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Abstract. The paper proves that a bound on the averaged Jones’ square function of a mea-

sure implies an upper bound on the measure. Various types of assumptions on the measure are

considered. The theorem is a generalization of a result due to Naber and Valtorta in connection

with measure bounds on the singular set of harmonic maps.

1. Introduction

Reifenberg-type theorems. Classical Reifenberg’s theorem states that if a
closed set S ⊆ R

n is well approximated by affine k-planes (in the sense of Hausdorff
distance) at all balls centered in S, then S is bi-Hölder equivalent with a plane. It was
proved by Reifenberg in 1960 [8] in his work on the Plateau problem (see also [9]).

In this paper we consider approximation in the sense of Hausdorff semi-distance,
i.e., sets with holes are allowed. The quality of this approximation is measured by
Jones’ height excess numbers β. Fix natural numbers 1 6 k < n and let µ be a
Radon measure on R

n; the basic example is µ = λkxS, where S is a k-dimensional
set and λk is the k-dimensional Hausdorff measure. We define

(1.1) βµ,q(x, r) = inf
V k

(

r−(k+q)

ˆ

Br(x)

dq(y, V k) dµ(y)

)1/q

.

This is the Lq norm of d(y, V k)/r on Br(x) with respect to the measure r−kµ, where
V k is the best affine k-plane.

In order to obtain an upper bound on the measure µ, a uniform bound on βq(x, r)
is not sufficient (see Example 2.1). The upper bound can follow from a bound on
Jones’ square function

(1.2) Jµ,q(x, r) =

ˆ r

0

β2
µ,q(x, s)

ds

s
.

In dimension 1, Jones’ traveling salesman theorem [5] shows the connection between a
version of this function and 1-dimensional Hausdorff measure bounds. The geometric
importance of Jµ,q is also illustrated by Example 2.2. The subscript µ shall be omitted
when it is clear from the context.

There are many results concerning the consequences of a bound on Jones’ square
function. David and Toro [3] showed that if S satisfies the assumptions of Reifen-
berg’s theorem and JλkxS,1(x, 1) is uniformly bounded, then the parametrization of
S obtained in Reifenberg’s theorem is Lipschitz continuous. Azzam and Tolsa [10, 2]
characterized rectifiable measures by the condition Jµ,2(x, 1) < ∞ µ-a.e., assuming
that the upper-density is positive and finite µ-a.e.
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This paper is concerned with obtaining upper bounds on the measure µ. In this
direction, Naber and Valtorta [7] proved that there is δ(n) > 0 such that if

r−k

ˆ

Br(x)

Jµ,2(y, r) dµ(y) 6 δ2

holds for any ball Br(x) ⊆ B2, then µ(B1) 6 C(n). This was proved in two cases:
when µ is a discrete measure and when µ = λkxS. In the latter case, the authors
also obtained rectifiability of S.

However, it was the discrete version [7, Th. 3.4] that was used to obtain an upper
bound on the singular set λk(Sing u) of a harmonic map u in terms of its Dirichlet
energy. A possible application to singular sets of solutions of nonlinear PDEs is one
of the main motivations of this paper.

Recently, Azzam and Schul [1] have generalized Jones’ work to sets of higher
dimensions. One of their results bounds the k-dimensional Hausdorff measure µ =
λkxS of a closed set S ⊆ B1 ⊆ R

n in terms of Jµ,q(0, 2). The set S is assumed to be
lower content regular; this property implies that for some c, r0 > 0

µ(Br(x)) > crk for all x ∈ S, 0 < r < r0.

The precise definitions and statements are slightly more involved, as they employ the
outer measures λkδ instead of λk; we refer the reader to [1] for details. Thanks to this
modification the authors avoid assuming a priori that µ is finite.

After this paper had been submitted to arXiv, similar results were obtained by
Edelen, Naber and Valtorta in their paper [4], which improves their previous work
[7]. They prove a variant of Theorem 1.1 under somewhat different assumptions and
also show rectifiability of the measure in case the lower-density is suitably controlled.

Basic notation. The balls centered in 0 are Br = Br(0), the measure of k-
dimensional unit ball is ωk and λBr(x) = Bλr(x) is the scaled ball. If S = {Bj}
is a collection of balls, then Cent S stands for the set of centers of these balls and
λS = {λBj} is the collection of scaled balls with the same centers. We denote the
union by

⋃

S =
⋃

j

Bj .

As in [3], we use the normalized local Hausdorff distance

dx,r(E, F ) =
1

r
distH(E ∩Br(x), F ∩Br(x)),

where distH is the standard Hausdorff distance.

Statement of the main results. The following is a slightly improved version
of Naber and Valtorta’s theorem [7, Th. 3.4]. The main difference is that the upper
bound J is not assumed to be small. Moreover, the theorem holds for any 2 6 q <∞.

Theorem 1.1. (Discrete Reifenberg) Let S = {Brj(xj)} be a collection of dis-

joint balls in B2, µ =
∑

j ωkr
k
j δxj

be its associated measure and let βq(x, r), Jq(x, r)

be defined as in (1.1), (1.2), where 2 6 q <∞. Assume that for each ball Br(x) ⊆ B2

we have

(1.3) r−k

ˆ

Br(x)

Jq(y, r) dµ(y) 6 J.
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Then the following estimate holds:

(1.4) µ(B1) =
∑

xj∈B1

ωkr
k
j 6 C(n, q) ·max

(

1, J
q

q+2

)

.

The choice of the normalizing constant ωk is motivated by the comparison of µ
with k-dimensional Hausdorff measure, but has no importance for the theorem.

The proof of Theorem 1.1 follows the lines of [7]. This generalization is made
possible by relaxing the inductive claim in the construction and carefully keeping
track of the constant.

This observation also leads to other possible extensions, discussed in Section 5.
First, Theorem 5.1 and Remark 5.3 generalize the above to measures µ with controlled
upper-density, in particular to the case µ = λkxS. Second, Theorem 5.4 shows that,
with minor modifications, the proof applies also with (1.3) replaced by a weaker
assumption

−

ˆ

Br(x)

Jq(y, r) dµ(y) 6 J.

Outline of the proof of Theorem 1.1. The main tool is Reifenberg’s con-
struction of surfaces T0, T1, T2, . . . approximating the support of µ. The bound on
Jones’ square function Jq (1.3) enables us to prove that this approximation is efficient.
There are three key properties that we need:

• The total area |Ti| of the approximating surface is estimated from above via
βq numbers (see (4.1)).

• The measures µ and λkxTi are comparable on (at least some) balls Bri(x)
centered near Ti (see (4.2)).

• The region outside some neighborhood of Ti has small measure µ (see (4.3)).

It is intuitive that these three imply some bound on the measure µ. Indeed, once
they are derived, we shall see at the end of Section 4 that the final estimate is an
easy consequence.

2. Examples

Reifenberg’s theorem states that any ε-Reifenberg flat set is α-Hölder equivalent
with a k-plane. This leads to finite Hausdorff measure in dimension k/α. As ε → 0,
α tends to 1 and the dimension bound k/α gets arbitrarily close to k. The example
below shows that under these assumptions this bound cannot be improved.

Example 2.1. (Flat snowflake) Fix a small angle θ and consider a modification
of the Koch curve (a snowflake): each segment is divided into three segments of equal
length and the middle segment is replaced by two segments, each of them at angle
θ to the original segment (the original construction is obtained for θ = π/6). We
denote the curve obtained by starting with a unit segment and iterating the above
procedure by K.

If θ is small, K is ε-Reifenberg flat and α-Hölder equivalent with a segment. For
θ ≈ 0 we have ε ≈ θ ≈ 0 and α ≈ 1. Still, the Hausdorff dimension of K is greater
than 1. This example shows that Reifenberg’s theorem is optimal—ε-Reifenberg
flatness condition does not imply a bound on the k-dimensional Hausdorff measure.

Since ε-Reifenberg flatness condition is not enough to imply a bound on the k-
dimensional Hausdorff measure, we investigate an improved example taken from [3].
It suggests that the proper hypothesis is a bound on Jones’ square function (1.2).
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Example 2.2. (Very flat snowflake) Modify the previous example by taking
another angle θi at each stage i of the construction. After N stages we have a curve
of length

N
∏

i=1

2 + 1
cos θi

3
=

N
∏

i=1

(

1 +
1

6
θ2i + o(θ2i )

)

.

The product is convergent if and only if the sum
∑

i θ
2
i converges. The measure

λ1(K) of the limit curve can be bounded in terms of this sum.

Since the angles θi are comparable with βq numbers taken on the corresponding
balls, this shows that indeed the exponent 2 in the definition of Jones’ square function
Jq (1.2) is natural. It also suggests that this function can be used to bound the k-
dimensional measure; indeed, a result of this type was proved in [3]. In this paper
we relax this assumption by concerning a bound on the average −

´

Br(x)
Jq(y, r) dµ(y)

or on r−k
´

Br(x)
Jq(y, r) dµ(y) for each ball Br(x).

3. Technical constructions

The tools discussed in this section are well known and most of them are cited
from [7]. Some technical corrections were made in Lemmata 3.2, 3.3 (counterparts
of [7, 4.7, 4.8]). These corrections come from the fact that the ball B1 cannot be
covered by finitely many balls Bρ(xi) contained in B1. Thus one is forced to work
with a weaker condition xi ∈ B1, in consequence the balls are contained in a slightly
larger ball B1+ρ.

Properties of β numbers. Recall the definitions

βq
q (x, r) = inf

V k
r−(k+q)

ˆ

Br(x)

dq(y, V k) dµ(y),(1.1)

Jq(x, r) =

ˆ r

0

β2
q (x, s)

ds

s
.(1.2)

Due to the factor r−(k+q) these quantities are scale invariant. Indeed, if ν is a scaled
version of µ, i.e., ν(·) = λ−kµ(λ·), then βν,q(0, r) = βµ,q(0, λr) and Jν,q(0, r) =
Jµ,q(0, λr). This scaling occurs, e.g., if ν, µ are discrete measures corresponding to
collections of balls S, λS, or k-dimensional Hausdorff measure restricted to sets S, λS.

First we note the basic continuity property of βq. For any y ∈ Br(x) we have
Br(x) ⊆ B2r(y) and it follows from the definition that

(3.1) βq
q (x, r) 6 2k+2βq

q (y, 2r) for y ∈ Br(x).

This simple observation leads to an equivalent form of Jones’ square function.

Remark 3.1. Fix some ρ ∈ (0, 1) and let rα = ρα for α = 0, 1, 2, . . .. Then any
bound on Jones’ square function is (up to a constant depending on ρ) equivalent to
a bound on

∑

rα62r

β2
q (x, rα).

Proof. Similarly to (3.1), we have

βq
q (x, r1) 6 (r2/r1)

k+qβq
q (x, r2) for r1 6 r2.
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Take arbitrary s ∈ (0, r) and choose α such that ρα+1 6 s < ρα. Then

c(ρ)β2
q (x, ρ

α+1) 6 β2
q (x, s) 6 C(ρ)β2

q (x, ρ
α) and c(ρ) 6

ˆ ρα

ρα+1

ds

s
6 C(ρ),

which shows the equivalence. �

Denote the auxiliary numbers

(3.2) δ2q (x, r) = r−k

ˆ

Br(x)

β2
q (y, r) dµ(y).

Note that assumption (1.3) together with Remark 3.1 yields a very rough estimate
δ2q (x, r) 6 CJ . Moreover,

δ2q (x1, r1) 6 C(r1/r2)δ
2
q (x2, r2) if Br1(x1) ⊆ Br2(x2).

Yet another corollary of (3.1) can be obtained by taking the average over all
y ∈ Br(x):

β2
q (x, r) 6 C(k, q)−

ˆ

Br(x)

β2
q (y, 2r) dµ(y).

If one assumes a lower bound µ(Br(x)) > τ(n)Mrk (as it will be satisfied in the
applications), this can be further estimated by

−

ˆ

Br(x)

β2
q (y, 2r) dµ(y) 6

1

τMrk

ˆ

Br(x)

β2
q (y, 2r) dµ(y) = C(n, τ)M−1δ2q (x, 2r).(3.3)

Finally, an estimate for βq
q can be obtained by

βq
q (x, r) =

(

β2
q (x, r)

)q/2
.

(

−

ˆ

Br(x)

β2
q (y, 2r) dµ(y)

)q/2

.
(

M−1δ2q (x, 2r)
)q/2

.M−
q
2J

q−2

2 δ2q (x, 2r),

(3.4)

where the symbol . denotes an inequality up to a multiplicative constant, possibly
dependent on n, q, τ, ρ.

Comparison of Lq-best planes via βq. Due to compactness of the Grass-
mannian G(k, n) and continuity of d(y, V ), there exists a k-plane minimizing

ˆ

Br(x)

dq(y, V ) dµ

(there may be more than one). We choose any of the Lq-best planes and denote it
by V (x, r).

We will estimate the distances between the Lq-best planes on different balls using
βq numbers. More precisely, we want to prove that the distance between V (x1, r1)
and V (x2, r2) is estimated via βq numbers if r1, r2 are comparable and controlled by
|x1 − x2|.

In the case of the standard β∞ numbers this is an elementary geometric problem.
As shown by simple examples in [7], in case of βq numbers one is forced to assume
some kind of Ahlfors–David regularity of the measure µ. Here we use the condition
τMrk 6 µ(Br) 6 Mr because we want to study the dependence on M with τ(n)
fixed.
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Lemma 3.2. There exists ρ0(n, τ) such that for ρ 6 ρ0 the following holds. If

µ(Bρ(x)) 6 ρk

holds for all x ∈ B1 and µ(B1) > τ , then for every affine plane V 6 R
n of dimension

6 k − 1, there exists a point x ∈ B1 such that

d(x, V ) > 10ρ, µ(Bρ(x)) > C(n, ρ) > 0.

Now we can prove the aforementioned tilt-excess result. We denote κ = 1
1−ρ

so

that κBρ(x) ⊆ κB1(0) for any x ∈ B1(0).

Lemma 3.3. Fix τ ∈ (0, 1) and ρ(n, τ) as in Lemma 3.2; denote κ = 1
1−ρ

. Let µ

be a positive Radon measure. Assume that µ(B1) > τM and that µ(Bρ2(y)) 6Mρ2k

for every y ∈ Bκ. Additionally, let x ∈ B1 be such that µ(Bρ(x)) > τMρk. Then if

d(x, V (0, κ)) 6 ρ/2 or d(x, V (x, κρ)) 6 ρ/2, then the distance between the Lq-best

planes is estimated by

dqx,ρ(V (0, κ), V (x, κρ)) 6 C(n, q, ρ, τ)M−1
(

βq
q (0, κ) + βq

q (x, κρ)
)

.

We present a sketch of proof, referring to [7, Lemma 4.8] for a more detailed
explanation.

Sketch of proof. We assume that d(x, V (0, κ)) 6 ρ/2; in the other case one has
to exchange the roles od V (0, κ) and V (x, κρ). Consider first the case M = 1.

We choose k + 1 points y0, . . . , yk ∈ Bρ(x) with µ(Bρ2(yi)) > c(n, τ). Denote by
pi the center of mass of Bρ2(yi) and let p′i be its projection onto V (0, κ). We require
p′i to effectively span V (0, κ) ∩Bρ(x), i.e.,

d(p′i+1, span(p
′

0, . . . , p
′

i)) > 8ρ2.

This is done by inductive application of Lemma 3.2 and the elementary inequality
|yi − pi| 6 ρ2. Jensen’s inequality yields

dq(pi, V (0, κ)) 6 Cβq
q (0, κ), dq(pi, V (x, κρ)) 6 Cβq

q (x, κρ),

hence all points p′i are close to V (x, κρ). Since these points effectively span V (0, κ)∩
Bρ(x), it can be shown that this k-plane is contained in a small neighborhood of
V (x, κρ) ∩Bρ(x). Since these two planes have the same dimension, the assumption
d(x, V (0, κ)) 6 ρ/2 ensures that the inclusion works both ways (see [7, Lemma 4.2]).
This completes the case M = 1.

Now consider a measure µ satisfying the assumptions for some M > 0. Then
the above reasoning can be applied for the measure ν = M−1µ, satisfying similar
assumptions with 1 instead of M . Since µ, ν have the same Lq-best planes and
βq
µ,q(y, r) =Mβq

ν,q(y, r) on any ball Br(y), the claim follows. �

In the proof of Theorem 1.1, the values of τ, ρ shall be fixed depending only on
the dimension n.

Bi-Lipschitz diffeomorphism construction. Here we introduce the construc-
tion later used to obtain the approximating surfaces in the proof of Theorem 1.1. For
some r > 0, let J = {Br(xi)} be a finite collection of balls such that 1

2
J is disjoint. For

each ball choose a k-dimensional affine plane Vi and denote the orthogonal projection
onto Vi by πi. As in [3], one can choose a locally finite smooth partition of unity
λi : R

n → [0, 1] subordinate to the cover
⋃

4J satisfying

(1)
∑

i λi ≡ 1 in
⋃

3J,
(2) λi ≡ 0 outside 4Br(xi) for all i,
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(3) ||∇λi||∞ 6 C(n)/r,
(4) the partition is completed with the smooth function ψ = 1 −

∑

i λi and
||∇ψ||∞ 6 C(n)/r.

Definition 3.1. Given J, λi, pi, Vi as above, define a smooth function σ : Rn →
R

n by

σ(x) = ψ(x)x+
∑

i

λi(x)πi(x).

The function σ interpolates between the identity and the projections onto the
affine planes Vi. Note that σ = id outside of the union

⋃

4J, as on this region we
have ψ ≡ 1. On the other hand, if Vi are all close to some V , then σ is close to
the orthogonal projection onto V in the region

⋃

3J. This will be made precise in
Lemma 3.5.

Lemma 3.5 is a modified version of [7, Lemma 4.12]. It is essentially a counter-
part of the squash lemma used to prove classical Reifenberg’s theorem. The crucial
additional part of the following is the bi-Lipschitz estimate for σ that is quadratic
in δ0, δ1; this should be compared to the measure estimate in Example 2.2 and the
definition (1.2) of Jones’s square function. In order to obtain this quadratic estimate,
let us first consider the following geometric fact.

Lemma 3.4. Let V1, V2 be two linear k-planes and π1, π2 be the corresponding

orthogonal projections. If d0,1(V1, V2) 6 δ, then ||π1π2 − id ||V1→V1
6 C(n)δ2.

Proof. It follows that ‖π1π
⊥
2 ‖ 6 Cδ and ‖π⊥

2 π1‖ 6 Cδ; in fact one can define the
Grassmannian distance this way. Since π1 = id on V1, it is enough to estimate the
norm of π1π2π1 − π1:

‖π1π2π1 − π1‖ = ‖π1(π2 − id)π1‖ = ‖π1π
⊥

2 π1‖ = ‖(π1π
⊥

2 )(π
⊥

2 π1)‖

6 ‖π1π
⊥

2 ‖ · ‖π
⊥

2 π1‖ 6 (Cδ)2. �

The following lemma deals with graphs of functions that are C1 small at scale r.
To simplify the notation, we introduce the normalized C1 norm

||g||C1
r
:= r−1||g||∞ + ||∇g||∞.

Lemma 3.5. (Squash lemma) Fix some ball Br(y) ⊆ R
n and a k-dimensional

affine plane V such that d(y, V ) 6 r/2. Suppose that for all balls Br(xi) ∈ J centered

in 10Br(y) we have

dxi,r(Vi, V ) 6 δ1.

Suppose also that G0 ⊆ R
n is the graph G0 = {x+g0(x) : x ∈ V }∩5Br(y) of a small

function g0 : V → V ⊥, i.e., ||g0||C1
r
6 δ0. If δ0 6 1 and δ1 6 δ(n), then

(1) The set G1 = σ(G0) restricted to 4Br(y) is a graph of a function g1 : V → V ⊥

with

||g1||C1
r
6 C(n)(δ0 + δ1).

There is ratio θ > 3 − C(n)(δ0 + δ1) such that on each of the balls θBr(xi)
the previous bound is actually independent of δ0, i.e., ||g1||C1

r
6 C(n)δ1.

(2) The map σ : G0 → G1 is a C1 diffeomorphism from G0 to G1 and

|σ(z)− z| 6 C(n)(δ0 + δ1)r for z ∈ G0.

Moreover, its bi-Lipschitz constant does not exceed 1 + C(n)(δ20 + δ21).
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Proof. Note that Vi are also close to V on the larger ball: dy,10r(Vi, V ) 6 Cδ1 for
all i. For x ∈ V denote z = x+ g(x) and

h(x) =
∑

i

λi(z) (πi(x+ g0(x))− x) ,

so that

σ(x+ g0(x)) = ψ(z)(x + g0(x)) +
∑

i

λi(z)πi(x+ g0(x)) = x+ ψ(z)g0(x) + h(x).

For simplicity, assume that 0 ∈ V . Then we can consider the decomposition of σ
obtained by projecting onto the linear plane V and its orthogonal complement V ⊥:

σ(x+ g0(x)) = σT (x) + σ⊥(x), σT (x) = x+ hT (x),

σ⊥(x) = ψ(z)g0(x) + h⊥(x).

Now we show that σT − id and σ⊥ are C1
r -small. Indeed, it is easily checked

that ||πi(x + g0(x)) − x||C1
r
6 Cδ1 for all x ∈ V ∩ 5Br(xi) and hence for all x such

that λi(z) > 0. Note that this is independent of δ0, if only δ0 6 1. Therefore
||hT ||C1

r
, ||h⊥||C1

r
6 Cδ1.

The remaining term is estimated by ||ψ(z)g0(x)||C1
r
6 Cδ0, but it vanishes for all

x such that z ∈
⋃

3J. Thus we obtained

||σT − id ||C1
r
6 Cδ1, ||σ⊥||C1

r
6 C(δ0 + δ1)

We choose δ1 6 δ(n) small in order to apply the inverse function theorem for σT : V →
V . Thus we obtain the inverse function φ satisfying ||φ − id ||C1

r
6 Cδ1 and φ = id

outside
⋃

4J. The inverse enables us to write

σ(x+ g0(x)) = σT (x) + g1(σ
T (x)), where g1(x) = σ⊥(φ(x)).

This proves point (1) and the first part of point (2).
What is left is the estimate for the bi-Lipschitz constant of σ. To this end, we

decompose σ in the following way:

G0 ∋ x+ g0(x)
(id+g0)−1

7−−−−−−→ x
σT

7−→ σT (x)
id+g1
7−−−→ σT (x) + g1(σ

T (x)) ∈ G1.

The Lipschitz constant of the map V
id+g0
−−−→ G0 is bounded by

√

1 + δ20 and

its inverse is a contraction. Similarly, the bi-Lipschitz constant of V
id+g1
−−−→ G1 is

bounded by
√

1 + C(δ20 + δ21).

To obtain a quadratic bound for V
σT

−→ V , we need to improve the estimate
||∇hT ||∞ 6 Cδ1 derived before. To this end, compute

∇hT (x) =
∑

i

∇λi(z)∇z (πV πi(x+ g0(x))− x)

+
∑

i

λi(z) (πV∇πi(id+∇g0(x))− id)

In the second sum, the expression in parentheses is (πV ∇πi∇g0)+(πV∇πi− id). The
first term is bounded by Cδ0δ1, while for the second Lemma 3.4 implies the bound
Cδ21. The estimates for the first sum are obtained analogously. Hence ||∇hT ||∞ 6
C(δ20 + δ21) and the bi-Lipschitz constant of σT is bounded by 1 + C(δ20 + δ21). In
consequence, we obtain the bound for σ as a composition. �

We end with a related lemma, which shows that if G is a graph over V1 and V1, V2
are close, then it is also a graph over V2.
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Lemma 3.6. Let V1, V2 be two affine k-planes and dy,r(V1, V2) 6 δ. Let G ⊆ Br

be a graph over V1 of a function g1, ||g1||C1
r
6 δ. If δ 6 δ(n), then G ∩ θBr is also a

graph over V2 of a function g2, ||g2||C1
r
6 Cδ. The ratio θ satisfies 1− Cδ < θ < 1.

Sketch of proof. We follow the proof of Lemma 3.5. The composition

V1
id+g1
7−−−→ G

πV27−−→ V2

is shown to be a diffeomorphism. If we denote its inverse by φ, then G ∩ θBr is a
graph over V2 of g2(x) = φ(x) + g1(φ(x))− x. �

4. Proof of the main theorem

Induction upwards. Fix τ(n) = 80−16−n, then choose ρ(n, τ) ∈ (0, 1) according
to Lemma 3.2 applied with the value 2−kτ instead of τ , finally denote κ = 1

1−ρ
.

Without loss of generality we can assume that each of the balls in S has radius
rj = ρj for some natural j > 1. Otherwise we exchange each Br(x) ∈ S for Brj (x),
where we take j so that rj 6 r < rj−1 if r < ρ and j = 1 if r > ρ. This only changes
the values in (1.3) and (1.4) by a multiplicative constant. Similarly, we can assume
µ to be supported in B1, i.e., Cent S ⊆ B1 (βµ,q numbers are monotone in µ).

Let Si denote those balls that have radius ri = ρi; we denote S6i = S
1∪. . .∪Si and

S>i etc. analogously. We can further assume S to be finite. Otherwise we proceed
with the finite truncated collection S6A and its associated measure µ6A, which also
satisfies the assumption (1.3):

µ6A =
∑

j : rj>ρA

ωkr
k
j δxj

.

If we are able to obtain the claim (1.4) for µ6A with a constant independent of A,
then by passing to the limit A → ∞ we obtain the claim for µ. Thus let us assume
that the smallest radius in the collection is rA.

We focus on proving by induction the following claim:

Claim 4.1. For each j = A, . . . , 0 and any ball Brj(x) ⊆ B2 disjoint from
Cent S6j ,

µ(Brj(x)) 6Mrkj .

At the end of the proof, it shall be clear that M(n, J) = C(n) ·max(1, J) works here.

Note that this estimate fails without the additional disjointness assumption, as
for any x ∈ Cent Si and arbitrarily large j we have µ(Brj(x)) = ωkr

k
i . Still, Claim 4.1

implies our final claim. Indeed, the collection S60 is empty, thus µ(B1) 6M .
On the other hand, for j = A any ball disjoint from Cent S6A has measure zero,

so the claim is trivial. This is the basis for our upwards induction.

Induction downwards. An outline of the construction. Here we assume
that Claim 4.1 holds for all x ∈ B1 and scales j+1, . . . , A and consider a ball Brj (x).
For simplicity let us assume j = 0 and work with the ball B1 (i.e., the last step of
the upwards induction).

We proceed with Reifenberg’s construction of coverings of Cent S∩B1 at all scales
i = 0, . . . , A. A covering at scale i will consist of the excess set E6i and collections
of balls Good

i, Badi, Fini, each of radius ri and centered in Cent S. The balls Fin
i

will be chosen from the collection Si (hence µ(B) = ωkr
k
i for B ∈ Fin

i) and the other
balls will be separated according to their measure: µ(B) > τMrki for good balls and
µ(B) < τMrki for bad balls.
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As the first step, we define the approximating surface to be

T0 = V (0, κ) 6 R
n.

The covering of Cent S ∩B1 is obtained by just one good ball Good0 = {B1}. Note
that if this ball is in fact bad, there is nothing to prove.

The covering will satisfy the following properties:

Claim 4.2. (Properties of the covering) The support of µ is covered by the
collections of balls Good

i, Bad6i, Fin6i and the excess set E<i, i.e.,

Cent S ⊆
⋃

Good
i ∪

⋃

Bad
6i ∪

⋃

Fin
6i ∪ E<i.

The collections 1
2
Good

i, 1
2
Bad

6i, 1
2
Fin

6i taken together are disjoint. Moreover, the

collection Good
i is disjoint from Cent S6i.

A sequence of surfaces approximating Cent S will also be constructed, but it is
not used to obtain Claim 4.2.

Excess set. For each good ball Bri(y) ∈ Good
i we define the excess set

E(y, ri) := Bri(y) \Bri+1/4(V (y, κri)).

This set is exactly what prevents the set Cent S from satisfying the uniform Reifenberg
condition β∞(y, ri) 6 ρ/4. Its measure will be estimated via Chebyshev’s inequality
later on.

We sum up over all good balls to obtain

Ei :=
⋃

Good
i

E(y, ri).

We add it to the previous excess sets: E6i := E6i−1 ∪ Ei.
Denote the remainder set

R6i :=
⋃

Bad
6i ∪

⋃

Fin
6i ∪ E6i.

The measure of this set can be estimated in a straightforward way, hence we do not
need to cover it in the next steps of our inductive construction.

Construction of the covering. In order to cover the set
⋃

Good
i \R6i at scale

ri, we first choose the final balls

Fin
i+1 :=

{

Bri+1
(z) : z ∈ Cent Si+1 ∩

(

⋃

Good
i \R6i

)}

,

so that Fin
i+1 ⊆ Si+1. Due to Claim 4.2, what is left to cover is the set

(⋆) Cent S>i+1 ∩
(

⋃

Good
i \R6i

)

.

We choose any maximal ri+1-separated subset Cent Ji+1 of the set (⋆) and consider
the collection of balls

J
i+1 := {Bri+1

(z) : z ∈ Cent Ji+1}.

By maximality, the set (⋆) is covered by
⋃

Ji+1. We divide Ji+1 into two subcollec-
tions:

Good
i+1 :=

{

B ∈ J
i+1 : µ(B) > τMrki+1

}

,

Bad
i+1 :=

{

B ∈ J
i+1 : µ(B) < τMrki+1

}

.
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Proof of Claim 4.2. By inductive hypothesis, R6i covers Cent S6i. We covered
the rest of Cent Si+1 by Fin

i+1 and Cent S>i+1 by Good
i+1,Badi+1, thus we obtained

the desired covering. Since the balls in S are disjoint and Cent Ji+1 is an ri+1-separated
set, the rest of the claim follows. �

Construction of the approximating surface. Here we apply the construc-
tion from Definition 3.1 for the collection of balls J = Good

i+1. Thus for each ball
Bri+1

(ys) ∈ Good
i+1 there is an associated function λs, which together with ψ forms

a partition of unity. We choose Vs as the L2-best plane V (ys, κri+1) on a slightly
enlarged ball. This defines the smooth function

σi+1(x) = ψ(x)x+
∑

s

λs(x)πVs(x)

and the surface

Ti+1 = σi+1(Ti).

The construction is now complete. Our aim is to derive three crucial properties
(4.1), (4.2), (4.3). Once these are obtained, the final estimate is an easy consequence.
First we need some basic properties of the surfaces constructed above.

Properties of the approximating surface.

Proposition 4.3. (a) For y ∈ Ti,

|σi+1(y)− y| 6
1

10
ri+1.

(b) If Bri+1
(y) ∈ Good

i+1, then

|Ti+1 ∩ 5Bri+1(y)| 6 10 · ωk(5ri+1)
k.

(c) σi+1 : Ti → Ti+1 is bi-Lipschitz and for every Bri+1
(y) ∈ Good

i+1 its bi-

Lipschitz constant on 5Bri+1
(y) is bounded by

Lipi+1 6 1 + C(n, q, ρ, τ)M−
q+2

q δ2q (y, 6ri−1),

in particular Lipi+1 6 21/k.

(d) If Bri+1
(y) ∈ Good

i+1, the surface Ti+1 is a graph over V (y, κri+1) on 2Bri+1
(y)

of a C1 function satisfying

||f ||C1
ri+1

6 C(n, q, ρ, τ)M−
q+2

q δ2q (y, 5ri).

Proof. In order to derive these, we apply the squash lemma (Lemma 3.5) for a
ball Bri+1(y) ∈ Good

i+1. Its center y lies in some Bri(z) ∈ Good
i; we let V := V (z, κri)

be the reference plane. Consider any y′ ∈ CentGoodi+1 such that |y − y′| 6 5ri+1.
Then y′ lies in B2ri(z) and we may apply Lemma 3.3 (with 2−kτ instead of τ) and
obtain

d2y′,ri+1
(V (z, 2κri), V (y

′, κri+1)) 6 C(n, q, ρ, τ)M−
2

q

(

β2
q (y

′, κri+1) + β2
q (z, 2κri)

)

6 CM−
q+2

q

(

δ2q (y
′, 2κri+1) + δ2q (z, 4κri)

)

6 CM−
q+2

q δ2q (y, 5ri) 6 CM−
q+2

q J

Here we used again the pointwise estimate (3.3) and a bad estimate δ2q (x, r) 6 J (the

latter shall be refined in the next subsection). We can choose M > C(τ)J
q

q+2 large
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enough so that the right-hand side is small. The planes V (z, 2κri) and V (z, κri) are
compared in the same way:

d2z,ri(V (z, 2κri), V (z, κri)) 6 CM−
q+2

q δ2(y, 5ri) 6 CM−
q+2

q J.

By the inductive assumption, Ti is a graph over V (z, κri) on 2Bri(z) hence we can
apply Lemma 3.5 with

δ1 :=
(

CM−
q+2

q δ2q (y, 5ri)
)1/2

, δ0 :=
(

CM−
q+2

q δ2q (z, 5ri−1)
)1/2

.

Thus we obtain (a) and (b), while (c) follows after an additional estimate on δ0, δ1.
We also obtain an altered version of (d): Ti+1 is also a graph over V (z, κri) on

θBri+1
(y) with the desired C1 bound (one can take θ = 2.5). By an application of

Lemma 3.6, one can change the plane: Ti+1 is a graph over V (y, κri+1) on 2Bri+1
(y).

This completes the proof of Proposition 4.3. �

Estimates on the approximating surfaces Ti. Combining the bound for
the bi-Lipschitz constant of σi+1 : Ti → Ti+1 in Proposition 4.3c with the elementary
estimate (1 + x)k 6 1 + k2k−1x (valid for x ∈ [0, 1]), we obtain

Lipk
i+1(x) 6 1 + CM−

q+2

q δ2(ys, 6ri−1), x ∈ 5Bri+1
(ys)

for each ball Bri+1
(ys) ∈ Good

i+1. Summing over all balls in Good
i+1 and noting that

σi+1 = id outside 5Goodi+1,

Lipk
i+1(x) 6 1 + CM−

q+2

q

∑

s

δ2(ys, 6ri−1)χ5Bri+1
(ys)(x).

The measure of Ti+1 = σi+1(Ti) can be estimated by

|Ti+1| 6

ˆ

Ti

Lipk
i+1(x) dλ

k(x).

Applying the above estimate and Proposition 4.3b,

|Ti+1| 6 |Ti|+ CM−
q+2

q

∑

s

|Ti ∩ 5Bri+1
|δ2q (ys, 6ri−1)

6 |Ti|+ CM−
q+2

q

∑

s

ˆ

B6ri−1
(ys)

β2
q (z, 6ri−1) dµ(z)

6 |Ti|+ CM−
q+2

q

ˆ

B2

β2
q (z, 6ri−1) dµ(z).

In the last line we used the fact that any point z ∈ B2 belongs to at most C(n, ρ)
balls B6ri−1

(ys), as the balls 1
2
Good

i+1 are disjoint.
Applying this inductively, we arrive at the following bound:

|Ti| 6 |T0|+ CM−
q+2

q

i−1
∑

l=0

ˆ

B2

β2
q (z, 6rl) dµ(z)

6 ωk

(

1 + C2(n, q, ρ, τ)M
−

q+2

q J
)

.(4.1)

Here, the bound on the series follows from Remark 3.1, and equality |T0| = ωk comes
from the fact that T0 is a plane.
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Comparison of µ and λkxTi. Let B ∈ Bad
i+1 ∪ Fin

i+1 be bad or final. In
either case, its center y lies in some B(z, ri) ∈ Good

i and d(y, V (z, κri)) 6 ri+1/4, so
Ti is a graph over V (z, κri) on B. In particular,

|Ti ∩B/3| >
1

10
(ri+1/3)

k.

Since |σi+1(y) − y| 6 1
10
ri+1 and σi+1 has a bi-Lipschitz constant Lipi+1 6 21/k due

to Proposition 4.3, we have

|Ti+1 ∩B/2| > |Ti ∩B/3| · Lip−k
i+1 > 20−13−krki+1.

By construction, the centers CentGood>i+1 lie outside B, hence B/2 is disjoint with
5Good>i+1 and σs = id on B/2 for s > i+ 1. Therefore

|Ts ∩B/2| > 20−13−krki+1

for s = i, i+1, . . .. By definition, µ(B) 6 τMrki+1 if B is bad. We choose M > ωk/τ ,
so that the same holds if B is final. Thus we obtain the following comparison estimate

(4.2) µ(B) 6 C1τM |Ts ∩B/2|

for B ∈ Bad
i+1∪Fini+1 and s = i, i+1, . . .. It is essential that the constant C1 = 20·3k

does not depend on ρ, τ .

Estimates on the excess set. Since

E(y, ri) = {x ∈ Bri(y) : d(x, V (y, κri)) > ri+1/4},

Chebyshev’s inequality yields

µ(E(y, ri)) 6
1

(ri+1/4)q

ˆ

Bri
(y)

dq(x, V (y, κri)) dµ

6 C(n, q, ρ)rki β
q
q (y, κri)

6 C(n, q, ρ, τ)M−
q
2J

q−2

2 rki δ
2
q (x, 2r)

where in the last line we applied the estimate (3.4). By construction, the balls 1
2
Good

i

are disjoint, hence any point x ∈ R
n belongs to at most C(n) of the balls 2Goodi.

Thus

µ(Ei) 6 C(n, q, ρ, τ)M−
q
2J

q−2

2

ˆ

B2

β2
q (x, 2ri) dµ

and by summing over i = 0, 1, . . . , A we obtain the bound

(4.3) µ(E6A) 6 C3(n, q, ρ, τ)M
−

q
2J

q
2 .

Here we used again the assumption (1.3) together with Remark 3.1.

Derivation of the bound. Here we prove Claim 4.1 using the estimates (4.1),
(4.2), (4.3). By construction, the balls Goodi are disjoint from Cent S6i. This means
that at the A-th step of the construction we have Good

A = ∅, as this collection of
balls is disjoint with Cent S. Therefore µ is supported in the remainder set:

supp µ ⊆
⋃

Bad
6A ∪

⋃

Fin
6A ∪ E6A.

Recall that the collections 1
2
Bad

6A, 1
2
Fin

6A are disjoint, so we can use (4.2) for all
bad and final balls with s = A to obtain:

µ
(

⋃

Bad
6A ∪

⋃

Fin
6A

)

6 C1τM |TA|.
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Then the surface estimate (4.1) yields

µ
(

Bad
6A ∪

⋃

Fin
6A

)

6 ωkC1τM(1 + C2M
−

q+2

q J).

We add it with the estimate for the excess set (4.3) and arrive at

µ(B1) 6M
(

ωkC1τ(1 + C2M
−

q+2

q J) + C3M
−

q+2

2 J
q
2

)

.

Note that τ(n) = 80−16−n is chosen so that ωkC1τ 6 1/4. Now we choose the smallest
M satisfying

C2M
−

q+2

q J 6 1, C3M
−

q+2

2 J
q
2 6

1

2
and other lower bounds of the form M > C(n, q) imposed during the proof; since

τ(n) is fixed, we see that M = C(n) ·max
(

1, J
q

q+2

)

. Finally, we are able to estimate

µ(B1) 6M

(

1

4
(1 + 1) +

1

2

)

=M.

This ends the proof of Claim 4.1 and Theorem 1.1.

5. Extentions of the theorem

Generalization to non-discrete measures. We assume that S ⊆ B2 is a
λk-measurable subset. Here we generalize Theorem 1.1 to measures of the form
µ = λkxS, i.e., we show that (1.3) implies (1.4) in this case as well. This was done as
a part of an independent theorem in [7, Th. 3.3], but here we show it is a corollary
of Theorem 1.1.

Theorem 5.1. Let S ⊆ B2 be a λk-measurable set and let βq(x, r), Jq(x, r) be

defined as in (1.1), (1.2) corresponding to the measure λkxS, where 2 6 q < ∞.

Assume that for each ball Br(x) ⊆ B2 we have

r−k

ˆ

S∩Br(x)

Jq(y, r) dλ
k(y) 6 J.

Then for each ball Br(x) ⊆ B1 the following estimate holds:

λk(S ∩Br(x)) 6 C(n, q) ·max
(

1, J
q

q+2

)

· rk.

Proof. It is sufficient to show the claim for the ball B1. Then for any Br(x) ⊆
B1 we can apply the theorem to the scaled set S ′ = 1

r
(S − x), which satisfies the

assumptions with the same value of J . Thus we obtain

λk(S ∩Br(x)) = λk(S ′ ∩B1) · r
k 6 C(n) ·max

(

1, J
q

q+2

)

· rk.

As a first step we show that µ = λkxS is σ-finite. Indeed, (1.3) yields in particular
ˆ

B2

Jq(y, 2) dµ(y) 6 2k · J.

For fixed t > 0, the measure of the superlevel set St = {y ∈ S : Jq(y, 2) > tJ}
can be estimated by µ(St) 6 2k/t using Chebyshev’s inequality. On the other hand,
the set S0 = {Jq(y, 2) = 0} is clearly contained in a k-dimensional plane and hence
µ(S0) <∞. Since

S = S0 ∪
∞
⋃

j=1

S1/j ,
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µ is σ-finite. We can assume without loss of generality that µ is finite. Indeed, we
can first consider the smaller sets S0 ∪ S1/j instead; since the bound (1.4) depends
on n and q only, in the limit we obtain the bound also for S.

Second, we recall the notion of upper k-dimensional density

Θ∗k(S, x) = lim sup
r→0

λk(S ∩Br(x))

ωkrk

and its following property [6]:

Proposition 5.2. Let S ⊆ R
n be a set with λk(S) <∞. Then for λk-a.e. x ∈ S,

(5.1) 2−k 6 Θ∗k(S, x) 6 1.

Consider the set S⋆ of all points x ∈ S satisfying (5.1). We can replace S with
this possibly smaller set. Since the difference S\S⋆ has zero λk measure, the obtained
bound for S⋆ holds also for S. From now on we assume that all points x ∈ S satisfy
(5.1).

For every x ∈ S choose a radius rx ∈ (0, ρ] such that

µ

(

1

10
Brx(x)

)

> 2−k−1ωk(rx/10)
k, µ(Br(x)) 6 2ωkr

k for all r 6 rx.

The set S is covered by balls Brx(x) and we can extract a countable Vitali subcovering
Bj = Brj(xj), so that the balls 1

5
Bj are disjoint. Choose pj to be the center of mass

of 1
10
Bj and define the collection

S := {Brj/10(pj)}.

Since pj ∈ 1
10
Bj, we have Brj/10(pj) ⊆ 1

5
Bj, thus the collection S is disjoint. We

consider the associated measure

ν :=
∑

j

ωk(rj/10)
kδpj .

Our goal now is to reduce the problem for µ to the already solved problem for the
discrete measure ν. We will show that this is possible due to the following comparison
estimates:

µ(B1) 6 2 · 10kν(B1+2ρ), βq
ν,q(x, s) 6 2k+13k+qβq

µ,q(x, 3s).

For the first estimate, we observe that

µ(B1) 6
∑

xj∈B1+ρ

µ(Bj) 6 2 · 10k
∑

xj∈B1+ρ

ωk(rj/10)
k 6 2 · 10kν(B1+2ρ).

As for the second, consider a ball Bs(x) such that 3Bs(x) ⊆ B2. If there is some
pj ∈ Bs(x) with rj/10 > 2s, then by disjointness of S this is the only point from
supp ν in Bs(x) and βν,2(x, s) = 0. In the other case, rj/10 6 2s for all pj ∈ Bs(x).
Choose an affine k-plane V . On each 1

10
Bj we apply Jensen’s inequality for the

function dq(·, V ):

dq(pj, V ) 6 −

ˆ

1

10
Bj

dq(y, V ) dµ.

This yields

(rj/10)
kωkd

q(pj , V ) 6 2k+1

ˆ

1

10
Bj

dq(y, V ) dµ
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and hence
ˆ

Bs(x)

dq(y, V ) dν 6 2k+1
∑

pj∈Bs(x)

ˆ

1

10
Bj

dq(y, V ) dµ 6 2k+1

ˆ

B3s(x)

dq(y, V ) dµ.

Taking the infimum on the right-hand side,

βq
ν,q(x, s) 6 2k+13k+qβq

µ,q(x, 3s).

Therefore the flatness condition (1.3) is satisfied also for the measure ν and we
obtain our claim by an application of Theorem 1.1. To be more precise, one first needs
to apply an easy rescaling and covering argument, as one needs to bound ν(B1+2ρ)
instead of ν(B1), and also the obtained estimate works only for balls Bs(x) such that
3Bs(x) ⊆ B2. �

Remark 5.3. This proof shows that Theorem 1.1 actually works of all measures
µ with the covering property resulting from Proposition 5.2. Consider µ supported
in the union of balls Brj (xj), each satisfying

µ

(

1

10
Brj(xj)

)

> cµ(rj/10)
k, µ (Br(xj)) 6 Cµr

k
j for all r 6 rj.

In particular, this is satisfied by any µ such that

cµ 6 Θ∗k(µ, x) 6 Cµ for µ-a.e. x.

If µ satisfies the assumption (1.3), then µ(B1) is bounded as in (1.4). Naturally,
the constant obtained in the final estimate depends on cµ, Cµ.

Weakened assumptions. The proof of Theorem 1.1 applies also with the
assumption (1.3) replaced by −

´

B
J2 6 J . This means that we consider the integral

divided by µ(Br(x)) instead of rk. Since there is no a priori upper bound for µ, this
assumption is weaker.

Theorem 5.4. Let S = {Brj(xj)} be a collection of disjoint balls in B2 and

µ =
∑

j ωkr
k
j δxj

be its associated measure and let βq(x, r), Jq(x, r) be defined as in

(1.1), (1.2), where 2 6 q <∞. Assume that for each ball Br(x) ⊆ B2 we have

−

ˆ

Br(x)

Jq(y, r) dµ(y) 6 J.

the following estimate holds:

µ(B1) =
∑

xj∈B1

ωkr
k
j 6 C(n, q) ·max

(

1, J
q
2

)

.

Sketch of proof. Proceeding as in the proof of Theorem 1.1, one obtains the
following counterparts of estimates (4.3), (4.1):

µ(E6A) 6 C3J
q
2 , |TA| 6 ωk

(

1 + C2M
−

2

qJ
)

.

The main difference lies in the last step of each estimate, where one needs to bound
the integral

´

B2
Jq(x, r) dµ(x). A closer look at the proof shows that in fact an

integral over B1.5 is sufficient to bound these quantities (actually, any ball larger
than B1 is sufficient if ρ is small enough). In the case considered in Theorem 1.1,
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this is bounded by J ; in this case, one has to use the rough estimate µ(B1.5) 6 C(n)M
to obtain

ˆ

B1.5

Jq(x, r) dµ(x) = µ(B1.5)−

ˆ

B1.5

Jq(x, r) dµ 6 C(n)MJ.

This rough estimate can be derived as follows. Since the collection S = S>1 is
disjoint, there are at most C(n, ρ) ball centers B1.5 ∩ Cent S1 and each has measure
ωkρ

k. The rest of B1.5 can be covered by C(n, ρ) balls of radius ρ disjoint from
Cent S61. By the inductive assumption of Claim 4.1, each has measure bounded by
Mρk. This yields

µ(B1.5) 6 C(n, ρ)ωkρ
k + C(n, ρ)Mρk 6 C(n, ρ)M.

The proof of the estimate (4.2) carries over without changes:

µ(B) 6 C1τM |Ts ∩B/2| for B ∈ Bad
i+1 ∪ Fin

i+1 and s > i.

Similarly, these three estimates combined yield

µ(B1) 6M
(

ωkC1τ
(

1 + C2M
−

2

qJ
)

+ C3M
−1J

q
2

)

and the proof works for M = C(n) ·max
(

1, J
q
2

)

. �

References

[1] Azzam, J., and R. Schul: An analyst’s traveling salesman theorem for sets of dimension
larger than one. - https://arxiv.org/abs/1609.02892, 2016.

[2] Azzam, J., and X. Tolsa: Characterization of n-rectifiability in terms of Jones’ square func-
tion: Part II. - Geom. Funct. Anal. 25:5, 2015, 1371–1412.

[3] David, G., and T. Toro: Reifenberg parameterizations for sets with holes. - Mem. Amer.
Math. Soc. 215:1012, 2012.

[4] Edelen, N., A. Naber, and D. Valtorta: Quantitative Reifenberg theorem for measures. -
https://arxiv.org/abs/1612.08052, 2016.

[5] Jones, P.W.: Rectifiable sets and the traveling salesman problem. - Invent. Math. 102:1,
1990, 1–15.

[6] Mattila, P.: Geometry of sets and measures in Euclidean spaces. - Cambridge Stud. Adv.
Math. 44, Cambridge Univ. Press, Cambridge, 1995.

[7] Naber, A., and D. Valtorta: Rectifiable-Reifenberg and the regularity of stationary and
minimizing harmonic maps. - Ann. of Math. (2) 185:1, 2017, 131–227.

[8] Reifenberg, E.R.: Solution of the Plateau Problem for m-dimensional surfaces of varying
topological type. - Acta Math. 104, 1960, 1–92.

[9] Simon, L.: Reifenberg’s topological disc theorem.
- http://www.math.uni-tuebingen.de/ab/analysis/pub/leon/reifenberg/reifenberg.html.

[10] Tolsa, X.: Characterization of n-rectifiability in terms of Jones’ square function: Part I. -
Calc. Var. Partial Differential Equations 54:4, 2015, 3643–3665.

Received 18 January 2017 • Accepted 28 March 2017


