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Abstract. In this paper we find some necessary and sufficient conditions on an entire function

g for the Volterra operator Vg(f)(z) =
´ z

0
f(ξ)g′(ξ) dξ to be bounded between different weighted

spaces of entire functions H∞

v (C) or Fock-type spaces Fφ
p (C).

1. Introduction

Let Ω be the unit disc D or the complex plane C and, as usual, denote by H(Ω)
the space of holomorphic functions in Ω. Given g ∈ H(Ω) the Volterra operator with
symbol g, to be denoted by Vg, is defined by

Vg(f)(z) =

ˆ z

0

f(ξ)g′(ξ) dξ, z ∈ Ω, f ∈ H(Ω).

In the case Ω = D, this operator was first introduced by Pommerenke [20]. He
showed that it is bounded on the Hardy space H2(D) if and only if g ∈ BMOA.
A bit later the result was extended to Hp(D) for any 1 ≤ p < ∞ by Aleman and
Siskakis [1, 4]. In particular, they showed that, for 1 ≤ p <∞,

(1) ‖Vg(f)‖Hp ≤ Cp‖g‖BMOA‖f‖Hp, f ∈ Hp(D),

for a constant Cp > 0 depending only on p. The boundedness, compactness and other
properties of Vg acting on spaces of holomorphic functions defined in the unit disc
have been deeply studied (see [5] for weighted Bergman spaces, [6, 15] for weighted
spaces of holomorphic functions H∞

v (D) and [17, 19] for several other spaces). The
reader is also referred to [2, 3] for different results concerning the spectra of the
Volterra operator in some cases.

In this article we are only concerned with spaces of entire functions. Throughout
the paper we write P for the space of polynomials (with the notation un(z) = zn) and
H0(C) for the space of entire functions vanishing at the origin. For each 0 < p <∞,
0 < r < ∞ and f ∈ H(C) we write M∞(f, r) = sup|z|=r |f(z)| and Mp(f, r) =
(

´ 2π

0
|f(reit)|p dt

2π

)1/p

.

Given 0 < p < ∞ and a measurable function φ : (0,∞) → R, we denote by
Fφ
p (C) the space of entire functions f such that

´

C
|f(z)|pe−pφ(|z|) dm(z) < ∞ and

we write

‖f‖Fφp = (2π)1/p
(
ˆ ∞

0

Mp
p (f, r)re

−pφ(r) dr

)1/p

.
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The classical Fock spaces Fp(C) correspond to φ(z) = |z|2

2
.

For the limiting case Fφ
∞(C) we shall also use the standard notation H∞

v (C)
where v(z) = e−φ(|z|), that is the space of entire functions f such that

‖f‖Fφ∞ = ‖f‖v = sup
r≥0

e−φ(r)M∞(f, r) <∞.

As usual H0
v (C) denotes the subspace of H∞

v (C) of functions such that lim|z|→∞

v(|z|)|f(z)| = 0.
It is well known that we can change the values of φ or v in a bounded interval

[0, R0] and even that we can replace φ for another weight ϕ being continuous and
increasing so that H∞

w (C) = H∞
v (C) and Fϕ

p (C) = Fφ
p (C) with equivalent norms.

Since we are only interested in spaces containing the polynomials, that is P ⊂ H0
v (C)

or P ⊂
⋂

p>0Fφ
p (C), we shall impose the following assumptions on the weights:

(2) lim
r→∞

rmv(r) = 0, ∀m ∈ N,

or

(3)

ˆ ∞

0

rme−pφ(r) dr <∞, ∀m ∈ N, ∀p > 0.

Due to the above considerations we introduce the following definition.

Definition 1.1. We write W for the class of functions φ : [0,∞) → R which are
continuous, increasing in [rφ,∞) for some rφ > 0 and for each m ∈ N satisfy

(4) sup
r>0

rme−φ(r) <∞.

Notice that conditions (2), (3) and (4) are in fact equivalent. Examples of weights
in W to have in mind are ϕα,β,γ(r) = βrα − γ log r for α, β > 0 and γ ≥ 0.

The study of the Volterra operator on certain spaces of entire functions was
initiated by Constantin in [11]. She characterized continuity (and compactness) of
Vg on the classical Fock spaces.

Theorem 1.1. [11, Theorem 1] Let 0 < p, q <∞ and 0 6= g ∈ H0(C).

(i) Case 0 < p ≤ q: Vg is bounded from Fp(C) into Fq(C) if and only if g(z) =
az2 + bz for some a, b ∈ C.

(ii) Case q < p: Vg is bounded from Fp(C) into Fq(C) if and only if 1
q
− 1

p
< 1

2

and g(z) = az for some 0 6= a ∈ C.

Later in collaboration with Peláez [12] the results were extended to a class of
Fock-type spaces Fφ

p (C) defined by certain smooth radial weights φ. In [12] certain
class I of twice differentiable and rapidly increasing weights was introduced. This
class includes examples such as φ(r) = rα for α > 2, φ(r) = eβr for β > 0 or
φ(r) = ee

r

. For weights in this class they obtained the complete characterization
of the symbols g which produce bounded Volterra operators Vg acting from Fφ

p (C)

into Fφ
q (C) (see [12, Theorem 3]). In particular for p = q they showed that for

0 6= g ∈ H(C) and φ ∈ I, the Volterra operator Vg is bounded on Fφ
p (C) if and only

if

(5) sup
z∈C

|g′(z)|
1 + φ′(|z|) <∞.

Also they generalized Theorem 1.1 as follows:
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Theorem 1.2. [12, Corollary 25] Let 0 < p, q < ∞, 0 6= g ∈ H0(C) and
φ(r) = rα with α > 2.

(i) Case 0 < p ≤ q and 1+(α−2)(1− 1
p
+ 1

q
) ≥ 0: Vg is bounded from Fφ

p (C) into

Fφ
q (C) if and only if g is a polynomial with deg(g) ≤ 2 + (α− 2)(1− 1

p
+ 1

q
).

(ii) Case q < p: Vg is bounded from Fφ
p (C) into Fφ

q (C) if and only if 1
q
− 1

p
< α−1

2

and g is a polynomial with deg(g) < α− 2(1− 1
p
+ 1

q
).

The study for Fφ
∞(C) = H∞

v (C) was considered by Bonet and Taskinen [9] for
certain classes of radial weights v. We refer also the interested reader to [8, 11, 13] for
results concerning the spectra of the Volterra operator in this setting. In [9] certain
class of weights J (see conditions appearing in [9, Proposition 3.2]) was introduced.
This class includes examples such as ψ(r) = βrα − γ log r − δ log(log(1 + r)), for
some α, β > 0, γ, δ ∈ R, ψ(r) = (log(1 + r))1+ǫ − γ log r − δ log(log(1 + r)), for
some ǫ > 0, γ, δ ∈ R or, more generally twice differentiable weights satisfying certain
conditions (see [9, Thm 3.6, Thm 3.7]). For such a class, using the notation ṽ(z) for
the so-called associate weight of v (see [10]), they obtained (see [9, Theorem 3.4]) that
for 0 6= g ∈ H(C), v(z) = e−φ(|z|) and w(z) = e−ψ(|z|) with ψ ∈ J , the boundedness
of Vg from H∞

v (C) into H∞
w (C) is equivalent to the condition

(6) sup
z∈C

|g′(z)|w(z)
ψ′(|z|)ṽ(z) <∞.

As a consequence they established the following theorem.

Theorem 1.3. [9, Corollary 3.11] Let v(r) = e−βr
α

for β > 0 and α ≥ 1 and
let 0 6= g ∈ H0(C). Then Vg is bounded on H∞

v (C) if and only g is a polynomial of
deg(g) ≤ [α], where [a] stands for the integer part of a > 0.

Observe that Vg = IMg′ where Mg′(f) = fg′ and I(f)(z) =
´ z

0
f(ξ) dξ. All the

previous results are obtained analyzing the action of Mg′ and I on the corresponding
spaces independently, and using the equivalent definition of the norm of f in the
spaces H∞

v (C) and Fφ
p (C) in terms of the derivative f ′ (see [9, Proposition 3.2]) or

Littlewood–Paley formula (see [12, Theorem 10]) respectively.
In this paper we would like to attack the boundedness of the Volterra operator

Vg (and certain modification of it) directly and not relying on the boundedness of
the multiplication or differentiation operators independently. Note that the results
in [12] do not apply to φ(r) = rα for 0 < α ≤ 2 and not cover different weights φ
and ψ and the results in [9] cover different weights but only for p = q = ∞. We shall
present here some necessary and sufficient conditions for the boundedness of Vg from
Fφ
p (C) into Fψ

q (C) for different parameters 0 < p, q ≤ ∞ and different weights φ and
ψ belonging to W, extending and providing some alternative proofs of some results
in [9, 11, 12].

Besides the introduction the paper is divided into four sections. The first section
contains some results on the class W while the second one is devoted to some prelimi-
naries on the Volterra operator Vg and its modification Ṽg(f)(z) =

1
z

´ z

0
f(ξ)Dg(ξ) dξ

where Dg(z) = g(z) + zg′(z). The main contributions are in the last sections where
some necessary and sufficient conditions for the boundedness of Vg and Ṽg on weighted
spaces of holomorphic functions and Fock-type spaces and their applications are pro-
vided. It will be shown (see Corollary 4.6) that the existence of a function g 6= 0 such
that Vg is bounded Fφ

p (C) into Fψ
q (C) implies that Vuk is also bounded Fφ

p (C) into

Fψ
q (C) for all k ∈ N such that g(k)(0) 6= 0. This forces some relationship between p,
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q, φ and ψ. In particular we will show that there is no entire function 0 6= g ∈ H0(C)
such that Vg maps boundedly H∞

v1 (C) into H∞
v2 (C) for vi = e−ϕαi,βi,γi for i = 1, 2

whenever α1 > α2 or α1 = α2 and β1 > β2 or α1 = α2, β1 = β2 and α1 − γ2 + γ1 < 1
(this actually explains the restriction α ≥ 1 in Theorem 1.3). Moreover once such
a function exists it must be a polynomial of degree less or equal than α1 − γ2 + γ1.
In order to provide some sufficient conditions for the boundedness of Vg for different
weights we shall introduce a function inspired by the so-called distortion function of
φ considered in [12]. For each 0 < p < ∞ and weight φ the authors considered the

function ψp,φ(r) =
´

∞

r
se−pφ(s)ds

(1+r)e−pφ(r)
, r ≥ 0, which was crucial to describe the norm of f

in Fφ
p (C) in terms of the derivative f ′. We shall introduce for each pair (φ, ψ) of

weights and 0 < p <∞ the function

Hψ,φ,p(r) =

{

e−φ(r)(1
r

´∞

r
e−pψ(s) ds)−1/p, 0 < p ≤ 1;

e−(φ(r)+(p−1)ψ(r))(1
r

´∞

r
e−pψ(s), ds)−1, 1 < p <∞

which will play an important role in finding sufficient conditions on the boudedness of
Vg. Namely we shall establish in Theorem 5.7 below that, for 0 < p < ∞, φ, ψ ∈ W
and g ∈ H(C), the existence of a constant A > 0 such that

(7) M∞(Dg, r) ≤ AHψ,φ,p(r), r > 0.

implies that Ṽg is bounded from Fφ
p (C) into Fψ

p (C). As a consequence one generalizes,
at least for p = q, the results in [12] to a much wider class of weights.

2. Preliminaries on weights

We start by mentioning some classical families of weights. For each ε, α, β > 0
and γ ∈ R the consider the weights ρε and ϕα,β,γ given by

ρε(r) =
(

log(1 + r)
)1+ε

and
e−ϕα,β,γ(r) = min{(1 + r)γ, rγ}e−βrα

that is ϕα,β,γ(r) = βrα−γ log(1+r) for γ < 0 and ϕα,β,γ(r) = βrα−γ log r for γ ≥ 0.
It is easy to see that ρε and ϕα,β,γ belong to W.

The examples ϕα,β,γ can be obtained from a single one φ(r) = r using the follow-
ing modifications:

φβ(r) = φ(βr), β > 0,(8)

φ(α)(r) = φ(rα), α > 0,(9)

e−φ(γ)(r) = min{(1 + r)γ, rγ}e−φ(r), γ ∈ R.(10)

It is elementary to see that if φ belongs to W then φβ, φ
(α) and φ(γ) also belong

to W.

Definition 2.1. Let 0 < p < ∞ and φ such that
´∞

r
e−pφ(s)ds < ∞ for r > 0.

We define, for r > 0,

(11) Φp(r) = −1

p
log

(

1

r

ˆ ∞

r

e−pφ(s) ds

)

,

or, equivalently e−pΦp(r) = 1
r

´∞

r
e−pφ(s) ds.

Lemma 2.1. Let 0 < p <∞ and φ ∈ W. Then

(i) Φp ∈ W,
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(ii) if φ ∈ C1(0,∞) and convex, then

(12) sup
r≥0

eφ(r)−Φp(r) <∞,

(iii) if φ(r) = ϕα,β,γ for some α, β > 0 and γ ∈ R, then

(13) sup
r>0

r
α
p eφ(r)−Φp(r) <∞.

Proof. (i) Clearly e−Φp(r) is decreasing and Φp(r) is increasing. Now for each
m ∈ N with mp > 1 we have that

rpme−pΦp(r) = rpm−1

ˆ ∞

r

e−pφ(s) ds ≤
ˆ ∞

0

spm−1e−pφ(s) ds <∞.

This shows that Φp ∈ W.
(ii) Note that rφ′(r) ≥ φ′(1) = A for r ≥ 1. Hence for r ≥ 1

e−pΦp(r) =
1

r

ˆ ∞

r

e−pφ(t) dt ≤ 1

A

ˆ ∞

r

φ′(t)e−pφ(t) dt =
1

pA
e−pφ(r).

Since sup0≤r≤1 e
φ(r)−Φp(r) <∞ this gives (12).

(iii) We claim that for any a ∈ R there exists Ca > 0 so that

(14)

ˆ ∞

r

tae−t dt ≤ Car
ae−r, r > 0.

Of course the result holds true for a ≤ 0 with Ca = 1. The case a ∈ N follows by
induction and integration by parts. Now for a > 0 write a = λk0 + (1 − λ)k1 with
0 ≤ λ ≤ 1 and k0, k1 ∈ N ∪ {0}, apply Hölder’s inequality and the previous case to
get (14). To show (13) we consider the cases γ ≥ 0 and γ < 0 separately.

Case γ ≥ 0: From (14) we have

e−Φp(r) =

(

1

r

ˆ ∞

r

tpγe−pβt
α

dt

)1/p

= C

(

1

r

ˆ ∞

pβrα
s
pγ+1
α

−1e−s dt

)1/p

≤ C ′rγ−
α
p e−βr

α

= C ′r−
α
p e−φ(r).

Case γ < 0: Arguing as above,

e−Φp(r) =

(

1

r

ˆ ∞

r

(1 + t)pγe−pβt
α

dt

)1/p

≤ C

(

(1 + r)pγ

r

ˆ ∞

pβrα
s

1
α
−1e−s dt

)1/p

≤ C(1 + r)γr−α/pe−βr
α ≤ r−

α
p e−φ(r).

The proof is complete. �

Let us now consider a subclass of differentiable weights wide enough to include
most of the classical weights.

Definition 2.2. Let us denote W0 the collection of continuous functions φ : [0,∞)
→ R such that φ ∈ C1([rφ,∞)) for some rφ ≥ 0 and

(15) lim
r→∞

rφ′(r) = ∞.

Note that the classical examples ϕα,β,γ and ρε belong to W0 for any ǫ, α, β > 0
and γ ∈ R.

Lemma 2.2. W0 ⊂ W.
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Proof. Let φ ∈ W0. Then φ′(r) > 0 in some interval (R,∞) and for each

m ∈ N, L’Hospital’s rule gives limr→∞
φ(r)−m log r

m log r
= ∞. In particular limr→∞(φ(r)−

m log r) = ∞. Hence (2) holds and then φ ∈ W. �

Proposition 2.3. Let 0 < p < ∞ and let φ be differentiable with φ′(r) > 0 for
r > 0. Then

φ ∈ W0 ⇐⇒ Φp ∈ W0 ⇐⇒ lim
r→∞

eφ(r)−Φp(r) = 0.

Proof. Differentiating in the formula e−pΦp(r) = 1
r

´∞

r
e−pφ(s)ds one has that

prΦ′
p(r) = ep(Φp(r)−φ(r)) + 1. Now use L’Hospital’s rule to obtain

lim
r→∞

prΦ′
p(r) = lim

r→∞

re−pφ(r)
´∞

r
e−pφ(s) ds

+ 1 = p lim
r→∞

rφ′(r).

Thus both equivalences are shown. �

Let us give a notation to the sequence of the norms of uk in the space Fφ
p for any

weight φ ∈ W and 0 < p ≤ ∞.

Definition 2.3. Let 0 < p ≤ ∞, φ ∈ W and k ∈ N ∪ {0}. We define

Ck(φ, p) =

(
ˆ ∞

0

rpk+1e−pφ(r) dr

)1/p

= (2π)−1/p‖uk‖Fφp ,(16)

Ck(φ,∞) = sup
0<r<∞

rke−φ(r) = ‖uk‖Fφ∞ .(17)

Next result is immediate and left to the reader.

Example 2.1. Let α, β, p > 0, γ ≥ 0 and φ = ϕα,β,γ. Then

(18) Ck(φ,∞) = (αβ)−
k+γ
α (k + γ)

k+γ
α e−

k+γ
α

and

(19) Cp
k(φ, p) =

(pβ)−
pk+2+pγ

α

α
Γ

(

pk + 2 + pγ

α

)

.

Remark 2.1. For 0 < p, p1, p2 <∞, k1, k2, k ∈ N ∪ {0} and φ, ψ ∈ W we have

Ck1+k2(φ+ ψ, p) ≤ min{Ck1(φ, p)Ck2(ψ,∞), Ck2(φ, p)Ck1(ψ,∞)},(20)

Ck(φ, p3) ≤ Ck(φ, p1)Ck(φ, p2),
1

p3
=

1

p1
+

1

p2
,(21)

Ck(φ, p2) ≤ Ck(φ, p1)
p1/p2Ck(φ,∞)1−p1/p2 , p1 < p2.(22)

Lemma 2.4. Let φ ∈ W and 0 < p ≤ ∞. Then the sequences
(

(C−1
0 (φ, p)Ck(φ, p))

1/k
)

k
and

(

Ck+1(φ, p)/Ck(φ, p)
)

k
are increasing with

lim
k

Ck+1(φ, p)

Ck(φ, p)
= lim

k→∞
C

1/k
k (φ, p) = ∞.

Proof. Case p = ∞: Since e−φ(r)/k ≤ e−φ(r)/(k+1) for all r > 0 and k ∈ N

then obviously (Ck(φ,∞)1/k)k is increasing. Let us show that (Ck+1(φ,∞)

Ck(φ,∞)
)k is also

increasing. Since k = 1
2
(k − 1) + 1

2
(k + 1), we have that

Ck(φ,∞) = sup
r>0

r
(k−1)

2 e−
φ(r)
2 r

(k+1)
2 e−

φ(r)
2 ≤ Ck−1(φ,∞)1/2Ck+1(φ,∞)1/2



Boundedness of Volterra operators on spaces of entire functions 95

and then Ck+1(φ,∞)/Ck(φ,∞) is increasing. Finally, using now that Ck(φ,∞)1/k ≤
Ck+1(φ,∞)1/(k+1) we have

Ck+1(φ,∞)

Ck(φ,∞)
≥ Ck+1(φ,∞)1/(k+1). Hence limk→∞

Ck+1(φ,∞)

Ck(φ,∞)
=

limk→∞Ck(φ,∞)1/k = ∞.
Case 0 < p <∞: Applying Cauchy–Schwarz we have
(
ˆ ∞

0

rpk+p+1e−pφ(r) dr

)2

≤
(
ˆ ∞

0

rpk+2p+1e−pφ(r) dr

)(
ˆ ∞

0

rpk+1e−pφ(r) dr

)

.

This shows that Ck+1(φ, p)
2 ≤ Ck+2(φ, p)Ck(φ, p). Thus Ck+1(φ, p)/Ck(φ, p) is in-

creasing. Now consider the measure dµp(r) = C0(φ, p)
−pre−pφ(r) dr defined in R

+.
Of course, µp(R

+) = 1 and (C0(φ, p)
−1Ck(φ, p))

1/k = ‖u1‖Lpk(R+,dµp) where u1(r) = r.

This gives (C0(φ, p)
−1Ck1(φ, p))

1/k1 ≤ (C0(φ, p)
−1Ck2(φ, p))

1/k2 whenever k1 ≤ k2. In
particular (C0(φ, p)

−1Ck(φ, p))
1/k is increasing. Now taking into account that

Ck+1(φ, p)

Ck(φ, p)
≥ (C−1

0 (φ, p)Ck+1(φ, p))
1/(k+1) = ‖u1‖Lp(k+1)(µp)

we conclude that limk→∞
Ck+1

Ck
≥ limk→∞ ‖u1‖Lp(k+1)(µp) = ‖u1‖L∞(µp) = ∞. The proof

is complete. �

Lemma 2.5. Let φ ∈ W and 0 < p ≤ ∞. Then

(23) Ck(φ, p) ≤ Ck1(φ, p)
k2−k
k2−k1Ck2(φ, p)

k−k1
k2−k1 , k1 ≤ k ≤ k2.

In particular C2
k(φ, p) ≤ C2k(φ, p)C0(φ, p) for all k ∈ N.

Proof. Let us denote Mk = Ck(φ,∞) and Ck = Ck(φ, p) for 0 < p <∞. We start
with the case p = ∞. For each k, k1, k2 ∈ N such that 1

k
= θ

k1
+ 1−θ

k2
, we obviously

have M
1/k
k ≤ M

θ/k1
k1

M
(1−θ)/k2
k2

. Hence for each k1 ≤ k ≤ k2, choosing θ = k1
k
k2−k
k2−k1

one

obtains Mk ≤ M
k2−k
k2−k1
k1

M
k−k1
k2−k1
k2

.
For 0 < p < ∞, arguing as in the previous lemma we can write for k1 ≤ k ≤ k2

and 1
pk

= θ
pk1

+ 1−θ
pk2

that

‖u1‖Lpk(R+,dµp) ≤ ‖u1‖θLpk1(R+,dµp)
‖u1‖1−θLpk2(R+,dµp)

.

Now (23) follows since θ = k1
k
k2−k
k2−k1

and 1− θ = k2
k
k−k1
k2−k1

.

Finally selecting k1 = 0 and k2 = 2k one gets M2
k ≤ M2kM0 and C2

k ≤ C2kC0. �

Remark 2.2. The conditions appearing in Lemmas 2.4 and 2.5 are closely re-
lated to the ones appearing when defining the Denjoy–Carleman classes (see for
instance [16]).

3. Preliminaries on the Volterra operator

Given g ∈ H(C) we denote by Mg, D and I the multiplication, differentiation
and integration operators respectively, i.e. for f ∈ H(C) we have

Mg(f)(z) = g(z)f(z), Df(z) = f ′(z), If(z) =
ˆ z

0

f(ξ) dξ.

Of course I(H(C)) = H0(C), IdH(C) = DI and IdH0(C) = ID where IdX stands for
the identity operator acting on X. We denote by S and S−1 the shift and backwards
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shift operators defined by

S−1f(z) =
f(z)− f(0)

z
=

∞
∑

n=0

an+1un, Sf(z) = zf(z) =

∞
∑

n=1

an−1un,

for each f =
∑∞

n=0 anun ∈ H(C). Using the notation Pm(f) for the Taylor polynomial
of degree m and Rmf = f − Pm−1(f) for the remainder of degree m we have

Smf(z) = zmf(z) =

∞
∑

k=m

ak−mz
k, S−mf(z) =

∞
∑

k=0

ak+mz
k =

Rmf(z)

zm
.

This gives that SmS−mf = Rmf and S−mSmf = f for m ∈ N.
Since P ⊂ Fφ

p (C) we have that f ∈ Fφ
p (C) if and only if Rmf ∈ Fφ

p (C) for any
m ∈ N, 0 < p ≤ ∞ and φ ∈ W. Note that ‖Smf‖Fφp = ‖f‖

F
φ(m)
p

for each 0 < p ≤ ∞
where φ(m) was defined by e−φ(m)(r) = rme−φ(r).

Lemma 3.1. Let m ∈ N, 1 ≤ p ≤ ∞ and φ ∈ W. Then

‖S−mf‖
F
φ(m)
p

≤ (m+ 1)‖f‖Fφp
for f =

∑∞
k=0 akuk ∈ Fφ

p (C).

Proof. For each k ∈ N ∪ {0}, r > 0 and p ≥ 1 we have |ak|rk ≤ M1(f, r) ≤
Mp(f, r). Thus

(24) |ak|Ck(φ, p) ≤ (2π)−1/p‖f‖Fφp , k ∈ N ∪ {0}.

Therefore ‖Pm−1(f)‖Fφp ≤ m‖f‖Fφp , ‖Rm(f)‖Fφp ≤ (m+ 1)‖f‖Fφp and

‖S−m(f)‖
F
φ(m)
p

= ‖Rm(f)‖Fφp ≤ (m+ 1)‖f‖Fφp .

This finishes the proof. �

As mentioned in the introduction the Volterra operator with symbol g is defined
by the formula

(25) Vg(f)(z) = IMDg(z) = z

ˆ 1

0

f(tz)g′(tz) dt, z ∈ C,

for each f ∈ H(C).
Note that Vg = 0 for any constant function g and that also Vg(f) ∈ H0(C) for any

f ∈ H(C). We shall consider the following modification to avoid these restrictions.
For each f, g ∈ H(C) we write

(26) Ṽg(f)(z) =
1

z

ˆ z

0

f(ξ)Dg(ξ) dξ, z ∈ C,

where D = DS, that is Df(z) =
∑∞

n=0(n + 1)anz
n = zf ′(z) + f(z).

Denoting I = S−1I, we have for f =
∑∞

n=0 anun that

If(z) =

∞
∑

n=0

an
(n+ 1)

zn =
1

z

ˆ z

0

f(ξ) dξ

and we obtain that Ṽg = IMDg. In this way Ṽg is well defined for g ∈ H(C) and
takes values in H(C). Moreover, for each f, g ∈ H(C)

(27) Ṽg(f) = S−1VSg(f), Vg(f) = SṼS−1g(f).
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Since Vg is continuous (in the topology of the uniform convergence on compact
sets) from H(C) into H0(C) and the map given by g → Vg is linear and continuous
from H0(C) into the space of continuous linear operators, using (27) similar results
hold for Ṽg. Next result is immediate from the definitions.

Lemma 3.2. Let 0 < p, q ≤ ∞, φ, ψ ∈ W and g ∈ H(C). Then Vg is bounded

from Fφ
p (C) into Fψ

q (C) if and only if ṼS−1g is bounded from Fφ
p (C) into Fψ(1)

q (C).

Other expressions for the operators above are given as follows:

Lemma 3.3. Let f, g ∈ H(C) with f =
∑∞

m=0 bmum and g =
∑∞

n=0 anun. Then

Vg(f)(z) =
∞
∑

j=1

1

j

(

∑

n+m=j

nanbm

)

zj ,(28)

Ṽg(f)(z) =
∞
∑

j=0

1

j + 1

(

∑

n+m=j

(n+ 1)anbm

)

zj .(29)

Proof. The proof is straightforward using

Vg(f)(z) =
∞
∑

n=1

nanz
n

(
ˆ 1

0

f(zs)sn−1 ds

)

=
∞
∑

n=1

nanz
n

(

∞
∑

m=0

bm
n +m

zm

)

=

∞
∑

j=1

1

j

(

∑

n+m=j

nanbm

)

zj .

The other formula follows from (27). �

Remark 3.1. From (28) and (29) we obtain for any f, g ∈ H(C) and k ∈ N,

Vg(u0) = g − g(0), Ṽg(u0) = g, Vu0(f) = 0, Ṽu0(f) = If,

(30) Vg(uk) = uk

∞
∑

n=1

nan
n+ k

un, Ṽg(uk) = uk

∞
∑

n=0

(n+ 1)an
n + k + 1

un,

and

(31) Vuk(f) = kuk

∞
∑

n=0

bn
n + k

un, Ṽuk(f) = (k + 1)uk

∞
∑

n=0

bn
n + k + 1

un.

Let us reformulate the boundedness of Ṽg acting on Fφ
2 (C). Note that for each

f =
∑∞

m=0 bmum we can write

(32) ‖f‖Fφ2 =
1√
2π

(

∞
∑

m=0

|bm|2C2
m(φ, 2)

)1/2

.

Proposition 3.4. Let φ, ψ ∈ W and g ∈ H(C) with g =
∑∞

n=0 anun. Then Ṽg
maps Fφ

2 (C) into Fψ
2 (C) if and only if the matrix A = (a(m, j))∞m,j=0 given by

a(m, j) =

{

j−m+1
j+1

aj−m
Cj(ψ,2)

Cm(φ,2)
, m ≤ j;

0, 0 ≤ j < m.

defines a bounded operator on ℓ2(N ∪ {0}).



98 Oscar Blasco

Proof. Using (32) and (29) we obtain

‖Ṽg(f)‖Fψ2 =
1√
2π

sup
‖(γj)‖2=1

∣

∣

∣

∣

∣

∞
∑

j=0

1

j + 1

(

j
∑

m=0

(j −m+ 1)aj−mbm

)

Cj(ψ, 2)γj

∣

∣

∣

∣

∣

=
1√
2π

sup
‖(γj)‖2=1

∣

∣

∣

∣

∣

∞
∑

m=0

(

∞
∑

j=m

j −m+ 1

j + 1
aj−m

Cj(ψ, 2)

Cm(φ, 2)
γj

)

Cm(φ, 2)bm

∣

∣

∣

∣

∣

.

Hence

‖Ṽg‖ = sup
‖(γj )‖2=1





∞
∑

m=0

∣

∣

∣

∣

∣

∞
∑

j=0

a(m, j)γj

∣

∣

∣

∣

∣

2




1/2

.

This gives the result. �

The analysis of Vg for g ∈ P actually depends only on the integration operator.

Let us denote by Vk and Ṽk the operators Vuk and Ṽuk for k ∈ N ∪ {0}. Hence from
(31) we obtain

(33) V0 = 0, V1 = I, Vk = kISk−1, k ∈ N,

and

(34) Ṽ0 = I, Ṽk = (k + 1)ISk, k ∈ N.

In particular Vk = SṼk−1 for k ∈ N. A simple consequence of Proposition 3.4 gives
the following particular case.

Corollary 3.5. Let k ∈ N ∪ {0} and φ, ψ ∈ W. Then Ṽk maps Fφ
2 (C) into

Fψ
2 (C) if and only if

sup
m≥0

Cm+k(ψ, 2)

(m+ k + 1)Cm(φ, 2)
<∞.

The following reformulations are elementary and left to the reader.

Lemma 3.6. Let k ∈ N, φ, ψ ∈ W and 0 < p, q ≤ ∞. The following statements
are equivalent:

(i) Vk : Fφ
p (C) → Fψ

q (C) is bounded.

(ii) Ṽk−1 : Fφ
p (C) → Fψ(1)

q (C) is bounded.

(iii) I : Fφ(k−1)
p (C) → Fψ

q (C) is bounded.

(iv) I : Fφ(k−1)
p (C) → Fψ(1)

q (C) is bounded.

4. On necessary conditions for the boundedness

Taking into account that Vg(u0) = g − g(0) the first condition for Vg to map
Fφ
p (C) into Fψ

q (C) is that g ∈ Fψ
q (C). In particular we have the following trivial

necessary condition.

Proposition 4.1. Let 0 < p, q ≤ ∞, φ, ψ ∈ W and 0 6= g ∈ H0(C). If
Vg : Fφ

p (C) → Fψ
q (C) is bounded, then there exists a constant A > 0 such that

(35) M∞(g, r) ≤ AKψ,q(r), r > 0,

where

(36) Kψ,q(z) =
∞
∑

k=0

Ck(ψ, q)
−1zk, z ∈ C.
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Proof. Using (24) for Vg(u0) = g(z) =
∑∞

n=1 bnz
n we obtain

M∞(g, r) ≤
∞
∑

n=0

|an|rn ≤ (2π)−1/q
∞
∑

n=0

Cn(ψ, q)
−1‖Vg(u0)‖Fψq r

n

≤ (2π)1/p−1/q‖Vg‖C0(φ, p)(

∞
∑

n=0

Cn(ψ, q)
−1rn).

This shows (35). �

Let us find a necessary condition for the boundedness of Vg from Fφ
p (C) into

Fψ
q (C) in the case Fψ

q (C) ⊆ Fφ
p (C).

Proposition 4.2. Let 0 < p, q ≤ ∞, φ, ψ ∈ W such that Fψ
q (C) ⊆ Fφ

p (C) and

0 6= g ∈ H0(C). If Vg : Fφ
p (C) → Fψ

q (C) is bounded then there exists A > 0 such
that

(37) M∞(g, r) ≤ Aφ(r), r > 0.

Proof. Let A0 = max{1, ‖u0‖Fφp } and C = ‖ Id ‖Fψq (C)→Fφp (C). We observe that

Vg(u0) = g ∈ Fψ
q (C). Hence g ∈ Fφ

p (C) and ‖g‖Fφp ≤ C‖g‖Fψq ≤ C‖Vg‖A0. Since

Vg(g) =
g2

2
we also obtain

∥

∥

∥

∥

g2

2

∥

∥

∥

∥

Fφp

≤ C

∥

∥

∥

∥

g2

2

∥

∥

∥

∥

Fψq

≤ C2‖Vg‖2‖u0‖Fφp ≤ (C‖Vg‖A0)
2.

This allows to iterate the procedure to obtain gn

n!
∈ Fφ

p (C) and ‖ gn
n!
‖Fφp ≤ (C‖Vg‖A0)

n.

Recall that Fφ
p (C) is a p̃-Banach space for p̃ = min{p, 1}. Hence if

∑

n ‖fn‖
p̃

Fφp
<

∞ implies that
∑

n fn ∈ Fφ
p . Therefore choosing K > C‖Vg‖A0 we conclude that

∑∞
n=0

βngn

Knn!
∈ Fφ

p (C) for any sequence of complex numbers with supn |βn| ≤ 1.

In particular, choosing βn = 1 for all n ≥ 0 we obtain eg/K ∈ Fφ
p (C). Therefore

´

C
e−p(φ(|z|)−

ℜg(z)
K

)dm(z) < ∞ and supz∈C e
−φ(|z|)+

ℜg(z)
K < ∞ in the cases p < ∞ and

p = ∞ respectively. In both cases one gets ℜ(g(z)) ≤ Kφ(|z|) + C. Selecting βn as
(−1)n, in and (−i)n one concludes that |g(z)| ≤ Aφ(|z|) for some constant A > 0 and
the proof is complete. �

A simple consequence of Proposition 4.2 is the following corollary.

Corollary 4.3. Let 0 < p ≤ ∞, φ(r) = ϕα,β,γ for some α, β > 0, γ ∈ R and
g ∈ H0(C).

(i) Case 0 < α < 1: Vg : Fφ
p (C) → Fφ

p (C) is bounded if and only if g = 0.

(ii) Case α ≥ 1: If Vg : Fφ
p (C) → Fφ

p (C) is bounded then g ∈ P and 1 ≤ deg(g) ≤
α.

Let us now show that boundedness of Vg or Ṽg between spaces H∞
v (C) or Fφ

p (C)
forces certain a priori conditions on the weights.

Proposition 4.4. Let 0 < p, q ≤ ∞, φ, ψ ∈ W, g(z) =
∑∞

n=0 anz
n ∈ H(C)

and define Λ = {n : an 6= 0}. If Ṽg : Fφ
p (C) → Fψ

q (C) is bounded and k ∈ Λ, then

Ṽk : Fφ
p (C) → Fψ

q (C) is also bounded and ‖Ṽk‖ ≤ ‖Ṽg‖
|ak|

. In particular, I : Fφ
p (C) →

Fψ
q (C) is bounded whenever g(0) 6= 0.
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Proof. Let k ∈ Λ. We have

(k + 1)akw
k =

ˆ 2π

0

Dg(eiθw)e−ikθ
dθ

2π
, w ∈ C,

and therefore

Ṽkf(z) =
1

z

ˆ z

0

f(w)(k + 1)wk dw =
1

ak

1

z

ˆ z

0

f(w)

(
ˆ 2π

0

Dg(eiθw)e−ikθ
dθ

2π

)

dw

=
1

ak

ˆ 2π

0

(

1

z

ˆ z

0

f(w)Dg(eiθw) dw

)

e−ikθ
dθ

2π
.

Hence, making the change of variable eiθw = w′ and denoting fe−iθ(z) = f(e−iθz),
we have

Ṽkf(z) =
1

ak

ˆ 2π

0

Ṽg(fe−iθ)(e
iθz)e−ikθ

dθ

2π
.

In particular,

‖Ṽkf‖Fψq ≤ 1

|ak|

ˆ 2π

0

‖Ṽg(fe−iθ)(eiθz)‖Fψq
dθ

2π
, 1 ≤ q ≤ ∞,

and

‖Ṽkf‖q
Fψq

≤ 1

|ak|q
ˆ 2π

0

‖Ṽg(fe−iθ)(eiθz)‖qFψq
dθ

2π
, 0 < q < 1.

This gives, taking into account that ‖fe−iθ‖Fφp = ‖f‖Fφp for any radial weight, the

estimate ‖Ṽkf‖Fψq ≤ ‖Ṽg‖
|ak |

‖f‖Fφp and the proof is complete. �

Corollary 4.5. Let 0 < p, q ≤ ∞, φ, ψ ∈ W and 0 6= g ∈ H(C). If Ṽg : Fφ
p (C) →

Fψ
q (C) is bounded then there exists k ∈ N and Ak > 0 such that

Cn+k(ψ, q) ≤ Ak(n + 1)Cn(φ, p), n ≥ 0.

In particular,

IKφ,p(r) ≤ AkS
−kKψ,q(r), r > 0,

where Kφ,p stands for the kernel given in (36).

Proof. Since 0 6= g there exists k ∈ Λ, that is ak 6= 0. Due to Proposition 4.4
and the fact Ṽk(un) = (k + 1)I(un+k) = k+1

n+k+1
un+k we have k+1

n+k+1
‖un+k‖Fψq ≤

‖Ṽk‖‖un‖Fψq . In particular, for all n ∈ N,

‖un+k‖Fψq ≤ ‖Ṽk‖(n+ 1)‖un‖Fψq .

This shows that

IKφ,p(r) =

∞
∑

n=0

rn

(n+ 1)Cn(φ, q)
≤ Ak

∞
∑

n=0

rn

Cn+k(ψ, q)
= AkS

−kKψ,q(r),

and the proof is complete. �

Corollary 4.6. Let 0 < p, q ≤ ∞, φ, ψ ∈ W and let g(z) =
∑∞

n=1 anz
n ∈ H0(C)

such that Vg : Fφ
p (C) → Fψ

q (C) is bounded. Then Vk : Fφ
p (C) → Fψ

q (C) is also

bounded for each k such that g(k)(0) 6= 0. Moreover, the estimate ‖Vk‖ ≤ k!
|g(k)(0)|

‖Vg‖
holds. In particular, I : Fφ

p (C) → Fψ
q (C) is bounded whenever g′(0) 6= 0.
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Proof. Recall that due to Lemma 3.2 we have that ṼS−1g : Fφ
p (C) → Fψ(1)

q (C)

where e−ψ(1)(r) = re−ψ(r). Therefore invoking Proposition 4.4 and Lemma 3.6 we ob-
tain that Vk : Fφ

p (C) → Fψ
q (C) whenever g(k)(0) 6= 0 and the corresponding estimate

in norm holds. �

Corollary 4.7. Let αi, βi > 0 and γi ≥ 0 for i = 1, 2, v(r) = e−ϕα1,β1,γ1 (r) and
w(r) = e−ϕα2,β2,γ2 (r) and 0 6= g ∈ H0(C). Assume that Vg : H

∞
v (C) → H∞

w (C) is
bounded. Then either α1 < α2 or α1 = α2 and β1 ≤ β2 or α1 = α2, β1 = β2 and
γ2 ≤ γ1 + α1 − 1. Moreover, in the case α1 = α2, β1 = β2 and δ = α1 − γ2 + γ1 ≥ 1,
then g ∈ P with deg(g) ≤ δ.

Proof. Due to Corollary 4.6 we have that Vk is bounded fromH∞
v (C) into H∞

w (C)
for all k ∈ N such that g(k)(0) 6= 0. Since Vk(un) =

k
n+k

un+k we have

Cn+k(ϕα2,β2,γ2 ,∞) ≤ ‖Vk‖
n+ k

k
Cn(ϕα1,β1,γ1,∞), n ∈ N.

Now take into account Example 2.1 to obtain for all n ∈ N

(α2β2)
−
k+n+γ2
α2 (k+n+γ2)

k+n+γ2
α2 e

−
k+n+γ2
α2 ≤ ‖Vk‖

n+ k

k
(α1β1)

−
n+γ1
α1 (n+γ1)

n+γ1
α1 e

−
n+γ1
α1 .

Hence there exists C > 0 such that

n
n( 1
α2

− 1
α1

) ≤ C(α2β2e)
n
α2 (α1β1e)

− n
α1 n

1−
k+γ2
α2

+
γ1
α1 , ∀n ∈ N.

This implies that α1 ≤ α2.

In the case α1 = α2 the inequality becomes
(

β1
β2

)
n
α1 ≤ Cn

1−
k+γ2−γ1

α1 for all n ∈ N.

This gives β1 ≤ β2.

Finally in the case α1 = α2, β1 = β2 we would have n
k+γ2−γ1

α1
−1 ≤ C for all n ∈ N.

This implies k+γ2−γ1
α1

≤ 1. This gives, in particular, γ2 ≤ γ1 + α1 − 1.

To finish the proof notice that g(k)(0) 6= 0 implies k ≤ α1− γ2+ γ1 which implies
that g ∈ P with deg(g) ≤ α1 − γ2 + γ1. �

5. On sufficient conditions for the boundedness

Let us start presenting some sufficient conditions for the operators Vg and Ṽg to
be bounded from Fφ

p (C) into Fψ
p (C) for any 1 ≤ p ≤ ∞ and for general weights.

Proposition 5.1. Let φ, ψ ∈ W and g ∈ H(C). Let us write gr(z) = g(rz) for
r > 0 and set

(38) A(φ, ψ) = sup
r>0

eφ(r)−ψ(r)‖gr‖BMOA

and

(39) B(φ, ψ) = sup
r>0

eφ(r)−ψ(r)‖(gr)′‖H1 .

(i) If A(φ, ψ) < ∞, then both Ṽg and Vg are bounded from Fφ
p (C) into Fψ

p (C)
for any 1 ≤ p <∞.

(ii) If B(φ, ψ) <∞, then both Ṽg and Vg are bounded from Fφ
∞(C) into Fψ

∞(C).
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Proof. (i) Let 1 ≤ p <∞ and set A(φ, ψ) = A. Since (gr)
′(w) = rg′(rw) for each

r > 0 and |w| < 1, we have

Vg(f)(rw) =

ˆ w

0

fr(ξ)(gr)
′(ξ) dξ.

Hence, using the estimate (1) we have

(40) Mp(Vg(f), r) ≤ Cp‖gr‖BMOAMp(f, r), r > 0.

Since Ṽg = S−1VSg, (Sg)r = rS(gr) and ‖Sgr‖BMOA = ‖gr‖BMOA, we also have

Mp(Ṽg(f), r) =
1

r
Mp(VSg(f), r) ≤ Cp‖gr‖BMOAMp(f, r).

Therefore, we conclude that

max{‖Vg(f)‖Fψp , ‖Ṽg(f)‖Fψp } ≤ 2πCp
p

ˆ ∞

0

Mp
p (f, r)‖gr‖pBMOAre

−pψ(r)dr

≤ 2πCp
pA

p

ˆ ∞

0

Mp
p (f, r)re

−pφ(r)dr = Cp
pA

p‖f‖p
Fφp
.

(ii) Let p = ∞ and set B(φ, ψ) = B. Without loss of generality we can assume

that g ∈ H0(C). Hence g(z) = z
´ 1

0
g′(zt)dt and thus M1(g, r) ≤ rM1(g

′, r) =
‖(gr)′‖H1 . In particular,

(41) M1(Dg, r) ≤ rM1(g
′, r) +M1(g, r) ≤ 2rM1(g

′, r) = 2‖(gr)′‖H1.

Hardy’s inequality (see [14]) gives for f(z) =
∑∞

n=0 anz
n

M∞(If, r) ≤
∞
∑

n=0

|an|rn
n+ 1

≤ C0M1(f, r), r > 0.

Therefore,

M∞(Ṽgf, r) ≤ C0M1((Dg)f, r) ≤ C0‖f‖Fφ∞(C)e
φ(r)M1(Dg, r)

≤ 2BC0‖f‖Fφ∞(C)e
ψ(r).

This gives the boundedness of Ṽg from Fφ
∞(C) into Fψ

∞(C).
To handle the case Vg we use that M1(D(S−1g), r) =M1(g

′, r). Arguing as above,
we have

M∞(Vgf, r) = rM∞(ṼS−1gf, r) ≤ C‖f‖Fφ∞(C)e
φ(r)‖(gr)′‖H1

and the result follows with the same argument. �

Proposition 5.2. Let φ, ψ ∈ W where ψ is differentiable with ψ′(t) > 0 for
t > 0 and g ∈ H0(C). Set

(42) B1(φ, ψ) = sup
r>0

eφ(r)−ψ(r)

rψ′(r)
‖(gr)′‖H∞ .

If B1(φ, ψ) < ∞, then both Ṽg and Vg are bounded from H∞
v (C) to H∞

w (C), where
v(z) = e−φ(|z|) and w(z) = e−ψ(|z|).
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Proof. Let B1(φ, ψ) = B1. Arguing as in (41) we obtain that M∞(Dg, r) ≤
2‖(gr)′‖H∞. Now for |z| = r we can estimate

|Ṽg(f)(z)| ≤
ˆ 1

0

|f(zt)||Dg(zt)| dt ≤
ˆ 1

0

M∞(f, rt)M∞(Dg, rt) dt

≤ 1

r

ˆ r

0

M∞(f, t)M∞(Dg, t) dt = 2‖f‖v
1

r

ˆ r

0

eφ(t)‖(gt)′‖H∞ ds

≤ 2B1‖f‖v
1

r

ˆ r

0

tψ′(t)eψ(t) ds = 2B1‖f‖v(eψ(r) − eψ(0)) ≤ 2B1‖f‖veψ(|z|).

This completes the proof for Ṽg. The case Vg follows similarly using that

M∞(D(S−1g), r) =M∞(g′, r). �

Let us apply the previous result to polynomials, in particular for Vk = Vuk .

Corollary 5.3. Let v(z) = e−ϕα,β,γ for some β > 0, γ ∈ R and α ≥ 1 and let
g ∈ H0(C). Then the following statements are equivalent:

(i) Vg : H
∞
v (C) → H∞

v (C) is bounded.
(ii) g ∈ P and 1 ≤ deg(g) ≤ [p].

Proof. (i) =⇒ (ii) This is the case p = ∞ in Corollary 4.3.
(ii) =⇒ (i). It suffices to show that Vk is bounded on H∞

v (C) for 1 ≤ k ≤ α.
Now for each 1 ≤ k ≤ [α] we have

lim
r→∞

ϕ′
α,β,γ(r)

rk−1
=

{

αβ, k = α;

∞, k < α.

We can then apply Proposition 5.2 for φ = ψ = ϕα,β,γ and g = uk to finish the
proof. �

Let us get now some conditions depending on p for the boundedness on Fφ
p (C).

We shall use the following result.

Lemma 5.4. Let 0 < p <∞, φ ∈ W. If f ∈ FΦp
p (C), then I(f) ∈ Fφ

p (C).

Proof. Using that If(z) =
´ 1

0
f(zt) dt, for any 0 < p <∞ we obtain

Mp
p (I(f), r) ≤

ˆ 1

0

Mp
p (f, rt) dt ≤

1

r

ˆ r

0

Mp
p (f, t) dt.

Therefore,

‖I(f)‖p
Fφp

≤ C

ˆ ∞

0

(
ˆ r

0

Mp
p (f, t) dt

)

e−pφ(r)dr ≤ C

ˆ ∞

0

Mp
p (f, t)

(
ˆ ∞

t

e−pφ(r)dr

)

dt

≤ C

ˆ ∞

0

Mp
p (f, t)te

−pΦp(t) dt = C‖f‖p
F

Φp
p

.

The proof is now complete. �

Proposition 5.5. Let 0 < p <∞, φ, ψ ∈ W and set

(43) A1(φ, ψ, p) = sup
r>0

eφ(r)−Ψp(r)M∞(Dg, r).

If A1(φ, ψ, p) <∞, then Ṽg is bounded from Fφ
p (C) into Fψ

p (C).
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Proof. Let A1(φ, ψ, p) = A1. Using Lemma 5.4 and recalling that re−pΨp(r) =
´∞

r
e−pψ(s)ds we have

‖Ṽg(f)‖p
Fψp

= ‖IMDgf‖p
Fψp

≤ C‖MDgf‖p
F

Ψp
p

≤ C

ˆ ∞

0

Mp
p (f, r)M

p
∞(Dg, r)

(
ˆ ∞

r

e−pψ(s)ds

)

dr

≤ CAp1

ˆ ∞

0

Mp
p (f, r)re

−pφ(r)dr.

The proof is finished. �

We can actually weaken the condition (43) in the case p > 1 using the following
modification of the p-distortion functions.

Definition 5.1. Let ψ, φ ∈ W and 0 < p <∞. We define

Hψ,φ,p(r) = eΨp(r)−φ(r), 0 < p ≤ 1,

and

Hψ,φ,p(r) =
re−(φ(r)+(p−1)ψ(r))

´∞

r
e−pψ(s)ds

, 1 < p <∞.

In particular, Hφ,φ,p(r) = emax{p,1}(Φp(r)−φ(r)).

Remark 5.1. Note that for p ≥ 1 we can write

(44) Hψ,φ,p(r) = eΨp(r)−φ(r)e(p−1)(Ψp(r)−ψ(r)) = ep(Ψp(r)−ψ(r))eψ(r)−φ(r).

In particular, due to (ii) in Lemma 2.1 if ψ is differentiable and convex, then

eΨp(r)−φ(r) ≤ CHψ,φ,p(r), r > R,

and for ψ ∈ W0, from Proposition 2.3, one has

eψ(r)−φ(r) ≤ CHψ,φ,p(r), r > R.

We shall use the following general fact.

Lemma 5.6. Let 1 ≤ p < ∞, let U,W : (0,∞) → (0,∞) be measurable func-
tions with W ∈ L1((0,∞)) and let G : [0,∞) → R

+ be a continuous function. As-
sume that there exists C > 0 such that

(45) G(r) ≤ C

(

1

r

ˆ ∞

r

W (t) dt

)−1

U1/p(r)W 1/p′(r), r > 0.

Then

(46)

ˆ ∞

0

(

1

r

ˆ r

0

F (t)G(t) dt

)p

rW (r) dr ≤ C

ˆ ∞

0

F p(r)rU(r) dr

for any continuous function F : [0,∞) → R
+.

Proof. For p = 1 condition (45) becomes G(t)(
´∞

t
W (r)dr) ≤ CtU(t) for t > 0

and the result follows from Fubini’s theorem.
Assume p > 1. For each R, ε > 0 integrating by parts we have

ˆ R

ε

(

1

r

ˆ r

0

F (t)G(t) dt

)p

rW (r) dr
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=

(
ˆ ε

0

F (t)G(t) dt

)p(ˆ ∞

ε

W (t)

tp−1
dt

)

−
(
ˆ R

0

F (t)G(t) dt

)p(ˆ ∞

R

W (t)

tp−1
dt

)

+ p

ˆ R

0

(
ˆ r

0

F (t)G(t) dt

)p−1

F (r)G(r)

(
ˆ ∞

r

W (t)

tp−1
dt

)

dr

≤
(

ε

ˆ ∞

0

W (t) dt

)(

1

ε

ˆ ε

0

F (t)G(t) dt

)p

+ p

ˆ ∞

0

(
ˆ r

0

F (t)G(t) dt

)p−1

F (r)G(r)

(
ˆ ∞

r

W (t)

tp−1
dt

)

dr.

Now passing to the limit as R→ ∞ and ε→ 0, applying (45) and Hölder’s inequality
we have

ˆ ∞

0

(

1

r

ˆ r

0

F (t)G(t) dt

)p

rW (r) dr

≤ p

ˆ ∞

0

(
ˆ r

0

F (t)G(t) dt

)p−1

F (r)G(r)

(
ˆ ∞

r

W (t)

tp−1
dt

)

dr

≤ p

ˆ ∞

0

(

1

r

ˆ r

0

F (t)G(t) dt

)p−1

F (r)G(r)

(
ˆ ∞

r

W (t) dt

)

dr

≤ C

(
ˆ ∞

0

(

1

r

ˆ r

0

F (t)G(t) dt

)p

rW (r) dr

)1/p′

·
(
ˆ ∞

0

F (r)pG(r)pW 1−p(r)r

(

1

r

ˆ ∞

r

W (t) dt

)p

dr

)1/p

≤ C

(
ˆ ∞

0

(

1

r

ˆ r

0

F (t)G(t) dt

)p

rW (r) dr

)1/p′ (ˆ ∞

0

F p(r)rU(r) dr

)1/p

.

This implies (46) and the proof is then complete. �

Theorem 5.7. Let 0 < p < ∞, φ, ψ ∈ W and g ∈ H(C). If there exists A > 0
such that

(47) M∞(Dg, r) ≤ AHψ,φ,p(r), r > 0,

then Ṽg is bounded from Fφ
p (C) into Fψ

p (C).

Proof. The case 0 < p ≤ 1 was shown in Proposition 5.5.

Let us assume now that 1 < p < ∞. Writing Ṽg(f)(z) =
´ 1

0
f(zt)Dg(zt) dt we

have for 0 < r <∞ and θ ∈ [0, 2π),

|Ṽg(f)(reiθ)| ≤
ˆ 1

0

|f(reiθt)|M∞(Dg, rt) dt.

Using vector-valued Minkowski’s inequality we have

(48) Mp(Ṽg(f), r) ≤
1

r

ˆ r

0

Mp(f, t)M∞(Dg, t) dt.

Let U(r) = e−pφ(r) and W (r) = e−pψ(r) and observe that

Hψ,φ,p(r) =

(

1

r

ˆ ∞

r

W (t) dt

)−1

U1/p(r)W 1/p′(r).
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Consider now F (t) = Mp(f, t) and G(t) = M∞(Dg, t) and notice that (47) together
with (48) allow us to apply Lemma 5.6 to obtain

ˆ ∞

0

Mp
p (Ṽg(f), r)re

−pψ(r)dr ≤ C

ˆ ∞

0

Mp
p (f, r)re

−pφ(r)dr.

This finishes the proof. �

We can now extend the condition in Proposition 5.2 also for boundedness in
Fock-type spaces, at least for convex functions ψ.

Corollary 5.8. Let 0 < p < ∞ and let ψ ∈ W be differentiable and convex in
(0,∞). If g ∈ H(C) satisfies

(49) sup
r>0

eφ(r)−ψ(r)M∞(Dg, r)

rψ′(r)
= A <∞,

then Ṽg : Fφ
p (C) → Fψ

p (C) is bounded.

Proof. First observe that

rψ′(r)e−pΨp(r) ≤
ˆ ∞

r

ψ′(s)e−pψ(s)ds ≤ 1

p
e−pψ(r), r > 0.

Hence assumption (49) gives

M∞(Dg, r) ≤ A

p
e(1−p)(ψ(r)−Ψp(r))eΨp(r)−φ(r).

Hence, according to (44) we obtain the condition (47) in the case p ≥ 1. On the other
hand, for 0 < p ≤ 1 due to part (ii) in Lemma 2.1 to know that supr>0 e

ψ(r)−Ψp(r) <
∞. Hence M∞(Dg, r) ≤ KeΨp(r)−φ(r) = KHψ,φ,p(r). The result now follows from
Theorem 5.7. �

Corollary 5.9. Let 0 < p < ∞, φ(r) = ϕα,β,γ(r) for β > 0, γ ≥ 0 and α ≥ 1
and let g ∈ H0(C). Then the following statements are equivalent:

(i) Vg : Fφ
p (C) → Fφ

p (C) is bounded.
(ii) g ∈ P and 1 ≤ deg(g) ≤ [α].

Proof. (i) =⇒ (ii) This was shown in Corollary 4.3.
(ii) =⇒ (i). Let 1 ≤ k ≤ [α] and let us show that Vk : Fφ

p (C) → Fφ
p (C)

is bounded, or equivalently Ṽk−1 : Fφ
p (C) → Fφ(1)

p (C) is bounded. From Proposi-

tion 5.7 it suffices to see that (47) holds for g(z) = zk−1. Recall that H−1
ψ,φ,p(r) =

ep(ψ(r)−Ψp(r))eφ(r)−ψ(r) for p ≥ 1 and H−1
ψ,φ,p(r) = eφ(r)−Ψp(r) for 0 < p < 1. Hence, in

particular for ψ = φ(1) = ϕα,β,γ+1 we have φ(r)− ψ(r) = log(r), we obtain, invoking
(iii) in Lemma 2.1, that

(50) H−1
ψ,φ,p(r) ≤ Cr−α+1, r > 0.

This gives

sup
r≥1

H−1
ψ,φ,p(r)M∞(Duk−1, r) ≤ Ck sup

r≥1
rk−α <∞.

The proof is now complete. �
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