inner product
κ(µ, ν) (see [21]). The topology on Eκ defined by the energy seminorm ‖ · ‖κ is called
the strong topology . Clearly, ‖·‖κ is a norm if and only if κ is strictly positive definite.

Write E◦
κ :=

{

µ ∈ E+
κ : ‖µ‖κ 6 1

}

. Since κ is strictly positive on the diagonal, E◦
κ

is vaguely compact , cf. [21, Lemma 2.5.1].

Definition 2.2. A (positive definite) kernel κ is said to be consistent if, for every
λ ∈ E+

κ , the function µ 7→ κ(λ, µ), µ ∈ E◦
κ, is vaguely continuous.

This is property (CW) in [21, Lemma 3.4.1]. It has been shown in [22] that (CW)
is equivalent to the property (C) of consistency as defined in [21]:

(C) Every strong Cauchy sequence in E+
κ converges strongly to any of its vague

cluster points.

Definition 2.3. A (positive definite) kernel κ is said to be perfect if it is con-
sistent and strictly positive definite; or equivalently, if E+

κ is strongly complete and
the strong topology on E+

κ is finer than the induced vague topology on E+
κ (see [21,

p. 166 and Theorem 3.3]).

Remark 2.4. Even for a perfect kernel κ the whole pre-Hilbert space Eκ is, in
general, strongly incomplete, and this is the case also for the Coulomb kernel |x−y|−1

on R
3, |x− y| being the Euclidean distance between x and y (cf. [9]). Compare with

[35, Theorem 1] where the strong completeness has been established for the metric
subspace of all signed measures ν ∈ Eκα(R

n), n > 3, such that ν+ and ν− are
supported by closed nonintersecting sets A1, A2 ⊂ R

n; here κα(x, y) = |x− y|α−n is
the α-Riesz kernel of order α ∈ (0, n). This result from [35] has been proved with
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the aid of Deny’s theorem [15] stating that Eκα(R
n) can be completed by making use

of tempered distributions on R
n with finite α-Riesz energy.

The property of consistency (or perfectness) is particularly useful in minimum
energy problems over subclasses of Eκ. E.g., if Q is a closed set with cκ(Q) ∈ (0,+∞)
and κ is a consistent kernel, then the infimum in (2.1) is an actual minimum. If,
moreover, κ is perfect, then the corresponding minimizing measure is unique. See
[21, Theorem 4.1].

3. α-Riesz sweeping in R
n

Throughout this section we fix n > 2, n ∈ N, and α ∈ (0, 2], and consider the
α-Riesz kernel κα. We shall simply write α instead of κα if it serves as an index.
For example, cα(·) denotes the α-Riesz inner capacity of a set. In all that follows,
‘n.e.’ (nearly everywhere) means that a proposition involving a variable point holds
everywhere except for a subset with cα(·) = 0.4

We denote by ωRn the Alexandroff point of Rn, and write Rn := R
n ∪ {ωRn}.

When speaking of a positive (Radon) measure µ ∈ M
+ = M

+(Rn) on R
n, we

always assume that καµ 6≡ +∞. This implies that

(3.1)

ˆ

|y|>1

dµ(y)

|y|n−α
< +∞,

cf. [26, Eq. 1.3.10], and consequently, καµ is finite n.e. on R
n, cf. [26, Chapter III,

Section 1]; these two implications can actually be reversed. Under these (permanent)
requirements, κα satisfies all the principles (i)–(iv) from Section 2.2 and it is perfect;
see Theorems 1.7, 1.10, 1.15, 1.18, 1.27 and 1.29 in [26].

Throughout this section A is a closed proper subset of Rn. To avoid triviality,
we shall always assume that cα(A) > 0.

3.1. α-thinness at y ∈ Rn. α-Riesz equilibrium measure in an ex-

tended sense. A point y ∈ A is said to be α-irregular if and only if A is α-thin at
y, that is, A is thin at y in the sense of Brelot [5], applied to the cone of all positive
α-superharmonic functions on R

n (together with the constant function +∞). All
others points of A are said to be α-regular . See also [26, Chapter V, Section 3, n◦ 9].
Regarding the notion of α-superharmonic function, see [26, Chapter I, Section 6,
n◦ 20].

Alternatively, by Wiener’s criterion [26, Theorem 5.2], y ∈ A is α-irregular if and
only if

(3.2)
∑

k∈N

cα(Ak)

qk(n−α)
< +∞,

where q ∈ (0, 1) and Ak := A ∩
{

x ∈ R
n : qk+1 6 |x− y| < qk

}

.
Denote by AI = AI,α the set of all α-irregular points of A; then AI ⊂ ∂RnA and

cα(AI) = 0, cf. [26, Lemma 5.2].
It follows from the perfectness of κα and Frostman’s maximum principle that,

for any (closed) set A ⊂ R
n with cα(A) < +∞, there exists a unique equilibrium

4To be precise, one should write ‘cα-n.e.’ instead of ‘n.e.’, but for the sake of brevity we shall
always use the latter short form. This will not cause any misunderstanding, for the order α of the
Riesz kernel is fixed.
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measure γA = γA,α ∈ E+
α (A) on A, possessing the following properties:

‖γA‖
2
α = γA(A) = cα(A),(3.3)

καγA = 1 n.e. on A,(3.4)

καγA 6 1 everywhere on R
n,(3.5)

καγA = min
θ∈ΘA

καθ,(3.6)

where ΘA consists of all θ ∈ M
+(Rn) with καθ > 1 n.e. on A; see [21, Theorem 4.1],

[26, Theorem 2.6] and also [26, Lemma 4.5].
We extend the notion of α-Riesz equilibrium measure to an (unbounded closed)

set A with cα(A) = +∞. Following [34] (or [6] for α = 2), we call A α-thin at the
Alexandroff point ωRn if the inverse A∗ of A ∪ {ωRn} relative to the (n − 1)-dim-
ensional unit sphere S(y, 1) centered at y ∈ R

n is α-thin at y as defined above, or
equivalently if either y 6∈ A∗ or y is an α-irregular point of A∗, cf. [26, Theorem 5.10].
The notion of α-thinness of A at ωRn does not depend on the choice of y, cf. [34]. If
(and only if) A is α-thin at ωRn there exists γA ∈ M

+(A) possessing the properties
(3.4)–(3.6) (see [26, Chapter V, Section 1, n◦ 1]). It is clear from the proof of [26,
Theorems 5.1] that such γA is cα-absolutely continuous and hence it is unique (cf.
[26, p. 178, Remark]). Furthermore, (3.3) also holds in the sense that all its three
terms are +∞.5

3.2. α-Riesz sweeping: definition and statements on existence and

uniqueness. Throughout this section, fix µ ∈ M
+. We first consider the case where

µ has finite energy.

Theorem 3.1. For µ ∈ E+
α and A closed in R

n there exists µA ∈ E+
α (A) such

that

καµ
A = καµ n.e. on A,(3.7)

καµ
A 6 καµ everywhere on R

n.(3.8)

Such µA is actually the orthogonal projection of µ in the pre-Hilbert space Eα onto

the convex cone E+
α (A), i.e.6

‖µ− µA‖α < ‖µ− ν‖α for all ν ∈ E+
α (A), ν 6= µA,

and µA is determined uniquely within E+
α (A) by relation (3.7).

Proof. Indeed, since κα is perfect, this can be obtained by generalizing arguments
from [26, Chapter IV, Section 5, n◦ 22] (cf. also [10, pp. 243–244] for α = 2; in [10, 26],
A = K was assumed to be compact). Actually, this has been proved more generally in
a locally compact space X for any quasiclosed set and any perfect kernel κ satisfying
κ-domination principle, cf. [24, Theorem 4.12]. �

Remark 3.2. One could equally well write ‘q.e.’ (quasi everywhere) instead of
‘n.e.’ in relation (3.7), where ‘q.e.’ refers to the outer α-Riesz capacity of a set, [26,
p. 143]. Indeed, ψ := καµ

A − καµ, being the difference between two l.s.c. functions,
is Borel measurable, which yields that the set {x ∈ A : ψ(x) 6= 0} is κα-capacitable
(see [12, Theorem 30.1], [21, Theorem 4.5], [26, Theorem 2.8]). A similar remark
applies to relation (3.4) as well.

5Equality (3.4) in fact holds everywhere on A \AI , cf. Corollary 3.15.
6See, e.g., [10, Chapter III, Sections 8–10] and [20, Proposition 1.12.4].
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Corollary 3.3. Let F be a closed subset of A with cα(F ) > 0. Then, in the

notations of the preceding theorem,

(3.9) µF = (µA)F for every µ ∈ E+
α .

Proof. By Theorem 3.1, both µF and (µA)F belong to E+
α (F ) and moreover

κα(µ
A)F = καµ

A = καµ n.e. on F.

Since relation (3.7) (for F instead of A) determines µF uniquely among E+
α (F ),

identity (3.9) follows. �

Likewise as it has been done in the paragraph before [26, Theorem 4.16′], (3.7)
implies for A closed

(3.10) κα(µ
A, λ) = κα(µ, λ

A) for all µ, λ ∈ E+
α .

Next, we follow Cartan [10, p. 257] and use the symmetry relation (3.10) to define
sweeping of an arbitrary µ ∈ M

+.

Definition 3.4. For µ ∈ M
+ we call µA ∈ M

+(A) a balayée of µ onto A if

(3.11) κα(µ
A, λ) = κα(µ, λ

A) for all λ ∈ E+
α ,

where for every λ ∈ E+
α , λA ∈ E+

α (A) is determined uniquely by Theorem 3.1.

Remark 3.5. In view of this definition and relation (3.10) the measure µA ∈
E+
α (A) from Theorem 3.1 may now be called the balayée of µ ∈ E+

α onto A.

Theorem 3.6. For any µ ∈ M
+ there exists a unique balayée µA ∈ M

+(A).
Furthermore, such µA satisfies both relations (3.7) and (3.8).

Proof. This follows from Theorem 3.1 and relation (3.10) with arguments similar
to those in the proof of [26, Theorem 4.16′] (now for a closed set A instead of a
compact K). Indeed, likewise as in [26, p. 272] (see also [10, p. 257, footnote]) for
µ 6= 0 one can construct a sequence of measures µk ∈ E+

α such that καµk ↑ καµ
and µk → µ vaguely (as k → +∞). Then, applying relation (3.7) to µk ∈ E+

α , cf.
Theorem 3.1, we obtain

καµ
A
k = καµk 6 καµk+1 = καµ

A
k+1

n.e. on A and hence µA
k -a.e., for µA

k ∈ E+
α (A). By the κα-domination principle [26,

Theorems 1.27, 1.29],

καµ
A
k 6 καµ

A
k+1 everywhere on R

n.

Thus, καµ
A
k increases along with καµk and does not exceed καµ. According to [26,

Theorem 3.9], there exists ν ∈ M
+ such that

καµ
A
k ↑ καν

and µA
k → ν vaguely (as k → +∞). Since A is closed, the latter implies ν ∈ M

+(A).
Besides, having written relation (3.10) for µk ∈ E+

α and then applied [3, Chapter IV,
Section 1, Théorème 3], we arrive at (3.11) with µA := ν. The measure µA ∈ M

+(A)
constructed just above is thus a balayée of µ ∈ M

+ onto A, and καµ
A
k ↑ καµ

A. Now,
having written relations (3.7) and (3.8) for µk ∈ E+

α , cf. Theorem 3.1, and then letting
k → ∞, we arrive at relations (3.7) and (3.8) for µ ∈ M

+ as claimed.
For uniqueness, having assumed that (3.11) also holds for some ν ′ ∈ M

+(A) in
place of µA, we conclude that, for any r > 0,

καµ
A ∗m(r) = καν

′ ∗m(r),
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where m(r) is the measure obtained by uniformly distributing unit mass over the open
ball B(0, r) := {x ∈ R

n : |x| < r} and ∗ denotes the convolution. Letting r → 0 in
the last display and applying [26, Theorems 1.11, 1.12] establishes ν ′ = µA. �

Corollary 3.7. For any µ ∈ M
+ we have κα(µ

A, µA) 6 κα(µ, µ).

Proof. Applying relation (3.8), cf. Theorem 3.6, we obtain

κα(µ
A, µA) 6 κα(µ, µ

A) = κα(µ
A, µ) 6 κα(µ, µ)

as claimed. �

Finally, the symmetry relation (3.10) is extended to arbitrary µ, ν ∈ M
+.

Theorem 3.8. For any µ, ν ∈ M
+ we have

(3.12) κα(µ
A, ν) = κα(µ, ν

A).

Proof. It is seen from the proof of Theorem 3.6 that καν
A is the pointwise limit

of an increasing sequence καν
A
k , k ∈ N, where νk ∈ E+

α and κανk ↑ καν (as k → +∞).
Hence, by (3.11) for νk in place of λ,

κα(µ
A, νk) = κα(µ, ν

A
k ) for all k ∈ N.

Letting k → +∞ and applying [3, Chapter IV, Section 1, Théorème 3], we thus get
(3.12), as was to be proved. �

Corollary 3.9. For any x, y ∈ R
n,

(3.13) καε
A
x (y) = κα(ε

A
x , εy) = κα(εx, ε

A
y ) = καε

A
y (x),

where εz denotes the unit Dirac measure at a point z ∈ R
n. More generally, for

every µ ∈ M
+ and every y ∈ R

n,

(3.14) καµ
A(y) = κα(µ

A, εy) = κα(µ, ε
A
y ) =

ˆ

καε
A
y (x) dµ(x).

Proof. Indeed, both (3.13) and (3.14) follow directly from (3.12). �

Lemma 3.10. Given µ ∈ M
+ and A, the swept potential καµ

A (and, hence, the

swept measure µA) can be characterized uniquely by the relation

(3.15) καµ
A = min καξ,

where ξ ∈ M
+ ranges over all measures with

(3.16) καξ > καµ n.e. on A.

Proof. Since the swept measure µA satisfies relation (3.16) in accordance with
(3.7), cf. Theorem 3.6, it is enough to show that

(3.17) καµ
A 6 καξ everywhere on R

n

for every ξ ∈ M
+ possessing the property (3.16). As seen from the proof of Theo-

rem 3.6, καµ
A is the pointwise limit of an increasing sequence καµ

A
k , k ∈ N, where

µk ∈ E+
α and καµk ↑ καµ (as k → +∞). Since

καµ
A
k 6 καµk 6 καµ 6 καξ

n.e. on A and hence µA
k -a.e., the κα-domination principle [26, Theorems 1.27, 1.29]

yields καµ
A
k 6 καξ on all of Rn. Letting here k → +∞ leads to relation (3.17). �
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3.3. Properties of the swept measure. I. Our next goal is to show that
sweeping of a positive measure does not increase the total mass. Actually, the fol-
lowing more general statement holds.

Theorem 3.11. (Principle of positivity of mass7) For any µ, ν ∈ M
+ such that

καµ > καν everywhere on R
n we have µ(Rn) > ν(Rn). In particular,

(3.18) µ(Rn) > µA(Rn) for any µ ∈ M
+.

Proof. Consider the sequence of the closed balls Bk := B(0, k) := {x ∈ R
n : |x| 6

k}, k ∈ N, and let γk be the α-Riesz equilibrium measure on Bk. Then 1 = καγk =
καγk+1 everywhere on Bk, cf. [26, Chapter II, Section 3, n◦ 13], and by the κα-
domination principle καγk 6 καγk+1 on all of Rn. Thus the sequence καγk, k ∈ N,
is increasing, clearly with the pointwise limit 1. For µ, ν ∈ M

+ with καµ > καν
everywhere on R

n, it follows that
ˆ

καγk dν =

ˆ

καν dγk 6

ˆ

καµ dγk =

ˆ

καγk dµ,

whence the former part of the theorem by letting k → +∞. Taking here µA instead
of ν, which is possible in view of (3.8), we obtain relation (3.18). �

The latter part of Theorem 3.11 is specified by Theorem 3.22 below.

Theorem 3.12. For any α-regular point y ∈ A we have εAy = εy. For any other

y ∈ R
n, εAy is cα-absolutely continuous.

Proof. We first need to recall the well-known notion of Kelvin transform of
measures (see [31] and [26, pp. 260–261]).

Define the inversion with respect to S(y, 1) mapping each point x 6= y to the
point x∗ on the ray through x issuing from y which is determined uniquely by

|x− y| · |x∗ − y| = 1.

This is a homeomorphism of Rn \ {y} onto itself; furthermore,

(3.19) |x∗ − z∗| =
|x− z|

|x− y||z − y|
.

It can be extended to a homeomorphism of Rn onto itself such that y and ωRn are
mapped to each other.

To each ν ∈ M with ν({y}) = 0 we assign the Kelvin transform ν∗ ∈ M by
means of the formula

(3.20) dν∗(x∗) = |x− y|α−n dν(x), x∗ ∈ R
n.

Then, in view of (3.19),

(3.21) καν
∗(x∗) = |x− y|n−ακαν(x), x∗ ∈ R

n,

and therefore

(3.22) κα(µ
∗, ν∗) = κα(µ, ν)

for every µ ∈ M with µ({y}) = 0. The last display is obtained by multiplying (3.20)
(with µ in place of ν) by (3.21) and next integrating with respect to dµ(x) over Rn.8

7The principle of positivity of mass has been introduced by Deny [16, p. 165].
8Each of equalities (3.21) and (3.22) is understood in the sense that the value on the left is

well-defined if (and only if) so is that on the right, and then they coincide.
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Furthermore, by (3.20), ν∗(Rn) = καν(y), which in view of the relation (ν∗)∗ = ν
proves the equality

(3.23) ν(Rn) = καν
∗(y).

For the proof of Theorem 3.12, fix a point y ∈ R
n and consider A∗, the inverse

of A ∪ {ωRn} with respect to S(y, 1). Having assumed that y is an α-regular point
of A we first assert that then εAy ({y}) > 0. Indeed, if not, then by (3.21) the Kelvin

transform
(

εAy
)∗

of εAy has the α-Riesz potential equal to 1 n.e. on A∗ ∩ R
n, which

means that
(

εAy
)∗

is the α-Riesz equilibrium measure on A∗ ∩ R
n, treated in the

sense of [26, Chapter V, Section 1]. Hence, A∗ ∩R
n is α-thin at ωRn, cf. Section 3.1,

which contradicts the α-regularity of y. We next proceed by proving that the relation
εAy ({y}) > 0 thus obtained yields εAy = εy. Indeed, if not, then εAy = cεy + χ, where
χ ∈ M

+(A \ {y}), χ 6= 0, and 0 < c < 1, the latter inequality being clear from
relation (3.18) applied to µ = εy. Then, by (3.7), cf. Theorem 3.6,

|x− y|α−n = καε
A
y (x) = c|x− y|α−n + καχ(x) n.e. on A,

hence καχ1(x) = |x − y|α−n n.e. on A, where χ1 := χ/(1 − c). Since χ1({y}) = 0,
(3.21) applied to ν = χ1 shows that the Kelvin transform of χ1 is the equilibrium
measure on A∗ ∩R

n, which is impossible by the α-regularity of y.
To establish the latter statement of the theorem, suppose first that y ∈ A is α-

irregular. Then the (unbounded closed) set A∗∩R
n is α-thin at ωRn and hence there

exists the equilibrium measure γA∗ ∈ M
+(A∗∩Rn) on A∗∩Rn, which is characterized

uniquely by relations (3.3)–(3.6) with A∗ in place of A. Denoting by δ the Kelvin
transform of γA∗ , we conclude from (3.4) (with γA∗ instead of γA) and (3.21) that

καδ(x) = |x− y|α−n = καεy(x) n.e. on A.

Here we have used the fact that the assertions cα(E
∗) = 0 and cα(E) = 0, E ⊂ A,

are equivalent, cf. [26, p. 261]. This observation also yields that δ is cα-absolutely
continuous along with γA∗. Using (3.6) (with γA∗ instead of γA), we also observe that
δ satisfies (3.15) for εy in place of µ, and so the (cα-absolutely continuous) measure
δ is, in fact, the swept measure εAy .

Finally, suppose that y ∈ R
n \ A. Then the inverse A∗ of A ∪ {ωRn} is a

compact subset of Rn containing y. The rest of the proof runs in the same way as in
the preceding paragraph, even with the standard notion of the α-Riesz equilibrium
measure γA∗ . �

Remark 3.13. Theorem 3.12 is a particular case of results obtained in [1] in the
very general setting of balayage spaces. The former assertion follows from [1, Chap-
ter VII, Proposition 3.1] and the latter by combining [1, Chapter VI, Proposition 5.6]
and [1, Chapter VII, Proposition 4.1]. We have, however, chosen to bring the above
alternative proof based on the Kelvin transform because we want to make a presen-
tation of our results based on a single approach, while for this purpose the general
balayage theory is insufficient anyway, cf. the Introduction for details. Moreover, the
relation between εAy and the α-Riesz equilibrium measure γA∗ of A∗, given with the
aid of the Kelvin transform, is decisive for the proof of Theorem 3.22 below.

Corollary 3.14. For any µ ∈ M
+ we have

(3.24) καµ
A = καµ everywhere on A \ AI .
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Proof. Indeed, for every α-regular point y ∈ A, εAy = εy by Theorem 3.12, and

therefore καµ
A(y) = καµ(y) by (3.14). �

Corollary 3.15. Assume A to be α-thin at ωRn. Then

(3.25) καγA,α = 1 everywhere on A \ AI .

Proof. Fix y /∈ A and consider the inversion with respect to S(y, 1). It follows
from [26, Chapter IV, Section 5, n◦ 19] (see the first two displays on p. 261 therein)
and Wiener’s criterion (3.2) that then A \ AI is mapped onto A∗ \ A∗

I , where A∗ is
the inverse of A ∪ {ωRn}. As seen from the proof of Theorem 3.12 (with A replaced
by A∗), the equilibrium measure γA,α is the Kelvin transform of the swept measure
εA

∗

y . Combined with equalities (3.21) and (3.24) this establishes (3.25). �

If now ν ∈ M(Rn) is a signed (Radon) measure, then νA := (ν+)A − (ν−)A is
said to be a balayée of ν onto the (closed) set A. The balayée νA is unique, for so are
(ν+)A and (ν−)A, and it is supported by A. Its α-Riesz potential καν

A is well-defined
and finite n.e. on R

n, and καν
A(x) = καν(x) at every x ∈ A \ AI where either of

καν
±(x) is finite, cf. Corollary 3.14.

3.4. µ-adequate family of measures. Integral representation of µA. For
the notion of a µ-adequate family of measures, see [4, Section 3, Définition 1]. Write
D := Ac.

Lemma 3.16. For every µ ∈ M
+(D) the family (εAy )y∈D is µ-adequate, that is,

(a) for any function f ∈ C0(R
n) the numerical function y 7→

´

f dεAy on D is

essentially µ-integrable;

(b) the map y 7→ εAy is vaguely µ-measurable on D.

Proof. Fix µ ∈ M
+(D).

(a) Essential integrability over D is the same as integrability because the locally
compact space D is countable at ωD, the Alexandroff point of D (cf. [4, Section 2,
Proposition 3]).

Suppose to begin with that f ∈ C∞
0 (Rn). As in [26, Lemma 1.1] define a function

ψ = κ−α ∗ f , which amounts to f = καψ. The convolution ψ of the distribution
κ−α with f ∈ C∞

0 (Rn) is a C∞-function, by [32, Théorème XI]. According to [26,
Eq. 1.3.16], ψ(x) = O(|x|−n−α) as |x| → +∞. It follows that

(3.26) ψ±(x) 6 Cmin
{

1, |x|−n−α
}

,

C denoting a constant (not necessarily the same at each occurrence). Denote by
ν the measure on R

n with density ψ±: dν(x) = ψ±(x) dx, where dx refers to the
n-dimensional Lebesgue measure. We begin by proving that ν ∈ E+

α . Denote by
B = B(0, 1) the closed unit ball in R

n and by ν0 and ν1 the restrictions of ν to B
and B c, respectively. Then καν0 = κα ∗ (1Bψ

±), 1B being the indicator function
for B, is bounded on B, and hence ν0 has finite energy κα(ν0, ν0). Furthermore,
καν0(x) = O

(

|x|α−n
)

as |x| → +∞, and so altogether

(3.27) καν0(x) 6 Cmin
{

1, |x|α−n
}

.

Next, let ν∗1 denote the image of ν1 under Kelvin transformation with respect to
the unit circle S(0, 1) (noting that ν1({0}) = 0). By (3.20) and (3.21) (both with
y = 0),

(3.28) dν∗1(x
∗) = |x|α−n dν1(x), καν

∗
1(x

∗) = |x|n−ακαν1(x).
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Hence ν1 and ν∗1 have the same α-Riesz energy, cf. (3.22). According to inequality
(3.26),

dν∗1(x
∗) = |x|α−n1B c(x)ψ±(x) dx 6 C|x|α−n|x|−α−n dx = C|x|−2n dx = C dx∗,

the latter equality being valid because |x|−n dx = |x∗|n dx∗. In fact, write x = rξ
with r = |x| and where ξ ranges over the unit sphere S(0, 1) endowed with its
surface measure dξ. We obtain dx = rn−1 dr dξ and similarly dx∗ = (r∗)n−1 dr∗ dξ
with r∗ = r−1, hence dr∗ = −r−2 dr. We may neglect the minus sign (change of
orientation) and conclude that indeed dx∗ = |x|−2n dx.

Thus the situation for ν∗1 is essentially the same as above for ν0, both being
supported by the ball B and having a bounded density, and so

καν
∗
1(x

∗) 6 Cmin
{

1, |x∗|α−n
}

and hence, by the latter equation (3.28),

καν1(x) = |x|α−nκαν
∗
1(x

∗) 6 Cmin
{

1, |x|α−n
}

.

When combined with inequality (3.27) this leads to

(3.29) καν(x) 6 Cmin
{

1, |x|α−n
}

.

In particular, καν1(x) 6 C|x|α−n on B
c

and

κα(ν1, ν1) =

ˆ

καν1 dν1 6 C

ˆ

|x|α−n dν1(x) = Cκαν1(0) < +∞.

As ν = ν0 + ν1, we thus get

(3.30) ν ∈ E+
α .

Identifying the measures ψ+ dx and ψ− dx with their densities ψ+ and ψ−, re-
spectively, we obtain

ˆ

f dεAy =

ˆ

καψ
+ dεAy −

ˆ

καψ
− dεAy = κα(ψ

+)A(y)− κα(ψ
−)A(y)

according to (3.11) applied to µ = εy and λ = ν = ψ± dx. The last member in
the above display is the difference between two finite l.s.c. functions. For the proof
that y 7→

´

f dεAy = καψ
A is µ-integrable it suffices to show that

´

καν dµ < +∞.
According to inequality (3.29) we obtain

ˆ

B

καν dµ 6 C

ˆ

B

dµ < +∞

and
ˆ

B c

καν dµ 6 C

ˆ

B c

|x|α−n dµ(x) = C

ˆ

B

dµ∗(x∗) < +∞,

the equality being valid by the former equation (3.28) with ν1 replaced by 1Bcµ,
assuming that µ

(

{0}
)

= 0. If µ
(

{0}
)

> 0 we remove the mass at 0 from µ, which
does not affect the µ-integrability of the finite valued function καν.

For general f ∈ C0(R
n), or just as well f ∈ C+

0 (R
n), we regularize f in the

standard way, as in [32, p. 22], thereby obtaining a sequence of positive functions
fj ∈ C∞

0 (Rn) supported by a fixed compact neighborhood of the support of f and
such that fj converges uniformly to f . Since for every y ∈ R

n, εAy (R
n) 6 1 by

inequality (3.18), it follows that the sequence
´

fj dε
A
y converges uniformly on R

n to
´

f dεAy . As shown above, each of the functions y 7→
´

fj dε
A
y is µ-integrable, and so is

therefore their uniform limit
´

f dεAy (see [3, Chapter IV, Section 3, Proposition 4]).
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(b) For the proof that the map D ∋ y 7→ εAy ∈ M
+(D) is vaguely µ-measurable,

cf. [4, Section 3, n◦ 1], it suffices according to [4, Section 1, n◦ 2] to show that this
map is vaguely continuous on D. (As pointed out in [4, p. 18, Remarque] it is not
enough to verify that each of the functions y 7→ εAy is µ-measurable, as it is done in
[26, p. 214, footnote 12].)

Likewise as in the proof of assertion (a) above, consider first a function f ∈
C∞

0 (Rn) and choose a signed measure ψ ∈ Eα so that καψ = f . According to
relation (3.30), ψ± ∈ E+

α , which in view of (3.11) for µ = εy and λ = ψ± yields

ˆ

f dεAy =

ˆ

καψ dε
A
y =

ˆ

καψ
A dεy = καψ

A(y).

When varying y, καψ
A(y) is a (finite and) continuous function of y ∈ D (because

(ψ±)A is supported by A), and so is therefore
´

f dεAy in the present case f ∈ C∞
0 (Rn).

But the same holds for any f ∈ C0(R
n). Indeed, likewise as above, one may choose

a sequence of C∞
0 -functions fj on R

n converging uniformly to the given function
f ∈ C0(R

n). Then, by relation (3.18) for µ = εy,

∣

∣

∣

ˆ

(f − fj) dε
A
y

∣

∣

∣
6 sup

j

|f − fj | → 0 (as j → +∞),

and so
´

f dεAy is indeed a (finite) continuous function of y ∈ D, being the uniform

limit of the continuous functions
´

fj dε
A
y on D. �

Theorem 3.17. For any µ ∈ M
+(D), we have the integral representation

(3.31) µA =

ˆ

εAy dµ(y).

Proof. Fix µ ∈ M
+(D). Since, by Lemma 3.16, the family of measures (εAy )y∈D is

µ-adequate we may according to [4, Section 3, n◦ 2] define the integral ν =
´

εAy dµ(y)
by

ˆ

f(z) dν(z) =

ˆ

(

ˆ

f(z) dεAy (z)
)

dµ(y),

f ∈ C0(R
n) being arbitrary. According to [4, Section 3, Proposition 1] this identity

remains valid when f is allowed to be any positive l.s.c. function on R
n (the integrals

being then understood as upper integrals).9 For given x ∈ R
n we apply this to

f(z) = κα(x, z), z ∈ R
n:

(3.32) καν(x) =

ˆ

(

ˆ

κα(x, z) dε
A
y (z)

)

dµ(y) =

ˆ

καε
A
y (x) dµ(y).

To establish (3.31) it remains to show that ν = µA, that is,

κα(ν, λ) = κα(µ, λ
A) for every λ ∈ E+

α ,

9For still more general integrands see [4, Section 4, Théorème 1].
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cf. Definition 3.4. Applying (3.11) with εy in place of µ and (3.32) we get by Fubini’s
theorem

κα(ν, λ) =

ˆ

καν(x) dλ(x) =

ˆ

(

ˆ

καε
A
y (x) dµ(y)

)

dλ(x)

=

ˆ

(

ˆ

καε
A
y (x) dλ(x)

)

dµ(y) =

ˆ

(

ˆ

καεy(x) dλ
A(x)

)

dµ(y)

=

ˆ

(

ˆ

κα(x, y) dµ(y)
)

dλA(x) =

ˆ

καµ dλ
A = κα(µ, λ

A),

as claimed. �

Remark 3.18. An assertion similar to Theorem 3.17 can be found in [26, Chap-
ter V, Section 1], but the proof given there is incomplete, as noted above in the proof
of Lemma 3.16.

3.5. Properties of the swept measure. II. Based on the results obtained
above, we proceed with analyzing properties of the κα-swept measure µA. Recall that
D denotes the complement of A to R

n.

Corollary 3.19. For any µ ∈ M
+(D), µA is cα-absolutely continuous.

Proof. Consider a compact set K ⊂ R
n with cα(K) = 0; then for any y ∈

D, εAy (K) = 0 by the latter assertion of Theorem 3.12. Applying [4, Section 3,
Théorème 1], we then conclude from (3.31) that

ˆ

1K dµ
A =

ˆ

dµ(y)

ˆ

1K(x) dε
A
y (x) = 0,

and so µA is indeed cα-absolutely continuous. �

Corollary 3.20. For any µ ∈ M
+(D), µA is determined uniquely by relation

(3.7) among the cα-absolutely continuous positive measures supported by A.

Proof. The balayée µA is cα-absolutely continuous, by Corollary 3.19, and satisfies
relation (3.7) according to Theorem 3.6. If ν ∈ M

+(A) possesses these two properties
then καν = καµ

A n.e. on A, and an application of [26, p. 178, Remark] results in
ν = µA. �

Corollary 3.21. For every µ ∈ M
+(D) and every closed subset F of A with

cα(F ) > 0,

µF = (µA)F .

Proof. Indeed, the assertion follows from Corollaries 3.19 and 3.20 in a way
similar to that in the proof of Corollary 3.3. �

The following assertion specifies the latter part of Theorem 3.11.

Theorem 3.22. For A to be α-thin at ωRn it is necessary and sufficient that

there exists a non-zero bounded measure µ ∈ M
+(D) such that

(3.33) µA(Rn) < µ(Rn).

If moreover D is connected then the inequality (3.33) holds for every non-zero

bounded µ ∈ M
+(D) (provided that A is α-thin at ωRn).10

10For α < 2 the latter assertion of the theorem remains valid even if the requirement of connect-
edness of D is omitted.
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Proof. To prove the sufficiency part of the former assertion of the theorem,
assume that on the contrary A is not α-thin at ωRn . Fix y ∈ D, and let A∗ be the
inverse of A ∪ {ωRn} with respect to S(y, 1). Then A∗ is a compact set, and y ∈ A∗

is an α-regular point of A∗. According to Corollary 3.15, we have καγA∗(y) = 1, γA∗

being the equilibrium measure on A∗. For the Kelvin transform ν of γA∗, we thus
conclude from relations (3.21)–(3.23) that ν ∈ E+

α (A) because γA∗ ∈ E+
α (A

∗), and
that

(3.34) ν(Rn) = καγA∗(y) = 1,

and also that

(3.35) καν(x) = |x− y|α−nκαγA∗(x∗) = καεy(x) for nearly all x ∈ A,

the last display being valid in view of the fact that the assertions cα(E
∗) = 0 and

cα(E) = 0, E ⊂ A, are equivalent, cf. [26, Chapter IV, Section 5, n◦ 19]. Since εAy is
cα-absolutely continuous according to the latter assertion of Theorem 3.12, relation
(3.35) yields ν = εAy , cf. Corollary 3.20. Hence, by (3.34), εAy (R

n) = 1. Combined
with (3.31) this gives for every µ ∈ M

+(D)

µA(Rn) =

ˆ

dµA =

ˆ

dµ(y)

ˆ

dεAy (x) = µ(Rn),

cf. [4, Section 3, Théorème 1], and the sufficiency part of the theorem follows.
If now A is α-thin at ωRn , then there exists the unique (in general unbounded)

cα-absolutely continuous α-Riesz equilibrium measure γA ∈ M
+(A). One can choose

a connected component Di of D so that καγA 6≡ 1 on Di, for if not then καγA equals
1 everywhere on D, hence n.e. on R

n, cf. (3.4). Thus γA serves also as the α-Riesz
equilibrium measure on R

n, so that R
n itself is α-thin at ωRn. Contradiction.

We proceed by showing that, for the given Di,

(3.36) καγA < 1 everywhere on Di.

On the contrary, let this not hold; then by inequality (3.5) καγA(x0) = 1 at some
x0 ∈ Di. Fix an open neighborhood U of x0 so that CℓRnU ⊂ Di. Then both καγA
and 1 are α-superharmonic on R

n, α-harmonic on U , and continuous on CℓRnU , cf.
[26, Theorem 1.4] for α = 2 and [26, Chapter I, Section 6, n◦ 20] for α < 2. Since,
in consequence of relation (3.5), καγA takes its maximum value at x0, we infer from
[26, Theorems 1.1, 1.28] that καγA = 1 everywhere on U , hence everywhere on Di,
which contradicts the choice of Di.

The theorem will be established once we have shown that inequality (3.33) holds
for every non-zero bounded µ ∈ M

+(Di). Since both γA and µA are cα-absolutely
continuous, cf. Corollary 3.19, we thus have, by relations (3.4), (3.7), cf. Theorem 3.6,
and (3.36),

µA(Rn) = κα(µ
A, γA) = κα(µ, γA) < µ(Di) 6 µ(Rn),

as was to be proved. �

Remark 3.23. Theorem 3.22 has been announced in earlier papers of the second
named author (see [34, Theorem 4]; for α = 2, see also [33, Theorem B]). Since in both
these papers the integral representation from [26] was essentially used, we consider
it pertinent to provide here an independent proof, cf. Remark 3.18.
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4. α-Green kernel

In all that follows, consider a fixed domain D ⊂ R
n with the complement A :=

Dc := R
n \D, and the (generalized) α-Green kernel g = gαD on D defined by

gαD(x, y) = καεy(x)− καε
A
y (x) for all x, y ∈ D.

The second term on the right is called the compensating term for g.
The properties of the α-Green kernel g = gαD, to be given below, generalize those

of the α-Riesz kernel, corresponding to the case cα(A) = 0.

4.1. Basic properties of the α-Green kernel. It is seen from (3.13) that
the compensating term is symmetric, and so is therefore g, that is, g(x, y) = g(y, x)
for all x, y ∈ D. Furthermore, καε

A
y (x) is (finite and) continuous as a function of

(x, y) ∈ D × D (see [18]). It follows that g is l.s.c. on D × D, continuous off the
diagonal, and takes the value +∞ on the diagonal. Thus, the α-Green kernel g = gαD
is a (positive function) kernel on the locally compact space X = D (see Section 2.1).

For any Q ⊂ D, the assertions cα(Q) = 0 and cg(Q) = 0, cg(·) being the inner
capacity relative to the kernel g, are equivalent, cf. [18, Lemma 2.6]. Therefore, if
some statement U(x) is valid n.e. on B ⊂ D, then cg(N) = 0, N consisting of all
x ∈ B with U(x) not to hold; and also the other way around.

Lemma 4.1. gαD(x, y) > 0 for every (x, y) ∈ D ×D.

Proof. Suppose that, on the contrary, g(x, y) = 0 at some (x, y) ∈ D×D. Then

καεy(x) = καε
A
y (x).

Consider an open neighborhood U ⊂ D of y such that CℓRnU ⊂ D. Then καε
A
y (·)

is continuous on D (and, hence, on CℓRnU) and α-harmonic on D, while καεy is α-
superharmonic on R

n, cf. [26, Theorem 1.4] for α = 2 and [26, Chapter I, Section 6,
n◦ 20] for α < 2. According to relations (3.7) and (3.8), cf. Theorem 3.6,

καε
A
y 6 καεy everywhere on R

n,

the equality being valid n.e. on A. In view of the last two displays we therefore
conclude from [26, Theorems 1.1, 1.28] that

καε
A
y (x) = καεy(x) a.e. on R

n.

By [26, Theorem 1.12], this yields εAy = εy, which is impossible. �

Remark 4.2. Lemma 4.1 can actually be strengthened by [25, Theorem 3.4],
noting that for an open ball B such that CℓRnB ⊂ D, gαD(x, y) > gαB(x, y), x, y ∈ B,
the latter being clear from Corollary 3.21.

Definition 4.3. A measure ν ∈ M(D) is called extendible if its extension by 0
to R

n, denoted again by ν, is a (Radon) measure on R
n such that relation (3.1) holds

for both ν+ and ν−.

We identify an extendible measure ν ∈ M(D) with its extension by 0 to R
n. A

measure ν ∈ M(D) is extendible if and only if |ν| is extendible (or equivalently ν+

and ν− are so). Every bounded measure is of course extendible. The converse holds
if D is bounded, but not in general (e.g., not if A is compact).

Lemma 4.4. For any extendible measure ν ∈ M(D), gν is well-defined and

finite n.e. on D and given by

(4.1) gν = καν − καν
A.
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Proof. It is seen from Definition 4.3 that καν is finite n.e. on R
n, cf. the beginning

of Section 3, and hence so is καν
A. By identity (3.32), applied to ν±, we get

gν(x) =

ˆ

[

καεy(x)− καε
A
y (x)

]

dν(y) = καν(x)− καν
A(x)

for nearly every x ∈ D, and the lemma follows. �

Lemma 4.5. If ν ∈ Eg(D) is extendible, then

(4.2) ‖ν‖2g = κα(ν − νA, ν − νA).

If, moreover, ν has compact support in D, then ν ∈ Eα(R
n) and

(4.3) ‖ν‖2g = ‖ν − νA‖2α = ‖ν‖2α − ‖νA‖2α.

Proof. For the former assertion we observe that, by Lemma 4.4, gν is finite cg-n.e.
on D and given by (4.1). Besides, since ν ∈ Eg(D), the same holds |ν|-a.e. on D,
cf. [21, Lemma 2.3.1]. Integrating (4.1) with respect to ν±, we therefore obtain by
subtraction

(4.4) +∞ > g(ν, ν) = κα(ν − νA, ν).

As κα(ν − νA) = 0 n.e. on A by (3.7), while νA is cα-absolutely continuous by
Corollary 3.19, we also have

(4.5) κα(ν − νA, νA) = 0,

which results in (4.2) when combined with (4.4). Furthermore, since |ν| along with
ν is extendible and has finite α-Green energy, we likewise get relation (4.4) with |ν|
in place of ν.

If, moreover, ν has compact support in D, then κα(|ν|, |ν|
A) is finite, because

κα|ν|
A is continuous on D and hence bounded on the compact set Sν

D. In view of
(4.4) with |ν| in place of ν, we thus see that ν and νA have finite α-Riesz energy
and, hence, relation (4.2) is in fact the former equality in (4.3). Furthermore, then
‖νA‖2α = κα(ν, ν

A), cf. (4.5), and the former equality in (4.3) yields the latter. �

4.2. Potential-theoretic principles for the α-Green kernel. We proceed to
show that gαD satisfies the domination principle, even in a stronger form which includes
the complete maximum principle and hence the Frostman maximum principle.

Theorem 4.6. Let µ ∈ E+
g , let ν ∈ M

+(D) be an extendible measure, and let

w be a positive α-superharmonic function on R
n. Suppose that

gµ 6 gν + w µ-a.e. on D.

Then the same inequality holds on all of D.

Proof. Suppose first that Sµ
D is compact (in D) and that A = Dc is compact.

Then both µ and ν extend uniquely by 0 to similarly denoted (Radon) measures on
R

n, and καµ 6≡ +∞ and καν 6≡ +∞ according to Definition 4.3. Applying Lemma 4.5
to µ, we get µ ∈ E+

α (R
n) and µA ∈ E+

α (A). Furthermore, (4.1) applied to µ and ν
gives

καµ = καµ
A + gµ, καν = καν

A + gν,

and consequently

κα(µ+ νA) = κα(µ
A + νA) + gµ,(4.6)

κα(µ
A + ν) = κα(µ

A + νA) + gν(4.7)
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n.e. on D, and hence from gµ 6 gν + w µ-a.e. on D

(4.8) κα(µ+ νA) 6 κα(µ
A + ν) + w

µ-a.e. on D, and actually µ-a.e. on R
n because µ(A) = 0.

As seen from the proof of Theorem 3.6, καν
A is the pointwise limit of an increasing

sequence καν
A
k , k ∈ N, where νk ∈ E+

α (R
n) and κανk ↑ καν (as k → +∞). From

relation (4.8) we have in particular

κα(µ+ νAk ) 6 κα(µ
A + ν) + w µ-a.e. on R

n.

The same inequality holds νAk -a.e. on D since S
νAk
Rn ⊂ A and also n.e. on A (because

so do both relations καµ = καµ
A and καν

A
k = κανk 6 καν), and consequently νAk -a.e.

on R
n because νAk ∈ E+

α (A). Altogether

κα(µ+ νAk ) 6 κα(µ
A + ν) + w (µ+ νAk )-a.e. on R

n.

Since the right-hand member of this inequality is a positive α-superharmonic func-
tion on R

n while µ + νAk ∈ E+
α (R

n), we infer by the κα-domination principle [26,
Theorems 1.27, 1.29] followed by making k → +∞ that

κα(µ+ νA) 6 κα(µ
A + ν) + w everywhere on R

n.

Combining this with (4.6) and (4.7) and noting that κα(µ
A + νA) < +∞ on D leads

to

(4.9) gµ 6 gν + w everywhere on D.

If we drop the above extra hypothesis that A be compact, we choose y ∈ D neither
charging ν nor µ, and apply the Kelvin transformation with respect to S(y, 1). Then
A∗, the inverse of A ∪ {ωRn} with respect to S(y, 1), becomes compact; we denote
by D∗ the (connected) complement of A∗ to R

n. Observe that

(4.10) (ν∗)A
∗

= (νA)∗, (µ∗)A
∗

= (µA)∗.

Indeed, by relations (3.21) and (3.7),

κα(ν
A)∗(x∗) = |x− y|n−ακαν

A(x) = |x− y|n−ακαν(x)

= καν
∗(x∗) = κα(ν

∗)A
∗

(x∗)

for nearly every x ∈ A, or equivalently for nearly every x∗ ∈ A∗. Here we have used
the fact that the properties cα(E

∗) = 0 and cα(E) = 0, E ⊂ A, are equivalent, cf.
[26, Chapter IV, Section 5, n◦ 19]. When combined with Corollary 3.19 this fact
also yields that (νA)∗ and (ν∗)A

∗

are both cα-absolutely continuous. Therefore, by
Corollary 3.20, the very last display establishes the former equality (4.10). The proof
of the latter is similar.

By Lemma 4.5 and identities (3.22) and (4.10), in our assumptions

+∞ > gαD(µ, µ) = ‖µ‖2α − ‖µA‖2α = ‖µ∗‖2α − ‖(µA)∗‖2α

= ‖µ∗‖2α − ‖(µ∗)A
∗

‖2α = gαD∗(µ∗, µ∗),

so that gαD∗(µ∗, µ∗) < +∞. Furthermore, ν∗ ∈ M
+(D∗) remains extendible from D∗

along with ν from D since by (3.21), καν
∗ 6≡ +∞ along with καν. Besides, by (4.1),

(3.21) and (4.10),

gαD∗µ∗(x∗) = καµ
∗(x∗)− κα(µ

∗)A
∗

(x∗)

= |x− y|n−α
(

καµ(x)− καµ
A(x)

)

= |x− y|n−αgαDµ(x)

and likewise gαD∗ν∗(x∗) = |x− y|n−αgαDν(x).



140 Bent Fuglede and Natalia Zorii

Following Riesz [31] (see also [10] for α = 2), we define the Kelvin transformation
u∗ of an α-superharmonic function u on R

n with respect to S(y, 1) by u∗(x∗) =
|x − y|n−αu(x); then (u∗)∗ = u and u∗ is α-superharmonic on R

n, like u, cf. [31,
pp. 13–14] and [10, p. 275]. In view of the assumption gαDµ 6 gαDν + w µ-a.e.
on D, we therefore conclude from the above paragraph that gαD∗µ∗ 6 gαD∗ν∗ + w∗

µ∗-a.e. on D∗, cf. (3.20). According to what we have already proved, this implies
gαD∗µ∗ 6 gαD∗ν∗ + w∗, or equivalently gµ 6 gν + w everywhere on D, and thus
inequality (4.9) as claimed.

Finally, if we also drop the extra hypothesis that µ have compact support, there
is an increasing sequence of compact sets K with the union D. For each K we have
g(1Kµ) 6 gν +w µ-a.e. on D, in particular

(

1Kµ
)

-a.e., and therefore everywhere on
D as shown above. By varying K, the theorem follows. �

Remark 4.7. The complete maximum principle corresponds to the case where
the function w in Theorem 4.6 reduces to a constant c > 0, the domination principle
to that where w = 0 and the Frostman maximum principle to ν = 0 and w = c.

Corollary 4.8. (Continuity principle) If the support Sµ
D of µ ∈ M

+(D) is com-

pact and the restriction of gµ to Sµ
D is continuous, then gµ is continuous on all

of D.

Proof. As observed at the beginning of Section 2.2, g satisfies the continuity
principle in consequence of Frostman’s maximum principle, cf. Theorem 4.6 and
Remark 4.7. �

Theorem 4.9. (Energy principle) g = gαD is strictly positive definite.

Proof. It is enough to consider the case α 6= 2, for the 2-Green kernel is strictly
positive definite by [17, Chapter XIII, Section 7].

As noted at the beginning of Section 2.2 with reference to [27, 14], gαD is positive
definite in view of the Frostman maximum principle. For strict positive definiteness
we refer to the latter part of the proof of [18, Theorem 2.2]. �

4.3. Consistency of g = g
α

D
. We refer to Section 2.2, Definition 2.2, for the

notion of a consistent kernel introduced in [21, 22].

Lemma 4.10. g is consistent if and only if, for every λ ∈ E+
g of compact support

Sλ
D, the map µ→ g(λ, µ) is vaguely continuous on the (vaguely compact) truncated

cone E◦
g .

Proof. According to Definition 2.2 it suffices to establish the sufficiency part of
the assertion. Fix λ ∈ E+

g , and first observe that, for any increasing sequence of
compact subsets K ⊂ D with the union D,

g(λ, λ) 6 lim inf
K↑D

g(λK, λK) 6 lim sup
K↑D

g(λK, λK) 6 g(λ, λ),

where λK is the trace of λ on K. Indeed, since g is positive and lower semicontinuous
on D×D while λK → λ vaguely as K ↑ D, this follows from Lemma 2.1 (cf. also [21,
Lemma 2.2.1]). Hence ‖λ‖g = limK↑D ‖λK‖g, and similarly ‖λ‖2g = limK↑D g(λ, λK).
Combining these two relations yields

λK → λ strongly in Eg.

Let now µi → µ vaguely as i → +∞, where µi, µ ∈ E◦
g . According to the last

display, for any ε > 0 there exists a compact set K ⊂ D such that ‖λ − λK‖g < ε.
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For this K choose i0 so that |g(λK, µi−µ)| < ε for all i > i0. By the Cauchy–Schwarz
(Bunyakovski) inequality, we thus have

|g(λ, µi)− g(λ, µ)| 6 |g(λK, µi − µ)|+ |g(µi, λK − λ)|+ |g(µ, λK − λ)| < 3ε

for all i > i0, and the lemma follows. �

Theorem 4.11. g = gαD is consistent, and hence altogether perfect.

For α = 2, perfectness is due to Cartan [9] for D = R
n, n > 2, and to Edwards

[19] when D is a hyperbolic Riemann surface, in particular a regular domain in R
n,

n = 2. The following proof is inspired by [9] and [19].

Proof. According to [21, Lemma 3.4.2] it suffices to show that every λ ∈ Eg can
be approximated strongly by (signed Radon) measures µ ∈ Eg with gµ ∈ C0(D).
Without loss of generality we assume that λ > 0, and by the proof of Lemma 4.10
that λ has compact support.

We begin by proving that this measure λ can be approximated strongly in E+
g

by measures λk ∈ E+
g , k ∈ N, majorized by λ and such that the potentials gλk are

bounded and continuous (on D). According to the latter part of Lemma 4.5 we have
λ ∈ E+

α (R
n) and hence there exists by [26, Theorem 3.7] an increasing sequence of

measures λk ∈ E+
α (R

n) possessing the following two properties:

(a) λk → λ vaguely and strongly in E+
α (R

n),
(b) καλk belong to C(Rn) and καλk ↑ καλ.

It follows that, for any f ∈ C+
0 (R

n),

λ(f) = lim
k
λk(f) > λk(f) for every k,

and so, indeed, λk 6 λ. This implies that λk has compact support Sλk

Rn ⊂ Sλ
D, hence

καλk is (continuous and) bounded on Sλk

Rn. Since καλ
A
k is continuous and bounded

on Sλk

Rn as well, so is gλk. Application of Frostman’s maximum principle and the
continuity principle for the kernel g, cf. Theorem 4.6, Remark 4.7, and Corollary 4.8,
shows that each of gλk, k ∈ N, is continuous and bounded on all of D.

Furthermore, as seen from the proof of Theorem 3.6, καλ
A
k ↑ καλ

A. Since λA and
λAk , k ∈ N, belong to E+

α (R
n), it follows from an analogue of [9, Proposition 4] for

the (perfect) kernel κα that ‖λAk − λA‖α → 0 (as k → +∞). Thus, by the latter part
of Lemma 4.5,

‖λk − λ‖2g = ‖λk − λ‖2α − ‖λAk − λA‖2α → 0

as was to be proved.
We may therefore assume from the beginning that, for the given measure λ ∈ E+

g

with compact support Sλ
D in D, both gλ and καλ are bounded and continuous (on

D and R
n, respectively).

We next exhaust D by an increasing sequence of compact sets Lj contained in
the interior L◦

j+1 of Lj+1 and such that the (closed) sets Fj := R
n \ L◦

j have no α-

irregular points.11 Denote by µj ∈ E+
α (Fj) the sweeping of λ ∈ E+

α (R
n) onto Fj . Then

καµj = καλ everywhere on Fj , cf. Corollary 3.14, and consequently καµj restricted

11For example, let Lj be the (finite) union of all translates of the cube Kj := [0, 2−j]n by vectors
whose coordinates are 2−j multiplied by integers h with |h| 6 j and such that the translated cubes
are contained in D. Then Fj consists of only α-regular points, for so does any cube Q := [0, a]n

in R
n. In fact, fix x ∈ Q and choose 0 < r < a small enough that, for some i = 0, 1, 2, . . . , n,

B(x, r) ∩ Q is one of 2i congruent non-overlapping sets exhausting the ball B(x, r), and hence
cα
(

Q∩B(x, r)
)

> 2−icα
(

B(x, r)
)

by subadditivity of cα. By the Wiener criterion in the form used
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to Sµj

Rn is continuous. According to the continuity principle for the kernel κα, cf.
[26, Theorem 1.7], καµj therefore belongs to C(Rn). Furthermore, since µj is the
sweeping of λ on Fj, they both have the same sweeping λA = µA

j on A ⊂ Fj, cf.
Corollary 3.3.

Write λj := λ− µj,D where µj,D denotes the trace of µj on D. Being bounded, λ
and µj,D are both extendible, and we obtain from Lemma 4.4 on all of D,

gλ = καλ− καλ
A = καλ− καµ

A
j ,

gµj,D = καµj,D − καµ
A
j,D,

and therefore
gλj = [καλ− καµj,D]− [καµ

A
j − καµ

A
j,D].

But
καµ

A
j − καµ

A
j,D = καµ

A
j,A = καµj,A

everywhere on R
n because µA

j,A = µj,A in consequence of µj,A ∈ E+
α (A). Combining

the last two displays gives

gλj = καλ− καµj,D − καµj,A = καλ− καµj

on all of D, and hence gλj is indeed of the class C0(D) since it equals 0 off the
compact set Lj ⊂ D.

It thus remains to show that λj → λ strongly in Eg, or equivalently, µj,D → 0
strongly in Eg. (Note that µj,D ∈ E+

g (D) since g 6 κα on D ×D.) The proof at this
point in [19] uses 2-harmonic functions, but cannot be adapted to the present case
α 6 2 because α-harmonicity for α < 2 is not a local property. Instead we use the
fact that sweeping of any measure ν ∈ E+

α (R
n) onto a closed set F ⊂ R

n amounts to
orthogonal projection in the pre-Hilbert space Eα(R

n) onto the convex cone E+
α (F )

of all µ ∈ E+
α (R

n) supported by F , cf. Theorems 3.1, 3.6 and Remark 3.5. This cone
is also strongly closed in E+

α (R
n) because κα is perfect and hence the strong topology

on E+
α (R

n) is finer than the vague topology (cf. Definition 2.2).
By Lemma 4.5 and the above equality µA

j,A = µj,A,

(4.11) ‖µj,D‖
2
g = ‖µj,D − µA

j,D‖
2
α = ‖µj − µA

j ‖
2
α = ‖µj‖

2
α − ‖µA

j ‖
2
α.

The potentials καµj, j ∈ N, form a decreasing sequence because, by Corollary 3.3,

µj+1 = λFj+1 = (λFj )Fj+1 = µ
Fj+1

j

and hence
καµj+1(x) 6 καµj(x) for all x ∈ R

n, j ∈ N.

As in [9, Proposition 4], (µj) is therefore Cauchy in E+
α (R

n) and hence converges
strongly to any of its vague cluster points µ. Since µ belongs to E+

α (Fj) for every j,
it is supported by A =

⋂

j Fj , while

καµ = lim
j→+∞

καµj = καλ n.e. on A,

the first equality being valid even n.e. on R
n (see, e.g., [21, p. 166, Remark]). This

yields λA = µ, cf. Corollary 3.20.
Furthermore, καµ

A
j+1 = καµj+1 6 καµj = καµ

A
j n.e. on A, which according to the

κα-domination principle [26, Theorems 1.27, 1.29] gives καµ
A
j+1 6 καµ

A
j everywhere

on R
n. We thus have the decreasing sequence

(

καµ
A
j

)

and, likewise as above, an

in [26, p. 289, Eq. 5.1.7] (taking r := qk, k ∈ N, where 0 < q < 1), it follows that indeed x is an
α-regular point of Q.
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analogue of [9, Proposition 4] for κα shows that the sequence
(

µA
j

)

is Cauchy in

E+
α (A). Hence, µA

j → λA in E+
α (A). Letting j → +∞ in (4.11) we see that µj,D → 0

strongly in E+
g (D) as desired. �

4.4. α-Green equilibrium measure. Principle of positivity of mass.

Theorem 4.12. For any relatively closed subset F of D with cg(F ) < +∞ there

exists a unique α-Green equilibrium measure on F , that is, a measure γF,g ∈ E+
g (F )

such that γF,g(D) = ‖γF,g‖
2
g = cg(F ) and

gγF,g = 1 n.e. on F,(4.12)

gγF,g 6 1 everywhere on D.

The measure γF,g is characterized uniquely within E+
g (F ) by (4.12), and it is the

(unique) solution to the problem of minimizing α-Green energy over the class ΓF of

all ν ∈ Eg(D) with gν > 1 n.e. on F , i.e.

(4.13) cg(F ) = ‖γF,g‖
2
g = min

ν∈ΓF

‖ν‖2g.

Furthermore, relation (4.12) can be specified as follows:

(4.14) gγF,g(x) = 1 for every α-regular x ∈ F.

Proof. Except for the very last assertion the stated theorem is obtained from
the perfectness of the kernel g = gαD (Theorem 4.11) and the Frostman maximum
principle (cf. Theorem 4.6 and Remark 4.7) in view of [21, Chapter II, Section 4.1].

For the proof of (4.14) one can certainly assume that cg(F ) > 0, or equivalently
cα(F ) > 0, cf. [18, Lemma 2.6], for if not then there is no α-regular point of F . There
is also no loss of generality in assuming cα(D

c) > 0 since otherwise the relation in
question reduces to (3.25).

Assume first that F = K is compact; then γK,g ∈ E+
α (K) by the latter part of

Lemma 4.5. Consider the α-Riesz equilibrium measure γK,α on K, and write

χ := γK,α + (γAK,g)
K .

According to Lemma 4.4 we get from relation (4.12) καγK,g = 1 + καγ
A
K,g n.e. on K.

When combined with (3.4) and (3.7) this yields

καχ = καγK,α + κα(γ
A
K,g)

K = καγK,g n.e. on K.

Having observed that χ and γK,g are both of the class E+
α (K) we thus have χ = γK,g

by [26, p. 178, Remark], and consequently καχ = καγK,g everywhere on R
n, in

particular on K \KI,α. Applying Corollaries 3.14 and 3.15 to κα(γ
A
K,g)

K and καγα,K ,
respectively, we obtain from the last display

καγK,g = 1 + καγ
A
K,g everywhere on K \KI,α,

which yields (4.14) for F = K compact.
To establish (4.14) for F relatively closed in D, consider an increasing sequence

of compact sets Ki ⊂ F such that
⋃

iKi = F . Then by (4.12),

1 = gγKi,g = gγKi+1,g = gγF,g n.e. on Ki,

which according to the g-domination principle (cf. Theorem 4.6 and Remark 4.7)
yields

gγKi,g 6 gγKi+1,g 6 gγF,g everywhere on D,
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and consequently

(4.15) gγF,g(x) > 1 for every α-regular x ∈ F.

On the other hand, γKi+1,g ∈ ΓKi
, and application of [21, Lemma 4.1.1] gives

‖γKi+1,g − γKi,g‖
2
g 6 ‖γKi+1,g‖

2
g − ‖γKi,g‖

2
g.

The sequence γKi,g ⊂ E+
g (F ), i ∈ N, is thus Cauchy, and it converges in Eg strongly

and vaguely to γF,g (see [21, Proof of Theorem 4.1]). Therefore, by (4.14) applied to
Ki and Lemma 2.1,

gγF,g(x) 6 lim
i→+∞

gγKi,g(x) = 1 for every α-regular x ∈ F.

When combined with inequality (4.15) this leads to (4.14). �

Theorem 4.13. (Principle of positivity of mass) For µ, ν ∈ M
+(D) such that

gαDµ > gαDν everywhere on D we have µ(D) > ν(D).

Proof. Likewise as in the proof of Theorem 4.11 (see the footnote therein), one
can choose an increasing sequence of compact sets Ki without α-irregular points such
that

⋃

iKi = D. Having denoted by γi the g-equilibrium measure on Ki we have
1 = gγi = gγi+1 everywhere on Ki, cf. (4.14), and by the g-domination principle (cf.
Theorem 4.6 and Remark 4.7), gγi 6 gγi+1 on all of D. The rest of the proof runs
in a way similar to that in the proof of Theorem 3.11. �
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