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Abstract. We establish the optimal regularity for the distortion of inverses of mappings of

finite distortion with logarithm-iterated style subexponentially integrable distortion, which gener-

alizes the Theorem 1 of [7].

1. Introduction

We say that a mapping f : Ω → R
n in a domain Ω ⊂ R

n is a mapping of finite
distortion, if

(i) f ∈ W 1,1
loc

(Ω,Rn),
(ii) the Jacobian determinant Jf ∈ L1

loc
(Ω), and

(iii) there is a measurable function K : Ω → [1,+∞] with K(z) < ∞ almost
everywhere such that

(1.1) |Df(z)|n ≤ K(z)Jf (z) for almost all z ∈ Ω,

where |Df(z)| is the operator norm of the matrix Df(z). For mappings of finite
distortion, we define the distortion function by

Kf (z) =

{
|Df(z)|n

Jf (z)
, if z ∈ {z ∈ Ω: Jf(z) > 0} ,

1, if z ∈ {z ∈ Ω: Jf(z) = 0} ,

then the distortion inequality (1.1) becomes

(1.2) |Df(z)|n = Kf(z)Jf (z) for almost every z ∈ Ω.

We will limit the discussion in this paper to the planar case, i.e. n = 2. In this case,
since |Df(z)| = |fz| + |fz̄| and Jf (z) = |fz|

2 − |fz̄|
2, the distortion equality (1.2) is

equivalent to the Beltrami equation

(1.3)
∂f(z)

∂z̄
= µ(z)

∂f(z)

∂z
for almost every z ∈ Ω

where ∂
∂z̄

= 1
2

(
∂
∂x

+ i ∂
∂y

)
, ∂

∂z
= 1

2

(
∂
∂x

− i ∂
∂y

)
and |µ(z)| =

Kf (z)−1

Kf (z)+1
. For more details

about mappings of finite distortion, we refer the reader to [9] and the references
therein.

If ‖µ‖∞ ≤ k < 1, then the classical measurable Riemann mapping theorem
tells that the Beltrami equation (1.3) admits a homeomorphic solution and other
solutions are represented by composing the homeomorphic solution with holomorphic
functions, see [1, 3].
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When ‖µ‖∞ = 1, the Beltrami equation (1.3) becomes degenerate. David dealt
with this degenerate Beltrami equation in [4], where he generalized the measurable
Riemann mapping theorem for mappings with exponentially integrable distortion Kf ,
i.e. for mappings with exp(pKf) ∈ L1

loc
(Ω) for some p > 0. David also noted that

even if the distortion of f is exponentially integrable the distortion function of f−1

might still fail to be exponentially integrable. Later, Hencl and Koskela [8] proved

Kf−1 ∈ Lβ
loc

where β = c0p with absolute constant c0, under the local integrability
of exp(pKf ). Based on Theorem 1.1 of [2], Gill [6] ascertained the sharp inequality
c0 < 1. The comprehensive statement is as follows.

Theorem A. [6, Theorem 1] Suppose that f : Ω → C is a homeomorphism
of finite distortion which satisfies the Beltrami equation (1.3), with the associated
distortion function Kf . If

exp(pKf) ∈ L1
loc
(Ω) for some p > 0,

then f−1 is a mapping of finite distortion and the distortion function Kf−1 satisfies

Kf−1 ∈ Lβ
loc
(f(Ω)) for all 0 < β < p.

Moreover, this result is sharp in the sense that for every p > 0 there are functions f
as above such that Kf−1 /∈ Lp

loc
.

Let p > 0, we define

(1.4) Ap,n(x) =

{
px− p, if n = 0,

px

1+
∏n

k=1 log(k)(exp(k−2)(e)−1+x)
− p, if n = 1, 2, . . . .

where log(i)(x)=log (· · · (log (log(x))) · · · ) and exp(i)(x)=exp (· · · (exp (exp(x))) · · · )
are i-iterated logarithm and exponent for i = 1, 2, . . ., exp(0)(x) = x and exp(−1)(x) =
1. Theorem A tells us that the distortion function of inverse is locally integrable under
exp [Ap,0(Kf )] ∈ L1

loc
. Gill in [7] generalized Theorem 1.1 of [2] to the solution f to

the Beltrami equation (1.3) with exp [Ap,n(Kf)] ∈ L1
loc

when n = 1, 2, . . .. However,
there is no corresponding result analogous to Theorem A. The aim of this article is to
present a generalization of Theorem A under the local integrability of exp[Ap,n(Kf)].

Theorem 1.1. Suppose that f : Ω → C is a homeomorphic mapping of finite
distortion, with the associated distortion function Kf . Let Ap,n(x) be (1.4) when
n = 1, 2, . . .. If

(1.5) exp [Ap,n(Kf )] ∈ L1
loc
(Ω) for some p > 0,

then f−1 is a mapping of finite distortion and the distortion function Kf−1 satisfies

(1.6) log(n)(exp(n−1)(e) +Kf−1) ∈ Lβ
loc
(f(Ω)) for every 0 < β < p.

Moreover, for every p > 0 there are mappings that satisfy the assumptions of the
theorem, yet fail (1.6) for β = p.

The rest of the paper is organized as follows. In section 2, we recall some ba-
sic facts about Legendre Transformation and obtain an inequality of Young type.
Section 3 is devoted to the proof of Theorem 1.1.

Notation. By s ≫ 1 and t ≪ 1 we mean that s is sufficiently large and t is
sufficiently small, respectively. By f . g we mean that there exists a constant M > 0
such that f(x) ≤ Mg(x) for every x. If f . g and g . f we may denote f ∼ g. By
N we denote the set of positive integers. When concerned only with the convergence
of improper integrals, we use notations

´∞

∗
and
´ ∗

0
.
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2. An inequality of Young type

An Orlicz function is a continuously increasing function Φ: [0,∞) → [0,∞) with

Φ(0) = 0 and lim
t→∞

Φ(t) = ∞.

The conjugate to an Orlicz function Φ is defined by

Φ∗(s) = sup
t≥0

{st− Φ(t)} , s ≥ 0.

Directly from definition, we obtain

(2.1) ts ≤ Φ(t) + Φ∗(s) for every t, s ≥ 0.

Inspired by [5], we now impose condition

(2.2) lim
t→∞

Φ(t)

t
= ∞.

on the Orlicz function Φ to ensure that Φ∗(s) ∈ [0,∞) for all s ≥ 0. Moreover, there
exists t(s) ∈ [0,∞) such that the supremum of st− Φ(t) is attained at t(s).

Lemma 2.1. Suppose that Φ is an Orlicz function and satisfies (2.2). If Φ(t)
is differentiable for all t ≥ 0 and Φ(t) is twice differentiable with Φ′′(t) > 0 for all
t ≫ 1, then

(Φ∗)′(s) = (Φ′)−1(s) for all s ≫ 1.

Proof. Given s ≫ 1. From (2.2) and the continuity of Φ, there exists t(s) ∈ [0,∞)
such that

Φ∗(s) = st(s)− Φ(t(s)).

Then

(2.3) Φ′(t(s)) = s.

From (2.2) and limt→∞ Φ(t) = ∞, it follows that lim t → ∞Φ′(t) = ∞. Hence, we
have Φ′(t) ≫ 1 as t ≫ 1. Since Φ′′(t) > 0 for all t ≫ 1, we know that (Φ′)−1(s) exists
for all s = Φ′(t) ≫ 1. Applying (Φ′)−1 to both sides of (2.3), we have t(s) = (Φ′)−1(s).
Consequently, we have

(Φ∗)′(s) = t(s) + (s− Φ′(t(s)))
d(Φ′)−1(s)

ds
= (Φ′)−1(s). �

The t(s) in the proof of Lemma 2.1 is unique. If not, by mean value theorem there
is t0(s) ≫ 1 such that Φ′′(t0(s)) = 0, which violates the assumption in Lemma 2.1.

Given a strictly convex C2 function Φ(t), it is not easy to compute the explicit
expression of Φ∗(s) from the definition. However, by Lemma 2.1, we can obtain the
asymptotic behaviour of Φ∗(s) as s ≫ 1. The following example, coming from [5],
illustrates this.

Example 2.2. Put Φ(t) = exp
(

t
log(e+t)

)
. Take some t0 ≫ 1 such that Φ′(t0) >

0. We define Φ1(t) by

Φ1(t) =

{
Φ′(t0)(t− t0) + t0Φ(t0), if 0 ≤ t ≤ t0,

Φ(t) + t0Φ
′(t0)− Φ(t0), if t0 < t.

We first compute the asymptotic behaviour of Φ∗
1(s) as s ≫ 1. After differentiating

and taking the logarithm, we have

log(Φ′
1(t)) ∼

t

log(t)
as t ≫ 1.
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Let t
log(t)

= log(s). Then

(2.4) t ∼ log(s) log(2)(s) as s ≫ 1.

Moreover, we can check that Φ1(t) satisfies all assumptions in Lemma 2.1. Hence, it
follows from Lemma 2.1 that

log(Φ′
1(t)) ∼ log(s) = log[Φ′

1((Φ
∗
1)

′(s))].

Therefore, by (2.4) and the monotonicity of log(·) and Φ′
1(·), we have

(Φ∗
1)

′(s) ∼ log(s) log(2)(s).

Hence, by the Newton–Leibniz formula, we show

Φ∗
1(s) ∼ s log(s) log(2)(s) as s ≫ 1.

By the definition of conjugate function, we know that there exist constant C1 and C2

with C2 ≥ C1 such that Φ∗(s) + C1 ≤ Φ∗
1(s) ≤ Φ∗(s) + C2 for all s ≥ 0. Therefore,

we have

Φ∗(s) ∼ s log(s) log(2)(s) as s ≫ 1.

By the method analogous to Example 2.2, we present an inequality of Young
type, which plays a crucial role in the proof of Theorem 1.1.

Lemma 2.3. Let p > 0 and n ∈ N. Given β > 0, there exist constants C1, C2 >
0 such that

ts ≤ C1Φ(t) + C2Ψ(s) for all t, s ≥ 0,

where Φ(t) = exp[Ap,n(exp(n)(t
1
β ))] and Ψ(s) = s

[
log(n+1)(exp(n)(e) + s)

]β
.

Proof. We divide the proof into two cases.

Case 1. Suppose first that 0 ≤ s ≤ C1 for some C1 > 0. Since t ≤ Φ(t) for all
t ≥ 0 and Ψ(s) ≥ 0 for all s ≥ 0, we obtain

(2.5) st ≤ C1Φ(t) + Ψ(s) for all t ≥ 0 and 0 ≤ s ≤ C1.

Case 2. Suppose that s ≫ 1. Take some t0 ≫ 1 such that Φ′(t0) > 0. We define
Φ1(t) by

Φ1(t) =

{
Φ′(t0)(t− t0) + t0Φ(t0), if 0 ≤ t ≤ t0,

Φ(t) + t0Φ
′(t0)− Φ(t0), if t0 < t.

We first compute the asymptotic behaviour of Φ∗
1(s) as s ≫ 1. Since

log Φ′
1(t) ∼

exp(n)(t
1
β )

exp(n−1)(t
1
β ) · · · exp(1)(t

1
β )t

1
β

= F (t) for all t ≫ 1

and for any constant C > 0 we have

C < exp(n−2)(t
1
β ) · · · exp(1)(t

1
β )t

1
β < C exp(n−1)(t

1
β ) as t ≫ 1,

it follows that

(2.6)
exp(n)(t

1
β )

exp(n−1)(t
1
β )

> log Φ′
1(t) >

exp(n)(t
1
β )

[
exp(n−1)(t

1
β )
]2 for all t ≫ 1.
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Next consider the right-hand side of (2.6). Let b = exp(n)(t
1
β ), we consider

(2.7)
b

[log(b)]2
= log(s), i.e.

b
1
2

log(b
1
2 )

=
√
4 log(s).

By Example 2.2, we have b
1
2 ∼

√
log(s) log(2)(s) as s ≫ 1. Taking n successive

logarithms, we have

(2.8) t ∼ [log(n+1)(s)]
β as s ≫ 1.

Moreover, it is easy to check that Φ1(t) satisfies all assumptions in Lemma 2.1. Here,
we only check that Φ′′

1(t) > 0 for all t ≫ 1. By chain rule we get F ′(t) > 0 as

t ≫ 1. Since lim
t→∞

log Φ′

1(t)

F (t)
= p > 0, by L’Hospital’s rule we have lim

t→∞

Φ′′

1 (t)

Φ′

1(t)F
′(t)

= p > 0.

Hence, we have Φ′′
1(t) > 0 for all t ≫ 1. Therefore, it follows from (2.7) and from the

right-hand side of (2.6) together with Lemma 2.1 that

log(Φ′
1(t)) > log(s) = log[Φ′

1((Φ
∗
1)

′(s))] for all t ≫ 1.

By (2.8) and the monotonicity of log(·) and Φ′
1(·), we have

(2.9) (Φ∗
1)

′(s) . [log(n+1)(s)]
β as s ≫ 1.

We now turn to the left-hand side of (2.6). By the similar arguments used to
deduce (2.9), we obtain

(2.10) [log(n+1)(s)]
β . (Φ∗

1)
′(s) as s ≫ 1.

Combining (2.9) and (2.10), we obtain (Φ∗
1)

′(s) ∼ [log(n+1)(s)]
β as s ≫ 1. Hence, by

the Newton–Leibniz formula, we get

Φ∗
1(s) ∼ s[log(n+1)(s)]

β as s ≫ 1.

By the definition of conjugate function, we know that there exist constant C1

and C2 with C2 ≥ C1 such that Φ∗(s) + C1 ≤ Φ∗
1(s) ≤ Φ∗(s) + C2 for all s ≥ 0.

Therefore, we have

(2.11) Φ∗(s) ∼ s[log(n+1)(s)]
β < Ψ(s) as s ≫ 1.

It follows from (2.1) and (2.11) that there exists constant C2 > 0 such that

(2.12) ts ≤ Φ(t) + C2Ψ(s) for all t ≥ 0 and all s ≫ 1.

Combining (2.5) and (2.12), we complete the proof. �

3. Proof of Theorem 1.1

We begin with four lemmas.

Lemma 3.1. [11, Theorem 1.1] Suppose that Ψ is a strictly increasing, differen-
tiable function and satisfies

(C–1)

ˆ ∞

1

Ψ′(t)

t
dt = ∞,

(C–2) lim
t→∞

tΨ′(t) = ∞.

Let f : Ω → R
n be a mapping of finite distortion and the distortion function Kf

satisfies exp(Ψ(Kf)) ∈ L1
loc
(Ω). Then f satisfies the Lusin’s condition (N), i.e. f(E)

has Lebesgue measure zero if E has Lebesgue measure zero.
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Given a mapping f : Ω → R
n, we denote N(f,Ω, y) by the number of preimages

of point y in Ω under f . We say f has essentially bounded multiplicity, if N(f,Ω, y)
is bounded for a.e. y ∈ R

n.
From the proof of Theorem 1.2 in [12], we know the assertion of Theorem 1.2 in

[12] remains valid if both the mapping and its distortion function lie in local Sobolev
spaces. So, we have the following result:

Lemma 3.2. Let f : Ω → R
2 be a mapping of finite distortion and the distortion

function Kf satisfies Kf ∈ L1
loc
(Ω). If f has essentially bounded multiplicity and f

is not a constant, then Jf > 0 almost everywhere in Ω.

Suppose that a function A has the properties:

(A–1) A : [1,∞) → [0,∞) is a smooth increasing function with A(1) = 0.

(A–2)

ˆ ∞

1

A(t)

t2
dt = ∞.

The associated function of A is denoted by

(3.1) P (t) =

{
t2, 0 ≤ t ≤ 1,

t2

A−1(log t2)
, t ≥ 1.

Let us recall the notation

W 1,P
loc

(Ω) =
{
f ∈ W 1,1

loc
(Ω) : P (|Df |) ∈ L1

loc
(Ω)

}
.

Lemma 3.3. [3, Theorem 20.5.1] Given a function A satisfying (A–1) and
(A–2) and the associated function P which is defined by (3.1). Let f : Ω → R

2

be a mapping of finite distortion such that the distortion function Kf satisfies
exp[A(Kf)] ∈ L1

loc
(Ω), then

f ∈ W 1,P
loc

(Ω).

Obviously, Ap,n satisfies (A–1) and (A–2). We denote the associated function of
Ap,n by Pn. Next we present a lemma essentially due to Gill [7].

Lemma 3.4. Let p > 0 and n ∈ N. Given a Beltrami equation (1.3) with com-

pactly supported µ(z), and |µ(z)| < 1 almost everywhere with exp
[
Ap,n

(
1+|µ(z)|
1−|µ(z)|

)]
∈

L1
loc
(C). Then any solution f ∈ W 1,Pn

loc
(Ω) to this Beltrami equation in a domain

Ω ⊂ C admits

Jf

[
log(n+1)(exp(n)(e) + Jf)

]β
∈ L1

loc
(Ω) for all 0 < β < p.

Proof of Theorem 1.1. Since

1

log(1)(x) log(2)(x) · · · log(n)(x)
. A′

p,n(x) as x ≫ 1,

we know Ap,n(x) satisfies (C–1) and (C–2). It follows from Lemma 3.1 that f satisfies
the Lusin’s condition (N).

Since

x . exp(Ap,n(x)) for all x ≥ 1,

it follows from (1.5) that

(3.2) Kf ∈ L1
loc
(Ω).

So, Lemma 3.2 tells us Jf > 0 almost everywhere in Ω.
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Given compact set M̃ ⊂ f(Ω), we have M = f−1(M̃) ⊂ Ω is a compact set. By
Corollary 3.3.3 in [3], we obtain that f is differentiable almost everywhere in Ω. So,
we can divide the set M into two subsets M ′ and M ′′, where M ′ is the subset in
which f is differentiable and Jf(z) > 0 and M ′′ = M \ M ′ has Lebesgue measure
zero. For any z ∈ M ′, by Lemma A.29 of [9], we have

Df−1(f(z)) = (Df(z))−1.

Hence, by Cramer’s rule we have |Df−1(f(z))|2Jf(z) = Kf (z) and Kf−1(f(z)) =
Kf(z) for all z ∈ M ′. So, it follows from Corollary A.36 (c) of [9] and the Lusin’s
condition (N) of f that

(3.3)

ˆ

M̃

|Df−1(w)|2 dw =

ˆ

M

Kf(z) dz

and

(3.4)

ˆ

M̃

[
log(n)(exp(n−1)(e) +Kf−1)

]β
dw =

ˆ

M

[
log(n)(exp(n−1)(e) +Kf)

]β
Jf dz.

By (3.2) and Jf−1 ≤ |Df−1|2, it follows from (3.3) that Jf−1 ∈ L1
loc
(f(Ω)). There-

fore, by [8, Theorem 3.3] f−1 is a mapping of finite distortion.
Next we prove (1.6). Because of (3.4), it suffices to prove

(3.5)

ˆ

M

[
log(n)(exp(n−1)(e) +Kf(z))

]β
Jf(z) dz < ∞

for any compact set M ⊂ Ω. Let

s = Jf(z) and t =
[
log(n)(exp(n−1)(e) +Kf(z))

]β
.

Since

Ap,n

(
exp(n)

(
t
1
β

))
≤ Ap,n(Kf(z)) + p(exp(n−1)(e)− 1),

it follows from Lemma 2.3 that there exist constants C ′ and C ′′ such that

(3.6) ts ≤ C ′ exp[Ap,n(Kf)] + C ′′Jf

[
log(n+1)(exp(n)(e) + Jf)

]β
.

Note that Ap,n(x) satisfies (A–1) and (A–2) conditions, and thus Lemma 3.3 implies

f ∈ W 1,Pn

loc
(Ω),

where Pn is the associated function of Ap,n. So, it follows from Lemma 3.4 that

(3.7) Jf

[
log(n+1)(exp(n)(e) + Jf)

]β
∈ L1

loc
(Ω).

Hence, according to (3.6), (1.5) and (3.7), (3.5) is proved.
To show Theorem 1.1 is sharp, as in Theorem 4 of [7], we consider Kovalev-type

function h in Ω = D as

(3.8) h(z) =
z

|z|
ρ(|z|)

where ρ(t) =
[
log(n+1)(exp(n+1)(e) +

1
t
)
]− p

2
[
log(n+2)(exp(n+1)(e) +

1
t
)
]− 1

2 , p > 0 and
n ∈ N. For the reader’s convenience, we carry out the main computation. By (3.4),
it is enough to check

(3.9) Jh

[
log(n)(exp(n−1)(e) +Kh)

]p
/∈ L1

loc
(D).
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From the definition of h, it is sufficient to consider h in the small enough neighbour-
hood of 0. So with the formulas in section 6.5.1 of [10], when |z| ≪ 1, we have

(3.10) Jh(z) ∼
1

|z|2
1

log(1)(
1
|z|
)
· · ·

1

log(n)(
1
|z|
)

[
log(n+1)(

1

|z|
)

]−p−1 [
log(n+2)(

1

|z|
)

]−1

and

Kh(z) =
ρ(|z|)

|z|ρ′(|z|)
∼ log(1)

(
1

|z|

)
log(2)

(
1

|z|

)
· · · log(n+1)

(
1

|z|

)
.

Since

log(exp(n−1)(e) +Kh(z)) ∼ log(Kh(z)) ∼ log(2)

(
1

|z|

)
as |z| ≪ 1,

we get

(3.11)
[
log(n)(exp(n−1)(e) +Kh)

]p
∼

[
log(n+1)(

1

|z|
)

]p
as |z| ≪ 1.

Combining (3.10) and (3.11), we obtain

Jh

[
log(n)(exp(n−1)(e) +Kh)

]p
∼

1

|z|2
1

log(1)(
1
|z|
)
· · ·

1

log(n+2)(
1
|z|
)

Now, (3.9) is obtained from
ˆ ∗

0

1

t

1

log(1)(
1
t
)
· · ·

1

log(n+2)(
1
t
)
dt =

ˆ +∞

∗

1

s

1

log(1)(s)
· · ·

1

log(n+2)(s)
ds

= · · · =

ˆ +∞

∗

1

log(x)
dx = ∞.

The proof is complete. �
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