Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 43, 2018, 961-980
Universitat Autònoma
de Barcelona,
BGSMath and Departament de Matemàtiques
08193, Bellaterra, Barcelona, Catalonia; puliatti 'at' mat.uab.cat
Abstract. We study the chord-arc Jordan curves that satisfy the Cotlar-type inequality T*(f) ≤ M2(Tf), where T is the Cauchy transform, T* is the maximal Cauchy transform and M is the Hardy–Littlewood maximal function. Under the background assumption of asymptotic conformality we find a characterization of such curves in terms of the smoothness of a parametrization of the curve.
2010 Mathematics Subject Classification: Primary 42B20, 30C62, 28A80.
Key words: Cauchy integral, Cotlar's inequality, asymptotically conformal curve, chord-arc curve.
Reference to this article: C. Puliatti: Estimates for the maximal Cauchy integral on chord-arc curves. Ann. Acad. Sci. Fenn. Math. 43 (2018), 961-980.
https://doi.org/10.5186/aasfm.2018.4362
Copyright © 2018 by Academia Scientiarum Fennica