Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 43, 2018, 21-46
4-13-11 Hachi-Hon-Matsu-Minami, Higashi-Hiroshima 739-0144, Japan; yomizuta 'at' hiroshima-u.ac.jp
Oita University, Faculty of Education
Dannoharu Oita-city 870-1192, Japan; t-ohno 'at' oita-u.ac.jp
Hiroshima University, Graduate School of Education,
Department of Mathematics
Higashi-Hiroshima 739-8524, Japan;
tshimo 'at' hiroshima-u.ac.jp
Abstract. We introduce central Morrey–Orlicz spaces MΦ,ω(B) on the unit ball and study the existence of weighted spherical limits:
liminfr→1- (1 – r)d1ω(1 – r)d2(∫S(0,r) Φ((1 – r)d3|Iαf(x)|)q dS(x))1/q
for some d1, d2, d3 ∈ R, 1 ≤ q < ∞, and all Riesz potentials Iαf with f ∈ MΦ,ω(B). We also deal with the existence of weighted spherical limits for Green potentials and monotone Sobolev functions.
2010 Mathematics Subject Classification: Primary 31B15, 46E35.
Key words: Spherical limits, central Morrey–Orlicz spaces, Riesz potentials, Green potentials.
Reference to this article: Y. Mizuta, T. Ohno and T. Shimomura: Growth properties of potentials in central Morrey–Orlicz spaces on the unit ball. Ann. Acad. Sci. Fenn. Math. 43 (2018), 21-46.
https://doi.org/10.5186/aasfm.2018.4302
Copyright © 2018 by Academia Scientiarum Fennica