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Abstract. The paper proves that a bound on the averaged Jones’ square function of a mea-
sure implies an upper bound on the measure. Various types of assumptions on the measure are
considered. The theorem is a generalization of a result due to Naber and Valtorta in connection

with measure bounds on the singular set of harmonic maps.

1. Introduction

Reifenberg-type theorems. Classical Reifenberg’s theorem states that if a
closed set S C R" is well approximated by affine k-planes (in the sense of Hausdorff
distance) at all balls centered in S, then S is bi-Holder equivalent with a plane. It was
proved by Reifenberg in 1960 [8] in his work on the Plateau problem (see also [9]).

In this paper we consider approximation in the sense of Hausdorff semi-distance,
i.e., sets with holes are allowed. The quality of this approximation is measured by
Jones’ height excess numbers . Fix natural numbers 1 < k < n and let y be a
Radon measure on R™; the basic example is 1 = A\*LS, where S is a k-dimensional
set and A\* is the k-dimensional Hausdorff measure. We define

1/q

(1.1) Buq(z,r) =in (r—<k+q> / d*(y, V*) du(y)) :
vk B, (z)
This is the L4 norm of d(y, V*)/r on B, (z) with respect to the measure r~*u, where
V¥ is the best affine k-plane.

In order to obtain an upper bound on the measure , a uniform bound on §,(x,r)
is not sufficient (see Example 2.1). The upper bound can follow from a bound on
Jones’ square function

' d
(1.2) gl r) = /0 Tl )2

In dimension 1, Jones’ traveling salesman theorem [5] shows the connection between a
version of this function and 1-dimensional Hausdorff measure bounds. The geometric
importance of J,, 4 is also illustrated by Example 2.2. The subscript ;1 shall be omitted
when it is clear from the context.

There are many results concerning the consequences of a bound on Jones’ square
function. David and Toro [3] showed that if S satisfies the assumptions of Reifen-
berg’s theorem and Jyr g;(x,1) is uniformly bounded, then the parametrization of
S obtained in Reifenberg’s theorem is Lipschitz continuous. Azzam and Tolsa [10, 2|
characterized rectifiable measures by the condition .J,2(x,1) < 0o p-a.e., assuming
that the upper-density is positive and finite p-a.e.
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This paper is concerned with obtaining upper bounds on the measure y. In this
direction, Naber and Valtorta 7] proved that there is (n) > 0 such that if

r / Ju2(y, ) du(y) < 62
Br(x)

holds for any ball B, (z) C B, then p(B;) < C(n). This was proved in two cases:
when p is a discrete measure and when g = A*LS. In the latter case, the authors
also obtained rectifiability of S.

However, it was the discrete version [7, Th. 3.4] that was used to obtain an upper
bound on the singular set \*(Singu) of a harmonic map u in terms of its Dirichlet
energy. A possible application to singular sets of solutions of nonlinear PDEs is one
of the main motivations of this paper.

Recently, Azzam and Schul [1] have generalized Jones’ work to sets of higher
dimensions. One of their results bounds the k-dimensional Hausdorff measure p =
ALS of a closed set S € B; € R” in terms of J1.4(0,2). The set S is assumed to be
lower content regular; this property implies that for some ¢,y > 0

p(B(2)) = cr® forall 2 €S, 0<r <.

The precise definitions and statements are slightly more involved, as they employ the
outer measures A} instead of A\¥; we refer the reader to [1] for details. Thanks to this
modification the authors avoid assuming a priori that p is finite.

After this paper had been submitted to arXiv, similar results were obtained by
Edelen, Naber and Valtorta in their paper [4], which improves their previous work
[7]. They prove a variant of Theorem 1.1 under somewhat different assumptions and
also show rectifiability of the measure in case the lower-density is suitably controlled.

Basic notation. The balls centered in 0 are B, = B,(0), the measure of k-
dimensional unit ball is wy and AB,(x) = By, (z) is the scaled ball. If S = {B;}
is a collection of balls, then Cent S stands for the set of centers of these balls and
AS = {AB;} is the collection of scaled balls with the same centers. We denote the

union by
J

As in [3], we use the normalized local Hausdorff distance
1
d.(E, F)=—distg(ENB,(z), FNB,(x)),
r

where disty is the standard Hausdorff distance.

Statement of the main results. The following is a slightly improved version
of Naber and Valtorta’s theorem |7, Th. 3.4]. The main difference is that the upper
bound J is not assumed to be small. Moreover, the theorem holds for any 2 < ¢ < oco.

Theorem 1.1. (Discrete Reifenberg) Let S = {B,,(z;)} be a collection of dis-
joint balls in By, 1=, wirh 0y, be its associated measure and let By (x,r), Jo(z,7)
be defined as in (1.1), (1.2), where 2 < ¢ < co. Assume that for each ball B,.(z) C By
we have

(1.3) / ) dn) <
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Then the following estimate holds:
(1.4) p(B1) = Z wirt < C(n,q) - max (1, Jq%?> .

The choice of the normalizing constant wy is motivated by the comparison of
with k-dimensional Hausdorff measure, but has no importance for the theorem.

The proof of Theorem 1.1 follows the lines of [7]. This generalization is made
possible by relaxing the inductive claim in the construction and carefully keeping
track of the constant.

This observation also leads to other possible extensions, discussed in Section 5.
First, Theorem 5.1 and Remark 5.3 generalize the above to measures p with controlled
upper-density, in particular to the case u = A\*LS. Second, Theorem 5.4 shows that,
with minor modifications, the proof applies also with (1.3) replaced by a weaker
assumption

][ Jo(y,r) du(y) < J.
B, (z)

Outline of the proof of Theorem 1.1. The main tool is Reifenberg’s con-
struction of surfaces Ty, 11, Ts, ... approximating the support of u. The bound on
Jones’ square function J; (1.3) enables us to prove that this approximation is efficient.
There are three key properties that we need:

e The total area |T;| of the approximating surface is estimated from above via
B, numbers (see (4.1)).

e The measures p and A*LT; are comparable on (at least some) balls B,. ()
centered near T; (see (4.2)).

e The region outside some neighborhood of T} has small measure p (see (4.3)).

It is intuitive that these three imply some bound on the measure p. Indeed, once
they are derived, we shall see at the end of Section 4 that the final estimate is an
easy consequence.

2. Examples

Reifenberg’s theorem states that any e-Reifenberg flat set is a-Holder equivalent
with a k-plane. This leads to finite Hausdorff measure in dimension k/a. As e — 0,
a tends to 1 and the dimension bound k/« gets arbitrarily close to k. The example
below shows that under these assumptions this bound cannot be improved.

Example 2.1. (Flat snowflake) Fix a small angle 6 and consider a modification
of the Koch curve (a snowflake): each segment is divided into three segments of equal
length and the middle segment is replaced by two segments, each of them at angle
6 to the original segment (the original construction is obtained for § = 7/6). We
denote the curve obtained by starting with a unit segment and iterating the above
procedure by K.

If 6 is small, K is e-Reifenberg flat and a-Holder equivalent with a segment. For
0 ~ 0 we have ¢ ~ 6 ~ 0 and o =~ 1. Still, the Hausdorff dimension of K is greater
than 1. This example shows that Reifenberg’s theorem is optimal—e-Reifenberg
flatness condition does not imply a bound on the k-dimensional Hausdorff measure.

Since e-Reifenberg flatness condition is not enough to imply a bound on the k-
dimensional Hausdorff measure, we investigate an improved example taken from [3].
It suggests that the proper hypothesis is a bound on Jones’ square function (1.2).
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Example 2.2. (Very flat snowflake) Modify the previous example by taking
another angle 6; at each stage i of the construction. After N stages we have a curve
of length

H 73“’5"1' =11 (1 + éef + o(&f)) :

=1 =1

The product is convergent if and only if the sum Y. 6? converges. The measure
A (K) of the limit curve can be bounded in terms of this sum.

Since the angles ; are comparable with 3, numbers taken on the corresponding
balls, this shows that indeed the exponent 2 in the definition of Jones’ square function
J, (1.2) is natural. It also suggests that this function can be used to bound the k-
dimensional measure; indeed, a result of this type was proved in [3]. In this paper
we relax this assumption by concerning a bound on the average JEBT (@) Jy(y,r) du(y)

or on " fBr(x) Jy(y,r) du(y) for each ball B,(z).

3. Technical constructions

The tools discussed in this section are well known and most of them are cited
from [7]. Some technical corrections were made in Lemmata 3.2, 3.3 (counterparts
of [7, 4.7, 4.8]). These corrections come from the fact that the ball B; cannot be
covered by finitely many balls B,(z;) contained in B;. Thus one is forced to work
with a weaker condition z; € By, in consequence the balls are contained in a slightly
larger ball B4,,.

Properties of 8 numbers. Recall the definitions

) q — inf p—k+9) q k
(1) i) =gt 0 [ v auty),
(1.2) Jq(:c,r):/o ﬁg(x,s)$.

Due to the factor r~(#+9 these quantities are scale invariant. Indeed, if v is a scaled
version of u, i.e., v(-) = AX*u(\), then B,,(0,7) = B,4(0,Ar) and J,,(0,r) =
J,q(0, Ar). This scaling occurs, e.g., if v, i are discrete measures corresponding to
collections of balls S, AS, or k-dimensional Hausdorff measure restricted to sets S, AS.

First we note the basic continuity property of f,. For any y € B,(z) we have
B, (z) C By, (y) and it follows from the definition that

(3.1) Bz, 1) <226y, 2r) fory € B,(x).

This simple observation leads to an equivalent form of Jones’ square function.

Remark 3.1. Fix some p € (0,1) and let r, = p® for « = 0,1,2,.... Then any
bound on Jones’ square function is (up to a constant depending on p) equivalent to

a bound on
> Bz, ra).

ra<2r

Proof. Similarly to (3.1), we have

Bl(x,m1) < (r2/r1)k+qﬁg(x,r2) for r < ro.
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Take arbitrary s € (0,7) and choose a such that p®* < s < p®. Then

(P B () < B(x.5) < C(0) B, ) and e(p) < / 5 o),

pa+1 S

(e3

which shows the equivalence. O]

Denote the auxiliary numbers
(32) ) =t [ 5 auty)
B, (z

Note that assumption (1.3) together with Remark 3.1 yields a very rough estimate
o2(x,r) < CJ. Moreover,

(52(5(71,7’1) < C(Tl/rg)(sg(l’g,’f’g) if Brl (I'l) Q BTQ (LUQ)

Yet another corollary of (3.1) can be obtained by taking the average over all
y € B.(z):

B2(x,r) < O(k, q>]{3 . 2n) duty).

If one assumes a lower bound u(B,(z)) > 7(n)Mr* (as it will be satisfied in the
applications), this can be further estimated by

2( 2( —152
83) f 8020 < e [ 500,20 dut) = Clo )M o7, 2n),
Finally, an estimate for 87 can be obtained by

q/2
Bi(a.r) = (B2, m) " < ( [ ) du(y))

S (M162(x,20)" S M3 62(x, 20),

(3.4)

where the symbol < denotes an inequality up to a multiplicative constant, possibly
dependent on n, q, 7, p.

Comparison of L9-best planes via 3,. Due to compactness of the Grass-
mannian G(k,n) and continuity of d(y, V'), there exists a k-plane minimizing

/ d'(y, V) dp
B, (z)

(there may be more than one). We choose any of the L?-best planes and denote it
by V(z,r).

We will estimate the distances between the L%-best planes on different balls using
B, numbers. More precisely, we want to prove that the distance between V' (zy,7)
and V(za,72) is estimated via §, numbers if 1,75 are comparable and controlled by
|x1 — o]

In the case of the standard (., numbers this is an elementary geometric problem.
As shown by simple examples in 7], in case of 8, numbers one is forced to assume
some kind of Ahlfors—David regularity of the measure pu. Here we use the condition
TMr* < u(B,) < Mr because we want to study the dependence on M with 7(n)
fixed.
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Lemma 3.2. There exists py(n, T) such that for p < py the following holds. If

(B, () < p*

holds for all x € By and u(By) > 7, then for every affine plane V- < R of dimension
< k — 1, there exists a point x € By such that

d(z,V) > 10p, p(By(z)) = C(n,p) > 0.

Now we can prove the aforementioned tilt-excess result. We denote k = 75 S0
that kB, (z) C kB1(0) for any z € B1(0).

Lemma 3.3. Fix 7 € (0,1) and p(n, 7) as in Lemma 3.2; denote k = . Let u

1-p
be a positive Radon measure. Assume that (B) > 7M and that (B2 (y )) Mp**
for every y € B,,. Additionally, let x € By be such that 1(B,(z)) > TMp . Then if
d(z,V(0,r)) < p/2 or d(x,V (z,kp)) < p/2, then the distance between the Li-best
planes is estimated by

di ,(V(0, k), V(z,rp)) < C(n,q, p, )M~ (B1(0, 5) + Bi(x, #p)) -

We present a sketch of proof, referring to |7, Lemma 4.8| for a more detailed
explanation.

Sketch of proof. We assume that d(x, V' (0,x)) < p/2; in the other case one has
to exchange the roles od V' (0, x) and V(x, kp). Consider first the case M = 1.

We choose k + 1 points v, ...,y € B,(z) with u(B,2(y;)) = c¢(n, 7). Denote by
p; the center of mass of B,2(y;) and let p; be its projection onto V(0, k). We require
p; to effectively span V (0, k) N B,(z), i.e.,

d(piyy,span(pp, . . ., p;)) > 8p°.

This is done by inductive application of Lemma 3.2 and the elementary inequality
ly; — pi| < p?. Jensen’s inequality yields

d*(pi, V(0, k) < CB{(0, k), d*(pi, V(x, kp)) < CB(x, kp),

hence all points p; are close to V(z, kp). Since these points effectively span V (0, k) N
B,(z), it can be shown that this k-plane is contained in a small neighborhood of
V(x,kp) N B,(z). Since these two planes have the same dimension, the assumption
d(xz,V(0,k)) < p/2 ensures that the inclusion works both ways (see [7, Lemma 4.2]).
This completes the case M = 1.

Now consider a measure p satisfying the assumptions for some M > 0. Then
the above reasoning can be applied for the measure v = My, satisfying similar
assumptions with 1 instead of M. Since u,v have the same Li-best planes and

1 (y,r) = MB? (y,r) on any ball B,(y), the claim follows. O

In the proof of Theorem 1.1, the values of 7, p shall be fixed depending only on
the dimension n.

Bi-Lipschitz diffeomorphism construction. Here we introduce the construc-
tion later used to obtain the approximating surfaces in the proof of Theorem 1.1. For
some 7 > 0, let J = {B,(x;)} be a finite collection of balls such that 1J is disjoint. For
each ball choose a k-dimensional affine plane V; and denote the orthogonal projection
onto V; by m;. As in [3], one can choose a locally finite smooth partition of unity
Ai: R — [0, 1] subordinate to the cover | J4J satisfying

(1) >, =1inJ3J,

(2) \; = 0 outside 4B,.(z;) for all 1,
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(3) [[VAilloo < C(n)/r,
(4) the partition is completed with the smooth function ¢ = 1 — ). \; and
VY]l < C(n)/1.

Definition 3.1. Given J, \;, p;, V; as above, define a smooth function o: R" —
R"” by

o(z) = v(z)z + Z i (2)mi ().

The function ¢ interpolates between the identity and the projections onto the
affine planes V;. Note that o = id outside of the union |J4J, as on this region we
have ¢y = 1. On the other hand, if V; are all close to some V', then ¢ is close to
the orthogonal projection onto V' in the region | J3J. This will be made precise in
Lemma 3.5.

Lemma 3.5 is a modified version of |7, Lemma 4.12]. It is essentially a counter-
part of the squash lemma used to prove classical Reifenberg’s theorem. The crucial
additional part of the following is the bi-Lipschitz estimate for o that is quadratic
in dg, 01; this should be compared to the measure estimate in Example 2.2 and the
definition (1.2) of Jones’s square function. In order to obtain this quadratic estimate,
let us first consider the following geometric fact.

Lemma 3.4. Let Vi, V5 be two linear k-planes and my, o be the corresponding
orthogonal projections. If dy1(Vy, Vo) < 6, then ||mmy — id ||y, 51, < C(n)d2.

Proof. Tt follows that |7y || < C6 and ||y m || < C6; in fact one can define the
Grassmannian distance this way. Since m; = id on Vi, it is enough to estimate the
norm of mymwem — my:

[mimam —ml| = [lmi(me — id)m || = [|mmym | = ||(mmy) (mm) |
< mmy || - llmymll < (Co)*. 0

The following lemma deals with graphs of functions that are C! small at scale r.
To simplify the notation, we introduce the normalized C'* norm

llglles =1 gllsc + 11Vl

Lemma 3.5. (Squash lemma) Fix some ball B,(y) C R" and a k-dimensional
affine plane V' such that d(y, V') < r/2. Suppose that for all balls B, (z;) € J centered
in 10B,.(y) we have

dxi,r(‘/iv V) < 51-

Suppose also that Gy C R" is the graph Gy = {x+go(z): x € V}N5B,(y) of a small
function go: V — V=, ie., ||gol|cr < 0o. If g < 1 and 6, < 6(n), then

(1) The set Gy = o(Gy) restricted to 4B,.(y) is a graph of a function g,: V — V+
with

llg1llc: < C(n) (o + 61).

There is ratio @ > 3 — C(n)(dp + 01) such that on each of the balls 6B, (x;)
the previous bound is actually independent of &y, i.e., ||g1||c1 < C(n)o:.
(2) The map o: Gy — Gy is a C! diffeomorphism from Gy to G, and

lo(2) — 2| < C(n)(do + 61)r for z € Gy.

Moreover, its bi-Lipschitz constant does not exceed 1+ C(n) (03 + 63).
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Proof. Note that V; are also close to V' on the larger ball: d, 10.(V;, V) < C6; for
all i. For x € V denote z = x +g( ) and

Z)\ (mi(z + go(z)) — ),

so that
o(x + go(z)) = Y(2)(x + go(x)) + Z Ai(2)mi(z + go(x)) = = + ¥ (2)go(z) + h(z).

For simplicity, assume that 0 € V. Then we can consider the decomposition of o
obtained by projecting onto the linear plane V and its orthogonal complement V+:

o(z+go(z)) = o (2) + o (x), o' (x) =z +h" (),
o (x) = ¥(2)go(2) + h*(2).

Now we show that of — id and o' are C}-small. Indeed, it is easily checked
that ||m;(z 4+ go(x)) — z||c; < C6; for all x € V N 5B, (x;) and hence for all x such
that A\;(z) > 0. Note that this is independent of dy, if only 9 < 1. Therefore
AT o, 1y < Céi.

The remaining term is estimated by ||1)(z)go(z)||c: < Céo, but it vanishes for all
x such that z € (J3J. Thus we obtained

lo" —idlle; < Co1, o™ |lex < C(do + 1)

We choose 6; < d(n) small in order to apply the inverse function theorem for o: V' —
V. Thus we obtain the inverse function ¢ satisfying |[¢ —id||c: < €6, and ¢ =
outside | J4J. The inverse enables us to write

o(x + go(x)) = o' (x) + g1 (0" (2)),  where gi(2) = o (4(x)).
This proves point (1) and the first part of point (2).

What is left is the estimate for the bi-Lipschitz constant of . To this end, we
decompose o in the following way:

Go 3 + golz) L 70 6T () M9 6T (1) + g1 (0T (2)) € Gh.

The Lipschitz constant of the map V' 4t Gy is bounded by 4/1+ 62 and

d
its inverse is a contraction. Similarly, the bi-Lipschitz constant of V' dta, G, is

bounded by /1 + C (02 + 67).

T
To obtain a quadratic bound for V<= V, we need to improve the estimate
[|[VhT]|s < C8; derived before. To this end, compute

Vi (z Zw V2 (mymi(z + go(w) — )

+ Z Ai(2) (my Vi (id+Vgo(x)) —id)

In the second sum, the expression in parentheses is (myVm;Vgo) + (my Vm; —id). The
first term is bounded by C'dyd;, while for the second Lemma 3.4 implies the bound
C4?. The estimates for the first sum are obtained analogously. Hence ||VAT||s <
C(62 + 67) and the bi-Lipschitz constant of o7 is bounded by 1 + C(62 + 6?). In
consequence, we obtain the bound for o as a composition. O

We end with a related lemma, which shows that if G is a graph over V; and Vi, V4
are close, then it is also a graph over V5.
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Lemma 3.6. Let V;,V, be two affine k-planes and d,,,(V1,V2) < 6. Let G C B,
be a graph over V; of a function g1, ||gi||c: < 6. If § < é(n), then G N 6B, is also a
graph over V5 of a function g, ||g2||c: < C6. The ratio § satisfies 1 — C6 <0 < 1.

Sketch of proof. We follow the proof of Lemma 3.5. The composition
‘/1 id +g1 e '&) sz

is shown to be a diffeomorphism. If we denote its inverse by ¢, then G N 0B, is a
graph over V3 of g>(z) = ¢(x) + g1(¢(x)) — . N

4. Proof of the main theorem

Induction upwards. Fix 7(n) = 807!'67", then choose p(n, ) € (0, 1) according
to Lemma 3.2 applied with the value 27%7 instead of 7, finally denote x = l%p.
Without loss of generality we can assume that each of the balls in S has radius
r; = p’ for some natural j > 1. Otherwise we exchange each B,(z) € S for B,, (x),
where we take j so that r; <7 <r;_;if r <pand j=1if r > p. This only changes
the values in (1.3) and (1.4) by a multiplicative constant. Similarly, we can assume
p to be supported in By, i.e., CentS C By (8, , numbers are monotone in ).

Let S? denote those balls that have radius 7; = p’; we denote SS* = S'U. . .US" and
S>% etc. analogously. We can further assume S to be finite. Otherwise we proceed
with the finite truncated collection S$4 and its associated measure <4, which also
satisfies the assumption (1.3):

<A k
uSt = E wkrjéxj.

jirizpt

If we are able to obtain the claim (1.4) for y<# with a constant independent of A,
then by passing to the limit A — oo we obtain the claim for pu. Thus let us assume
that the smallest radius in the collection is 74.

We focus on proving by induction the following claim:

Claim 4.1. For each j = A,...,0 and any ball B, (z) € B, disjoint from
Cent S/,
u(B (2)) < M.
At the end of the proof, it shall be clear that M (n, J) = C'(n) - max(1, J) works here.

Note that this estimate fails without the additional disjointness assumption, as
for any 2 € Cent S* and arbitrarily large j we have p(B,,(2)) = wyrf. Still, Claim 4.1
implies our final claim. Indeed, the collection SU is empty, thus u(B;) < M.

On the other hand, for j = A any ball disjoint from Cent SS* has measure zero,
so the claim is trivial. This is the basis for our upwards induction.

Induction downwards. An outline of the construction. Here we assume
that Claim 4.1 holds for all # € B and scales j+1,..., A and consider a ball B, (z).
For simplicity let us assume j = 0 and work with the ball By (i.e., the last step of
the upwards induction).

We proceed with Reifenberg’s construction of coverings of Cent SNB; at all scales
i=0,...,A. A covering at scale i will consist of the excess set E<* and collections
of balls Good*, Bad’, Fin’, each of radius r; and centered in CentS. The balls Fin’
will be chosen from the collection S' (hence u(B) = wyr¥ for B € Fin’) and the other
balls will be separated according to their measure: u(B) > 7Mr¥ for good balls and
w(B) < 7Mrk for bad balls.
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As the first step, we define the approximating surface to be
To=V(0,k) <R"

The covering of CentS N By is obtained by just one good ball Good” = {B;}. Note
that if this ball is in fact bad, there is nothing to prove.

The covering will satisfy the following properties:

Claim 4.2. (Properties of the covering) The support of u is covered by the
collections of balls Good’, Bad™’, FinS* and the excess set E<', i.e.,

Cent S C U Good" U U BadS' U U FinS" U E<%.
The collections %Goodi, %Badgi, %Fingi taken together are disjoint. Moreover, the

collection Good" is disjoint from Cent S<.

A sequence of surfaces approximating Cent S will also be constructed, but it is
not used to obtain Claim 4.2.

Excess set. For each good ball B,,(y) € Good" we define the excess set
E(y,r1) = B (y) \ Briyya(V(y, £14)).

This set is exactly what prevents the set Cent S from satisfying the uniform Reifenberg
condition By (y,7;) < p/4. Its measure will be estimated via Chebyshev’s inequality
later on.

We sum up over all good balls to obtain

E' = U E(y,r).

Good?

We add it to the previous excess sets: ES' := ES™=1U EY,
Denote the remainder set

RS = U Bad~' U U FinS" U B

The measure of this set can be estimated in a straightforward way, hence we do not
need to cover it in the next steps of our inductive construction.

Construction of the covering. In order to cover the set | J Good'\ RS at scale
r;, we first choose the final balls

Fin'tt .= {Bml(z): z € Cent S N (U Good' \ Rgi)} ,
so that Fin'™ C Si*1. Due to Claim 4.2, what is left to cover is the set
(%) Cent S~ N (U Good" \ R<i> .
We choose any maximal r;, ;-separated subset Cent J™ of the set (x) and consider
the collection of balls
JH={B,,,,(2): 2 € Cent J'''}.

By maximality, the set (x) is covered by [JJ™!. We divide J'™! into two subcollec-
tions:

Good'*! := {BeJ*: uB) > TMer} :
Bad™ := {B € J'*': u(B) < TMrf, }.
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Proof of Claim 4.2. By inductive hypothesis, RS covers Cent SS!. We covered
the rest of Cent S**! by Fin™ and Cent S>**! by Good"!, Bad™, thus we obtained
the desired covering. Since the ballsin S are disjoint and Cent J*+! is an r;,;-separated
set, the rest of the claim follows. O

Construction of the approximating surface. Here we apply the construc-
tion from Definition 3.1 for the collection of balls J = Good"™!. Thus for each ball
B, ,(ys) € Good"™ there is an associated function A, which together with ¢ forms
a partition of unity. We choose V; as the L*-best plane V (y,, xr;11) on a slightly
enlarged ball. This defines the smooth function

oi+1(x) $+Z)\ r)my, (@

and the surface
Tiv1 = 0i(Th).
The construction is now complete. Our aim is to derive three crucial properties

(4.1), (4.2), (4.3). Once these are obtained, the final estimate is an easy consequence.
First we need some basic properties of the surfaces constructed above.

Properties of the approximating surface.
Proposition 4.3. (a) Fory € T;,
1
i1 (y) —yl < OTZH

(b) IfB,,.,(y) € Good™, then

Tl
|Ti+l N 5BT’¢+1(y)| < 10- Wk(57°i+l)k'

(c) 0i41: T; — Tyy1 is bi-Lipschitz and for every B,,,,(y) € Good*! its bi-
Lipschitz constant on 5B,, ., (y) is bounded by

_M
Llpz—i—l 1 —l—C(?’L a,p,T ) ¢ 52('3/,6’/"2'_1),

in particular Lip,,, < 2Y/*.
(d) IfB,,,,(y) € Good'*", the surface Tj; is a graph over V (y, ri11) on 2B, (v)
of a C* function satisfying

_at2
1flley,, < Cln,q,p,m)M™ 5 83 (y, 5r:).

Proof. In order to derive these, we apply the squash lemma (Lemma 3.5) for a
ball B, ,(,) € Good™. Its center y lies in some B,,(z) € Good'; we let V := V (2, kr;)
be the reference plane. Consider any y € Cent Good“rl such that ly — ¢/| < 5rig.
Then y' lies in By, (2) and we may apply Lemma 3.3 (with 27%7 instead of 7) and
obtain

d2 (V(Z, 2’%71@')7 V(ylu ’ﬂni+1)) <

Y yTi4+1

C(n,q,p,7 )M_% (52(?/7 KT'it1) +ﬁ2(27 2’“"@'))
<OM T (62(y', 267i41) + 02 (2, 4kry))
CM—T(Sg(y, 5r;) < oM~

Here we used again the pointwise estimate (3.3) and a bad estimate §7(x,7) < J (the
latter shall be refined in the next subsection). We can choose M > C(7).J7% large
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enough so that the right-hand side is small. The planes V (z, 2xr;) and V (z, kr;) are
compared in the same way:

q+2

@2 ,,(V(2,26m), V(2 k1) < CM™ 7 6%(y, 5r:) < CM™ 7.

By the inductive assumption, 7; is a graph over V(z, xr;) on 2B,,(z) hence we can
apply Lemma 3.5 with

1/2

5y = <0M—‘13253(y’5m>1/2’ 5o 1= (CM_%(SS(Z, 5r,-_1))

Thus we obtain (a) and (b), while (c) follows after an additional estimate on d, ;.
We also obtain an altered version of (d): T;,; is also a graph over V(z, kr;) on
6B,..,(y) with the desired C' bound (one can take § = 2.5). By an application of
Lemma 3.6, one can change the plane: T;,; is a graph over V(y, kr;41) on 2B, (y).
This completes the proof of Proposition 4.3. O

Estimates on the approximating surfaces T;. Combining the bound for
the bi-Lipschitz constant of ¢;,1: T; — T;,1 in Proposition 4.3c with the elementary
estimate (1 + )% <1+ k28 1z (valid for = € [0, 1]), we obtain

Lipf—i—l(x) <1+ CM_%(Sz(yS, 67”2-_1), T e 5Bh‘+1 (yS)

for each ball B, (ys) € Good"™. Summing over all balls in Good"*' and noting that
0,41 = id outside 5Good™ ™,

. _a+t2
L1pf+1(x) <14+ CM™ a Zdz(ys, 67“2-_1))(5137,“1(%)(:17).
The measure of T;.1 = 0;41(T;) can be estimated by

Ti| < / Lipk,, () A\ ().
T;
Applying the above estimate and Proposition 4.3b,

_at2
Ton| < |T}| + CM ™ Z T, M5B, |02 (ys, 67i-1)

|T|+0M-Z/ (2,6r;_1) dpu(=)

B67“Z 1 (ys)

< T+ oM™ B2(z,6r-1) dpu(2).

B>

In the last line we used the fact that any point z € By belongs to at most C(n,p)
balls Bg,,_,(ys), as the balls %Good“rl are disjoint.
Applying this inductively, we arrive at the following bound:

i—1
_g+2
1< [T+ O Y [ 2 0m) duce)
1=0 7/ B2

_gt2
(4.1) < Wy (1—|—C’2(n,q,p,7)M q J) .

Here, the bound on the series follows from Remark 3.1, and equality |Tp| = wy comes
from the fact that T} is a plane.
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Comparison of g and A*.T;. Let B € Bad'*' UFin""" be bad or final. In
either case, its center y lies in some B(z,r;) € Good' and d(y, V(z, kri)) < 7i41/4, so
T; is a graph over V(z, kr;) on B. In particular,

1
OB/ > (i /3)"

Since |0i41(y) — y| < $57i41 and 0;4q has a bi-Lipschitz constant Lip,; < 2'/% due
to Proposition 4.3, we have

Tia NB/2| > |T; NB/3| - Lip;y >207'37Frf, .

By construction, the centers Cent Good”™ "™ lie outside B, hence B/2 is disjoint with
5Good”"™ and o, = id on B/2 for s > i + 1. Therefore

T, NB/2| >207'37 %k,
for s =4,i+1,.... By definition, u(B) < 7MrF,, if B is bad. We choose M > wy /T,
so that the same holds if B is final. Thus we obtain the following comparison estimate
(4.2) u(B) < CyrM|T, N B2
for B € Bad™™'UFin"™ and s = i,i+1, . ... It is essential that the constant C; = 20-3*
does not depend on p, 7.

Estimates on the excess set. Since
E(y,ri) ={z € By, (y): d(z,V(y, ri)) = ris1/4},

Chebyshev’s inequality yields

W(E (1)) < — /()dq<x,v<y,m>>du

(riv1/4)* J
< C(?’L, q, p)rzkﬁg(?ﬁ K'Ti)
< Cn,q.p,7)M 2] 162 (2, 2r)

where in the last line we applied the estimate (3.4). By construction, the balls %Goodi

are disjoint, hence any point z € R” belongs to at most C(n) of the balls 2Good".
Thus

W(EY < Cn,q,p, )M 27" | B2(z,2r;) dp

B2
and by summing over i = 0,1,..., A we obtain the bound
(43) M(EgA) < C3(”aQ>p> T)M_%J%'

Here we used again the assumption (1.3) together with Remark 3.1.

Derivation of the bound. Here we prove Claim 4.1 using the estimates (4.1),
(4.2), (4.3). By construction, the balls Good" are disjoint from Cent S<. This means
that at the A-th step of the construction we have Good? = 0, as this collection of
balls is disjoint with Cent S. Therefore 1 is supported in the remainder set:

supp p C U Bad<4 U U Fins4 U E<4.

Recall that the collections %BadgA, %FingA are disjoint, so we can use (4.2) for all
bad and final balls with s = A to obtain:

i (U Bad*' U J Fin<A) < Oy TMI|Ty].
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Then the surface estimate (4.1) yields
p (Bad™ U JFin™) <wrnCirM(1+ CoM ")),

at2 _gqt+2 _gq
q

We add it with the estimate for the excess set (4.3) and arrive at
ﬂ+@M”Tﬁ)

/L(Bl) < M <wkC’17'(1 + CQM_

Note that 7(n) = 807'67" is chosen so that w,C17 < 1/4. Now we choose the smallest
M satisfying

q q q 1
M T IS, GM™HJE <5

and other lower bounds of the form M > C(n,q) imposed during the proof; since
7(n) is fixed, we see that M = C(n) - max (1, Jq_iZ). Finally, we are able to estimate

1 1
MBQ<A4Q5L+U+§>:A1
This ends the proof of Claim 4.1 and Theorem 1.1.

5. Extentions of the theorem

Generalization to non-discrete measures. We assume that S C By is a
A-measurable subset. Here we generalize Theorem 1.1 to measures of the form
i = MLS, i.e., we show that (1.3) implies (1.4) in this case as well. This was done as
a part of an independent theorem in [7, Th. 3.3], but here we show it is a corollary
of Theorem 1.1.

Theorem 5.1. Let S C By be a A*-measurable set and let B,(z,r), J,(z,7) be
defined as in (1.1), (1.2) corresponding to the measure \*LS, where 2 < q < oc.
Assume that for each ball B,(xz) C By we have

r_k/ Jo(y,7) dXF(y) < J.

SNB(z)

Then for each ball B,(x) C By the following estimate holds:
NS N By () < C(n,q) - max (1,77 - 7%,

Proof. 1t is sufficient to show the claim for the ball By. Then for any B, (z) C
B; we can apply the theorem to the scaled set S" = %(S — z), which satisfies the
assumptions with the same value of J. Thus we obtain

AWSHBA@):AﬂymBg-ngxm.mw<Lﬁ$>4&

As a first step we show that u = A*LS is o-finite. Indeed, (1.3) yields in particular

/ Jo(9,2) dyaly) < 25 - J.
Bo

For fixed t > 0, the measure of the superlevel set S; = {y € S : J,(y,2) > tJ}
can be estimated by u(S;) < 2%/t using Chebyshev’s inequality. On the other hand,
the set Sy = {J,(y,2) = 0} is clearly contained in a k-dimensional plane and hence
1(Sp) < oo. Since

S=SulJ Sy

J=1
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i is o-finite. We can assume without loss of generality that p is finite. Indeed, we
can first consider the smaller sets Sy U Sy/; instead; since the bound (1.4) depends
on n and ¢ only, in the limit we obtain the bound also for S.

Second, we recall the notion of upper k-dimensional density

k
B

O**(S,z) = limsup M50 kr(I))
r—0 WgT

and its following property [6]:

Proposition 5.2. Let S C R" be a set with \*(S) < oo. Then for \F-a.e. x € S,
(5.1) 27F < O(S,r) < 1.

Consider the set S* of all points « € S satisfying (5.1). We can replace S with
this possibly smaller set. Since the difference S\ S* has zero \* measure, the obtained
bound for S* holds also for S. From now on we assume that all points x € S satisfy
(5.1).

For every z € S choose a radius r, € (0, p| such that

1
i (EBT” (x)) > 27" (ry /100K, u(Br(x)) < 2wpr® for all v < .
The set S is covered by balls B, (x) and we can extract a countable Vitali subcovering
B; = B,,(;), so that the balls %Bj are disjoint. Choose p; to be the center of mass
of 1-B; and define the collection

S :={B,;/10(p;)}

Since p; € 1—10Bj, we have B, /10(p;) C %Bj, thus the collection S is disjoint. We
consider the associated measure

V= Z wy(7/10)*6,,.
J

Our goal now is to reduce the problem for p to the already solved problem for the
discrete measure v. We will show that this is possible due to the following comparison
estimates:

((By) <2-10"0(Buig,), BY,(x,s) < 213980 (2, 3s).

For the first estimate, we observe that

uBH < S uB) <2100 Y w100 < 2-10°0(Byyay).

z;€B14, z;€B14,

As for the second, consider a ball By(x) such that 3B4(z) C Bs. If there is some
p; € By(x) with 7;/10 > 2s, then by disjointness of S this is the only point from
supp v in Bg(z) and f,2(x,s) = 0. In the other case, 7;/10 < 2s for all p; € B4(z).
Choose an affine k-plane V. On each %Bj we apply Jensen’s inequality for the
function d4(-, V):

d1(p,., V) <][ d(y, V) du.

1 .
105

This yields
(r3/10) pd?(p;, V) < 2441 / a1y, V) dp

1 .
10Bj
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and hence

/ di(y, V) dv < 2! Z / < 2k+1/ d(y, V) dpu.
Bs(z) Bz, (z)

p;€Bs(x)

Taking the infimum on the right-hand side,
k+1qk
¢ (w,5) < 21BMIBY (2 35).

Therefore the flatness condition (1.3) is satisfied also for the measure v and we
obtain our claim by an application of Theorem 1.1. To be more precise, one first needs
to apply an easy rescaling and covering argument, as one needs to bound v(Bi42,)
instead of v(B;), and also the obtained estimate works only for balls B;(z) such that
3Bs(z) C Bo. OJ

Remark 5.3. This proof shows that Theorem 1.1 actually works of all measures
i with the covering property resulting from Proposition 5.2. Consider p supported
in the union of balls B, (z;), each satisfying

1
(158 0) > (5108, (Bl < Gt} forall <y

In particular, this is satisfied by any p such that
¢, <O (u,z) < C, for prae. .

If p satisfies the assumption (1.3), then px(B;) is bounded as in (1.4). Naturally,
the constant obtained in the final estimate depends on ¢, C,,.

Weakened assumptions. The proof of Theorem 1.1 applies also with the
assumption (1.3) replaced by fB Jo < J. This means that we consider the integral
divided by u(B,(z)) instead of r*. Since there is no a priori upper bound for y, this
assumption is weaker.

Theorem 5.4. Let S = {B,,(z;)} be a collection of disjoint balls in By and
p=7>; wirkd,, be its associated measure and let 3y(x,r), Jo(x,r) be defined as in
(1.1), (1 2), where 2 < ¢ < 0o. Assume that for each ball B,(z) C By we have

][ ) dn) <

the following estimate holds:

B,) = Z wkrf < C(n,q) - max (1,J%) .

(EjGB1

Sketch of proof. Proceeding as in the proof of Theorem 1.1, one obtains the
following counterparts of estimates (4.3), (4.1):

W(ESYY < Codd, T4l < wi (1 + CQM—%J) .

The main difference lies in the last step of each estimate, where one needs to bound
the integral fB J(z,7r) dp(z). A closer look at the proof shows that in fact an
integral over B1,5 is sufficient to bound these quantities (actually, any ball larger
than B is sufficient if p is small enough). In the case considered in Theorem 1.1,
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this is bounded by J; in this case, one has to use the rough estimate u(B;5) < C(n)M
to obtain

/B o) dia) = M(Bm)]{g o) d < )M

This rough estimate can be derived as follows. Since the collection S = S#! is

disjoint, there are at most C'(n, p) ball centers By 5 N Cent S! and each has measure

wrp®. The test of Bys can be covered by C(n,p) balls of radius p disjoint from

Cent SS. By the inductive assumption of Claim 4.1, each has measure bounded by
M pF. This yields
#(Bus) < C(n, p)wrp® + C(n, p)Mp* < C(n, p) M.
The proof of the estimate (4.2) carries over without changes:
w(B) < CirM|T,NnB/2| for B € Bad™ UFin"™ and s > .

Similarly, these three estimates combined yield
p(B1) < M (wnCrr (14 CM75T) + CM 1 TH)
and the proof works for M = C(n) - max (1, J%). O
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