Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 43, 2018, 1023-1026
Université Laval,
Département de mathématiques et de statistique
Québec City (Québec), Canada G1V 0A6;
javad.mashreghi 'at' mat.ulaval.ca
Université Laval,
Département de mathématiques et de statistique
Québec City (Québec), Canada G1V 0A6;
thomas.ransford 'at' mat.ulaval.ca
Abstract. We show that, if f is an outer function and a ∈ [0,1), then the set of functions
{log|(f ˆ ψ)*| : ψ : D → D holomorphic, |ψ(0)| ≤ a}
is uniformly integrable on the unit circle. As an application, we derive a simple proof of the fact that, if f is outer and φ : D → D is holomorphic, then f : φ is outer.
2010 Mathematics Subject Classification: Primary 30H15; Secondary 28A20.
Key words: Outer function, Smirnov class, uniformly integrable.
Reference to this article: J. Mashreghi and T. Ransford: Outer functions and uniform integrability. Ann. Acad. Sci. Fenn. Math. 43 (2018), 1023-1026.
https://doi.org/10.5186/aasfm.2018.4360
Copyright © 2018 by Academia Scientiarum Fennica