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Abstract. In this paper, we study the existence and multiplicity of solutions with a prescribed
L2-norm for a class of nonlinear Chern–Simons–Schrödinger equations in R
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on the constraints

Sr(c) =
{
u ∈ H1

r (R
2) : ‖u‖2L2(R2) = c

}
, c > 0.

When p = 4, we prove a sufficient condition for the nonexistence of constrain critical points of

I on Sr(c) for certain c and get infinitely many minimizers of I on Sr(8π). For the value p ∈
(4,+∞) considered, the functional I is unbounded from below on Sr(c). By using the constrained

minimization method on a suitable submanifold of Sr(c), we prove that for certain c > 0, I has a

critical point on Sr(c). After that, we get an H1-bifurcation result of our problem. Moreover, by

using a minimax procedure, we prove that there are infinitely many critical points of I restricted

on Sr(c) for any c ∈
(
0, 4π√

p−3

)
.

1. Introduction and main results

In this paper, we study the nonlinear Chern–Simons–Schrödinger equation as
follows:
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Recently, the nonlinear Chern–Simons–Schrödinger equations have been extensively
studied, see e.g. [10, 13, 16, 17, 21, 22, 24, 29, 30, 32]. (1.1) is not a pointwise identity
as the appearance of the Chern–Simons term

(
h2(|x|)
|x|2

+

ˆ +∞

|x|

h(s)

s
u2(s) ds

)
u.

Based on such a character, people call it a nonlocal problem and it is quite different
from the usual semi-linear Schrödinger equation. The nonlocal term causes some
mathematical difficulties that make the study of (1.1) more interesting. As we shall
see, (1.1) is also different from the Schrödinger–Poisson equation (see [6, 19, 28]),
which is another problem exhibiting the competition between local and nonlocal
terms. We point out that (1.1) arises from seeking the standing wave solutions to
the following nonlinear Schrödinger equations with the gauge field:

iD0 + (D1D1 +D2D2)φ = −|φ|p−2
φ, ∂0A1 − ∂1A0 = −Im(φD2φ),

∂0A2 − ∂2A0 = Im(φD1φ), ∂1A2 − ∂2A1 = −1

2
|φ|2,

(1.2)

where i denotes the imaginary unit, ∂0 =
∂
∂t

, ∂1 =
∂

∂x1
, ∂2 =

∂
∂x2

for (t, x1, x2) ∈ R
1+2,

φ : R1+2 → C is the complex scalar field, Aµ : R
1+2 → R is the gauge field and

Dµ = ∂µ + iAµ is the covariant derivative for µ = 0, 1, 2. When p = 4, (1.2) has
received much attention, which is related to the following self-dual equations (see
[14, 16, 22])

D1φ+ iD2φ = 0, A0 =
1

2
|φ|2,

∂1A2 − ∂2A1 = −1

2
|φ|2, ∂1A1 + ∂2A2 = 0.

(1.3)

Indeed, (1.3) provides static solutions to (1.2) if p = 4. The self-dual equations (1.3)
can be transformed into the Liouville equation, whose solutions are known. (1.2) was
first proposed in [21, 22, 23]. If we set in (1.2)

φ(t, x) = u(|x|)e−iλt, A0(x) = A0(|x|),

A1(t, x) =
x2

|x|2
h(|x|), A2(t, x) = − x1

|x|2
h(|x|),

then u satisfies (1.1). For more details about (1.2) and (1.3), we refer the readers to
[10, 11, 14, 16, 24, 29, 30, 32].

Throughout this paper, we denote the norm of Lp(R2) by

‖u‖p :=
(
ˆ

R2

|u|p
) 1

p

for any 1 ≤ p <∞. The Hilbert space H1(R2) is defined as

H1(R2) := {u ∈ L2(R2) : ∇u ∈ L2(R2)},
with the inner product and norm

(u, v) :=

ˆ

R2

∇u∇v +
ˆ

R2

uv, ‖u‖ := (‖∇u‖22 + ‖u‖22)
1
2 ,

H−1(R2) is the dual space ofH1(R2) andH1
r (R

2) is the subspace of radically symmet-
ric functions in H1(R2) endowed with the usual H1(R2) norm. We use respectively
“→” and “⇀” to denote the strong and weak convergence in the related function
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spaces. C will denote a positive constant unless specified. Moreover we define, for
short, the following quantities

A(u) := ‖∇u‖22 =
ˆ

R2

|∇u|2; B(u) :=

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

;

C(u) := ‖u‖pp =
ˆ

R2

|u|p; D(u) := ‖u‖22 =
ˆ

R2

|u|2.

We say that u ∈ H1
r (R

2) is a weak solution to (1.1) if
ˆ

R2

∇u∇ϕ− λ

ˆ

R2

uϕ+

ˆ

R2

(
h2(|x|)
|x|2

+

ˆ +∞

|x|

h(s)

s
u2(s) ds

)
uϕ−

ˆ

R2

|u|p−2
uϕ = 0,

for all ϕ ∈ H1
r (R

2) and (uc, λc) ∈ H1
r (R

2)×R is a couple of weak solution to (1.1)
if uc is a weak solution to (1.1) with λ = λc.

Motivated by the fact that physicists are often interested in normalized solutions,
that is, solutions with a prescribed L2-norm, we consider for each c > 0 the following
problem:

(Pc) To find a couple (uc, λc) ∈ H1
r (R

2) × R of weak solution to (1.1) such that
‖uc‖22 = c.

Define

(1.4) I(u) =
1

2

ˆ

R2

|∇u|2 + 1

2

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

− 1

p

ˆ

R2

|u|p

for u ∈ H1
r (R

2), then I ∈ C1(H1
r (R

2),R) and a critical point of I restricted on the
constraint

(1.5) Sr(c) = {u ∈ H1
r (R

2) : ‖u‖2L2(R2) = c}, c > 0

corresponds to a couple (uc, λc) ∈ H1
r (R

2) × R of weak solution to (1.1) such that
‖uc‖22 = c (see Lemma 2.1).

The λ ∈ R in (1.1) is called a frequency. For fixed λ, [10, 17, 29] obtained weak
solutions to (1.1) by looking for critical points of the C1 functional

J(u) =
1

2

ˆ

R2

|∇u|2 − λ

2

ˆ

R2

|u|2 + 1

2

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

− 1

p

ˆ

R2

|u|p

defined in H1
r (R

2). If p > 4, the above functional J(u) has the mountain pass
structure when λ < 0. When applying directly the Mountain Pass Theorem to get a
critical point of J in H1

r (R
2), it is vital to check whether the Palais–Smale condition

holds or not. For the value p ≥ 6, it is standard to show that the Palais–Smale
condition holds for J in H1

r (R
2). However, for p ∈ (4, 6), it seems hard to prove

whether or not the Palais–Smale condition holds for J in H1
r (R

2). To overcome the
difficulty, motivated by [31], [10] considered a minimization problem on a manifold
of Pohozaev–Nehari type in H1

r (R
2). If p = 4, [10] constructed a family of critical

points of J in H1
r (R

2) only when λ = 0. In addition, when p ∈ (2, 4), [10] considered
normalized solutions to (1.1) by minimizing I(u) defined by (1.4) on the constraints
Sr(c) defined by (1.5). The main result of [10] is that for p ∈ (2, 3] and any c > 0,
there exists a positive minimizer of I(u) on Sr(c); for p ∈ (3, 4), there exists a positive
minimizer of I(u) on Sr(c) only for sufficiently small c.
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In [29], by studying the global behavior of the functional J(u), Pomponio and
Ruiz proved the existence and nonexistence of positive solutions to (1.1) for different
value of λ when p ∈ (2, 4). Precisely, they showed that J is bounded from below if
and only if

λ ≤ λ0 :=
p− 4

p+ 2
3

p−2
2(4−p) 2

2
4−p

(
m2(2 + p)

p− 2

)− p−2
2(4−p)

,

where m =
´ +∞
−∞ ω2

1(r) dr and ω1(r) =
(

2
p
cosh2

(
(p−2)r

2

))− 2
p−2

is the unique positive

even solution of the problem −ω′′

+ω = ωp in R. Furthermore, regarding the existence

of solutions to (1.1), they obtained that there exists λ < λ < λ0 such that (1.1) has
no nontrivial solutions if λ < λ; (1.1) admits at least two positive solutions, one is a

global minimizer for J and the other is a mountain pass solution if λ ∈ (λ, λ0); (1.1)
admits a positive solution for almost every λ ∈ (λ0, 0). They also studied in [30]
the bounded domain case for p ∈ (2, 4). By using singular perturbation arguments
based on a Lyapunov–Schmidt reduction, they obtained some results on boundary
concentration of solutions.

Recently, normalized solutions to elliptic PDEs and systems attract much atten-
tion of researchers, see e.g. [2, 3, 4, 6, 7, 8, 18, 19, 20, 27, 28, 36]. In [18], Jeanjean
considered the following semi-linear Schrödinger equation:

(1.6) −∆u− λu = g(u), λ ∈ R, x ∈ R
N ,

where N ≥ 1 and g satisfies

(H1) g : R → R is continuous and odd;
(H2) there exists (α, β) ∈ R×R satisfying

{
2N+4
N

< α ≤ β < 2N
N−2

, N ≥ 3,
2N+4
N

< α ≤ β, N = 2,

such that

αG(s) ≤ g(s)s ≤ βG(s), G(s) =

ˆ s

0

g(z) dz;

(H3) let G̃ : R → R, G̃(s) = g(s)s− 2G(s). Then G̃′ exists and

G̃′(s)s >
2N + 4

N
G̃(s).

Under assumptions (H1) and (H2) for N ≥ 2 or (H1)–(H3) for N ≥ 1, by using
a minimax procedure, [18] proved that for each c > 0, there is a couple (uc, λc) ∈
H1(RN) × R

− of weak solution to (1.6) with ‖uc‖22 = c. After that, an H1(RN)-
bifurcation result associated with (1.6), i.e. a dependence of ‖∇uc‖2 and λc on the
value of c was proved (see Corollary 3.1 and Theorem 3.2 in [18]).

In [6], the following Schrödinger–Poisson equation was considered:

(1.7) −∆u− λu+ (|x|−1 ∗ u2)u =|u|p−2
u, λ ∈ R, x ∈ R

3.

By using a mountain pass argument on

(1.8) S(c) = {u ∈ H1(RN) : ‖u‖2L2(RN ) = c}, c > 0,

[6] proved that for p ∈ (10
3
, 6), there exists c0 > 0 such that for any c ∈ (0, c0) there

exists a couple (uc, λc) ∈ H1(RN)×R
− of weak solution to (1.7) with ‖uc‖22 = c.
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In [4], Bartsch and De Valeriola considered the semi-linear Schrödinger equa-
tion (1.6) above. Under assumptions (H1) and (H2) with G(s) > 0, [4] proved a
multiplicity result for normalized solutions to equation (1.6). Luo in [28] then gen-
eralized the main result in [4] concerning (1.6) to the Schrödinger–Poisson equation
(1.7) above. Luo proved that when p ∈ (10

3
, 6), there exists c0 > 0 such that for

any c ∈ (0, c0), (1.7) admits an unbounded sequence of couple of weak solutions
{(±un, λn)} ⊆ H1

r (R
N)×R

− with ‖un‖22 = c for each n ∈ N
+.

In [27], Li and Ye considered the following semilinear Choquard equation:

−∆u− λu = (Iα ∗G(u))G′

(u), x ∈ R
N , λ ∈ R,

where N ≥ 3, α ∈ (0, N), Iα =
Γ(N−α

2
)

Γ(N
2
)π

N
2 2α

1
|x|N−α . Under certain assumptions on G(u),

by using a minimax procedure inspired by [6], the authors of [27] proved that for any
c > 0, there is at least a couple (uc, λc) ∈ H1(RN) × R

− of weak solution to the
equation above with ‖uc‖2 = c.

In [20], Jeanjean et al. considered the following quasi-linear Schrödinger equation:

−∆u − u∆(u2)− λu = |u|p−1
u, in R

N ,

where p ∈ (1, 3N+2
N−2

) if N ≥ 3 and p ∈ (1,+∞) if N = 1, 2. By a perturbation
method, they prove the existence of two normalized solutions for the above problem.
One is a mountain pass solution on a constraint and the other is a minimum either
local or global.

Recently, Bartsch et al. considered normalized solutions to the nonlinear Schrö-
dinger systems in [2, 3]. In [3], the following coupled cubic Schrödinger systems was
considered: {

−∆u − λ1u = µ1u
3 + βuv2,

−∆v − λ2v = µ1v
3 + βu2v,

in R
3.

By using different constrain minimization methods, for different ranges of the cou-
pling parameter β > 0, they proved the existence of positive solutions satisfying the
additional condition

ˆ

R3

|u|2 = a1 > 0 and

ˆ

R3

|v|2 = a2 > 0

to the above systems.
In this paper, we discuss the existence, H1(R2)-bifurcation and multiplicity of

normalized solutions to the nonlocal problem (1.1). For any c > 0, we set

γ(c) := inf
u∈Sr(c)

I(u).

It is standard that the minimizers of γ(c) are critical points of I
∣∣
Sr(c) as well as

normalized solutions to (1.1). Letting ut(x) = tu(tx), t > 0, it is easy to know that
p = 4 is L2-critical or mass-critical exponent for our minimizing problem in the sense
that for any c > 0, γ(c) > −∞ if p ∈ (2, 4] and γ(c) = −∞ if p ∈ (4,+∞). In the
mass-subcritical case p ∈ (2, 4), I(u) is bounded from below and coercive on Sr(c).
As mentioned above, [10] proved that when p ∈ (2, 4), under certain condition on
c, I(u) has a minimum point on Sr(c) (see Proposition 4.3 in [10]). To the best
knowledge of ours, in the mass-critical case where p = 4 and mass-supercritical case
where p ∈ (4,+∞), the existence of critical points of I(u) restricted on Sr(c) are still
unknown. In this paper, we consider normalized solutions to (1.1) in the mass-critical
case where p = 4 and mass-supercritical case where p ∈ (4,+∞).
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Our main results are as follows:

Theorem 1.1. Let p = 4. Then

(i) γ(c) = 0 for all c > 0;
(ii) γ(c) has no minimizer if 0 < c < 2 ‖W4‖22 = (1.86225 · · · )× (4π);

(iii) I has no constraint critical point on Sr(c) if 0 < c < 2 ‖W4‖22 ;
(iv) γ(8π) = 0 has a family of minimizers:

{
u(l, x) =

√
8l

1 + |lx|2
∈ H1

r (R
2) | l ∈ (0,+∞)

}
;

(v) (u(l, x), 0) is a couple of weak solution to (1.1) for any l ∈ (0,+∞),

where γ(c) := infu∈Sr(c) I(u) and W4 is the unique ground state solution of

−∆W +W =W 3, x ∈ R
2.

Theorem 1.2. Let p ∈ (4,+∞). Then there exists c∗ > 0 such that for any
c ∈ (0, c∗] there exists a couple of weak solution (uc, λc) ∈ H1

r (R
2) × (R− ∪ {0})

(λc ∈ R
− if c < 4π√

p−3
) to (1.1) with ‖uc‖22 = c and uc is nonnegative. Furthermore,





‖∇uc‖2 → +∞,

λc → −∞,

I(uc) → +∞,

as c→ 0.

Theorem 1.3. Let p ∈ (4,+∞) and c ∈ (0, 4π√
p−3

). Then (1.1) has a sequence of

couples of weak solutions {(vn, λ̃n)} ⊆ H1
r (R

2)×R
− with ‖vn‖22 = c and ‖vn‖2H1(R2) →

+∞ as n→ +∞.

Remark 1.4. To the best of our knowledge, the main results in this paper are
new. Theorem 1.1 and Theorem 1.2 generalize the result of Proposition 4.3 in [10]
to the mass-critical case p = 4 and mass-supercritical case p > 4. Theorem 1.1
also extends partially the main results in [19] considering the Schrödinger–Poisson
equation (1.7) to the Chern–Simons–Schrödinger equation (1.1). Notice that, for
mass-critical Schrödinger–Poisson equation i.e. p = 10

3
in (1.7), there is no result

related to the existence of normalized solutions to (1.7). Theorem 1.2 also extends
the results of Theorem 2.1 and Corollary 3.1 in [18] which considered the semi-
linear Schrödinger equation (1.6) to the Chern–Simons–Schrödinger equation (1.1).
Theorem 1.3 generalizes the results of Theorem 1.1 in [4] and Theorem 1.1 in [28]
concerning the Schrödinger equation (1.6) and Schrödinger–Poisson equation (1.7) to
the Chern–Simons–Schrödinger equation (1.1). Notice that, although [10] obtained
a positive solution u ∈ H1

r (R
2) to (1.1) when p ∈ (4, 6) and [17] obtained infinitely

many solutions to (1.1) when p > 6, there is no information about the L2-norm of
the solutions. So Theorem 1.2 and Theorem 1.3 in this paper can also be viewed as
a complement of the main results in [10, 17].

Now, we give the main idea of the proof of our main results. The key points
of proving Theorem 1.1 are some established inequalities in Lemma 2.2–2.4. Here,
we shall see the difference between (1.1) and the Schrödinger–Poisson equation (see
[19]). In the mass-supercritical case p ∈ (4,+∞), the functional I(u) is no longer
bounded from below on S(c) (Lemma 2.5), the minimization method on Sr(c) used
in [10] does not work. Motivated by minimization method on Nehari manifold and
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some recent works of [15, 26, 31], we try to construct a submanifold of Sr(c), on which
I(u) is bounded from below and coercive, and then we look for minimizers on such a
submanifold. The idea of constructing such a suitable submanifold is in the following.
We notice that, if u is a critical point of I

∣∣
Sr(c) , then I

′

(u)− λu = 0 in H−1
r (R2) for

some λ ∈ R. Hence u satisfies the following Pohozaev identity (Lemma 2.8):

(1.9) Pλ(u) := λ

ˆ

R2

|u|2 − 2

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

+
2

p

ˆ

R2

|u|p = 0.

Combining the Pohozaev functional Pλ(u) with the Nehari functional Nλ(u) = 〈I ′

(u)
−λu, u〉, we introduce another auxiliary functional

Q(u) := Nλ(u) + Pλ(u)

=

ˆ

R2

|∇u|2 +
ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

− p− 2

p

ˆ

R2

|u|p
(1.10)

and construct a submanifold V (c) as follows:

(1.11) V (c) := {u ∈ Sr(c) : Q(u) = 0}.
If u is a critical point of I with ‖u‖22 = c, then u ∈ V (c). By considering the following
minimization problem

(1.12) m(c) := inf
u∈V (c)

I(u),

we find a critical point of I restricted to V (c) and prove that it is indeed a critical
point of I restricted to Sr(c). Notice that we have two restrictions in V (c), which
is different from the situation in [15, 26, 31]. In order to use Lagrange Theorem, we
need to prove that Q′(u) and D′(u) are linearly independent if u is a critical point of
I restricted to V (c) (see Lemma 2.13 for details). The main difficulty in proving the
existence of a minimizer for m(c) is due to the lack of compactness of the embedding
H1

r (R
2) →֒ L2(R2). To overcome this difficulty, we need the monotonicity of the

function c → m(c). We would like to mention that the two methods used in [6]
(see Theorem 1.2) and in [25] (see Lemma 2.9) seem difficult to be used here due to
the existence of the Chern–Simons term in (1.1). Motivated by [5], after getting an
equality related to m(c) (see Lemma 2.14), we succeed in proving the monotonicity
property of m(c) by a scaling argument. Then we can obtain the L2 compactness of
a minimizing sequence and a minimizer of m(c) for certain c. Let us denote the set
of minimizers of I(u) on V (c) as

(1.13) Mc := {u ∈ V (c) : I(u) = inf
v∈V (c)

I(v)}.

Then we prove the first part of Theorem 1.1 by showing a simple property of Mc

(see Proposition 2.19).
The idea of proving the dependence of ‖∇uc‖2 and λc on the value of c comes

from [18, 32, 33]. The fact that uc is a minimizer of I(u) restricted on V (c) and
Q(uc) = 0 are crucial. Due to the nonlocal property of our problem, we need some
improvements of the method used in [18]. We proved an important inequality for
u ∈ H1

r (R
2) (see Lemma 2.3)

(1.14)

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

≤ 1

16π2
‖∇u‖22 ‖u‖

4
2 ,
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which is vital for proving λc → −∞ as c→ 0.
Next, we give the main idea of the proof of Theorem 1.3. Since I is unbounded

from below on Sr(c) if p ∈ (4,+∞), the genus of the sublevel set

Id := {u ∈ Sr(c) : I(u) ≤ d}
is always infinite. Thus, to obtain the existence of infinitely many solutions, classical
argument based on the Kranoselski genus (see [33]) does not work. We use the
argument in [4] to present a new type of linking geometry which is inspired by the
Fountain theorem for the functional I restricted on Sr(c). Then a min-max scheme
is set up to construct an unbounded sequence {γn(c)} of critical values for I on
Sr(c). At each level γn(c), by using Lemma 2.3 in [18] in H1

r (R
2), we get a Palais–

Smale sequence {vnk}+∞
k=1 with an additional condition Q(vnk ) → 0 as k → +∞ (see

Proposition 2.25), where Q(u) is given in (1.10). This extra condition is crucial in
proving the boundness and non-vanishing of {vnk} (see the proof of Proposition 2.27).
By working in the radially symmetric Soblev space H1

r (R
2), which embeds compactly

in Lq(R2) for 2 < q < +∞, we could recover the compactness of our Palais–Smale
sequence. Here we need the fact that the associated Lagrange multiplier is strictly
negative. Therefore, we get a critical point vn at each level γn(c). By using the
corresponding Pohozaev identity, we prove that each critical point vn of I restricted
on Sr(c) satisfies Q(vn) = 0, which is useful in proving that the critical point sequence
{vn} is unbounded in H1

r (R
2).

The paper is organized as follows. In Section 2, we present some preliminary
results. In Section 3, we will prove our main results Theorem 1.1 Theorem 1.2 and
Theorem 1.3.

2. Preliminary results

In this section, we give some preliminary results.

Lemma 2.1. [10, Proposition 2.2] Let p > 2. Then I ∈ C1(H1
r (R

2)) and a
critical point of I on Sr(c) is a weak solution of (1.1).

Lemma 2.2. [10, Proposition 2.4] For u ∈ H1
r (R

2), the following inequality
holds

ˆ

R2

|u|4 ≤ 4

(
ˆ

R2

|∇u|2
) 1

2



ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2



1
2

.

Furthermore, the equality is attained by a continuum of functions
{
u(l, x) =

√
8l

1 + |lx|2
∈ H1

r (R
2) | l ∈ (0,+∞)

}

and

1

4

ˆ

R2

|u(l, x)|4 =
ˆ

R2

|∇u(l, x)|2 =
ˆ

R2

|u(l, x)|2

|x|2

(
ˆ |x|

0

s

2
u(l, s)2 ds

)2

=
16

3
πl2.

Lemma 2.3. For u ∈ H1
r (R

2), the following inequality holds

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

≤ 1

16π2
‖∇u‖22 ‖u‖

4
2 .
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Proof. By Hölder’s inequality, we have
ˆ |x|

0

s

2
u2(s) ds =

1

4π

ˆ

B(0,|x|)
u2 ≤ 1

4π

(
ˆ

B(0,|x|)
u4
) 1

2

·
(
ˆ

B(0,|x|)
12
) 1

2

≤ 1

4π

(
ˆ

R2

u4
) 1

2

· (πx2) 1
2 =

1

4
√
π
|x| ·

(
ˆ

R2

u4
) 1

2

.

(2.1)

Thus, by Lemma 2.2 we have

B(u) =

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

≤ 1

16π
‖u‖44 ‖u‖

2
2

≤ 1

4π
A(u)

1
2B(u)

1
2D(u),

(2.2)

which concludes

�(2.3) B(u) ≤ 1

16π2
A(u)D(u)2.

Lemma 2.4. [35, Gagliardo–Nirenberg inequality] Let p ≥ 2 and u ∈ H1(R2).
Then

‖u‖p ≤
(

p

2 ‖Wp‖p−2
2

) 1
p

‖∇u‖
p−2
p

2 ‖u‖
2
p

2

with equality holds only for u = Wp, where up to translations, Wp is the unique
ground state solution of

−p− 2

2
∆W +W = |W |p−2

W, x ∈ R
2.

Furthermore, when p = 4,

1

2
C(W4) = A(W4) = D(W4) := ‖W4‖22 = (1.86225 · · · )× (2π).

Then, we introduce the Cazenave rescaling [12], for u ∈ Sr(c), set ut(x) = tu(tx),
t > 0, then

A(ut) = t2A(u), B(ut) = t2B(u), C(ut) = tp−2C(u), D(ut) = D(u)

and

(2.4) I(ut) =
1

2
t2(A(u) +B(u))− 1

p
tp−2C(u).

Lemma 2.5. Let p ∈ (4,+∞). Then for any u ∈ Sr(c), u
t ∈ Sr(c), A(u

t) → +∞
and I(ut) → −∞ as t→ ∞.

Proof. For any u ∈ Sr(c), since D(ut) = D(u), ut(x) ∈ Sr(c). By (2.4), A(ut) →
+∞ and I(ut) → −∞ as t→ ∞ follow from the fact that p > 4. �

Lemma 2.6. Let p ∈ (4,+∞). Then for any u ∈ Sr(c), c > 0, there exists a
unique t0 > 0 such that

I(ut0) = max
t>0

I(ut) =
(p− 4)p

2
p−4

2(p− 2)
p−2
p−4

[A(u) +B(u)]
p−2
p−4

[C(u)]
2

p−4

and ut0 ∈ V (c). In particular,

(i) t0 < 1 ⇐⇒ Q(u) < 0;
(ii) t0 = 1 ⇐⇒ Q(u) = 0;
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where V (c) is given in (1.11) and Q(u) is given in (1.10).

Proof. Define τ(t) := I(ut) = 1
2
t2(A(u) + B(u)) − 1

p
tp−2C(u). By Lemma 2.4

and an elementary analysis, we know that τ(t) has a unique critical point t0 > 0
corresponding to its maximum on (0,+∞). Hence I(ut0) = max

t>0
I(ut) and τ ′(t0) =

t0(A(u)+B(u))− p−2
p
t
p−3
0 C(u) = 0, thus Q(ut0) = t20(A(u)+B(u))− p−2

p
t
p−2
0 C(u) = 0,

i.e. ut0 ∈ V (c) and

I(ut0) =
(p− 4)p

2
p−4

2(p− 2)
p−2
p−4

[A(u) +B(u)]
p−2
p−4

[C(u)]
2

p−4

.

Moreover,

Q(u) = A(u) +B(u)− p− 2

p
C(u) = (A(u) +B(u))(1− t

4−p
0 ),

which concludes (i) and (ii). �

Recall that a functional F : X → R on a Banach space X is called coercive
if, for every sequence {uk} ⊂ X with ‖uk‖ → +∞ implies F (uk) → +∞ (see
Definition 1.5.5 in [1]).

Lemma 2.7. Let p ∈ (4,+∞). Then I(u) is bounded from below and coercive
on V (c). Moreover, there exists a constant C0 > 0 such that I(u) ≥ C0 for all
u ∈ V (c).

Proof. For any u ∈ V (c), Q(u) = A(u) + B(u) − p−2
p
C(u) = 0, then C(u) =

p
p−2

(A(u) +B(u)). We have

I(u) =
1

2
(A(u) +B(u))− 1

p
C(u) =

(
1

2
− 1

p− 2

)
(A(u) +B(u)) ≥ 0,

and I is coercive on V (c). Furthermore, by Lemma 2.4,

A(u) +B(u) =
p− 2

p
C(u) ≤ C(p) ‖∇u‖p−2

2 ‖u‖22 = C(p, c)A(u)
p−2
2 .

Since p ∈ (4,+∞), there exists a constant C̃0 > 0 such that A(u) ≥ C̃0 > 0. Then

there exists C0 =
(

1
2
− 1

p−2

)
C̃0 > 0 such that I(u) ≥

(
1
2
− 1

p−2

)
A(u) ≥ C0. �

Lemma 2.8. [10, Proposition 2.3] Let p > 2, b, c, d ∈ R and u ∈ H1
r (R

2) be a
weak solution of the equation:

∆u+ bu+ c

(
h2(|x|)
|x|2

+

ˆ +∞

|x|

h(s)

s
u2(s) ds

)
u+ d|u|p−2

u = 0 in R
2,

where h(s) = 1
2

´ s

0
ru2(r) dr. Then there holds the following Pohozaev identity

b

ˆ

R2

|u|2 + 2c

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

+
2d

p

ˆ

R2

|u|p = 0.

Lemma 2.9. For any p > 2 and λ > 0, there exists no positive solution to (1.1)
in H1

r (R
2).
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Proof. The proof mainly comes from [10] with some modifications. Just suppose
that there exists a positive solution u ∈ H1

r (R
2) to (1.1). Denote

a0(x) := λ−
(
h2(|x|)
|x|2

+

ˆ +∞

|x|

h(s)

s
u2(s) ds

)
+ |u|p−2

,

then u satisfies −∆u = a0(x)u. By the Strauss inequality,

|u(x)| ≤ C
‖u‖
|x|

1
2

, |x| > 0.

By Hölder inequality, we have

h(|x|) = 1

2

ˆ |x|

0

su2(s) ds =
1

4π

ˆ

B(0,|x|)
u2(|y|) dy ≤ ‖u‖22

4π
,

and by (2.1),
ˆ +∞

0

h(s)

s
u2(s) ds =

ˆ 1

0

h(s)

s
u2(s) ds+

ˆ +∞

1

h(s)

s
u2(s) ds

≤
(
ˆ 1

0

(h(s)s−
4
3 )

3
2
ds

) 2
3
(
ˆ 1

0

(s
1
3u2(s))3 ds

) 1
3

+

ˆ +∞

1

h(s)

s
u2(s)ds

≤ C ‖u‖24
(
ˆ 1

0

s−
1
2 ds

) 2
3
(
ˆ 1

0

su6(s) ds

) 1
3

+ C ‖u‖24
ˆ +∞

1

su2(s) ds

≤ C ‖u‖24 (‖u‖
2
6 + ‖u‖22)

Then, we can choose an R0 sufficiently large such thatinf |x|>R0 a0(x) := a0 > 0. For
R1 > R0, we consider the following eigenvalue problem:

(2.5)

{
−∆φ = µφ on A(R0, R1),

φ = 0 on ∂A(R0, R1),

where A(R0, R1) = {x ∈ R
2 : R0 < |x| < R1}. Let µ1 = µ1(R0, R1) be the first

eigenvalue of the problem (2.5) and φ1 is a corresponding positive eigenfunction.
Then we have

0 =

ˆ

A(R0,R1)

(∆u+ a0(x)u)φ1 = −
ˆ

∂A(R0,R1)

u
∂φ1

∂n
+

ˆ

A(R0,R1)

(−µ1 + a0(x))uφ1,

where ∂φ1

∂n
denotes the outer normal derivative of φ1. We note that

´

∂A(R0,R1)
u∂φ1

∂n
≤ 0

and that µ1 → 0 as R1 → +∞. Thus, taking large R1 > 0 large enough such that
µ1 ≤ a0

2
, which is a contradiction. The proof is completed. �

Lemma 2.10. Let p ∈ (3,+∞). If v ∈ H1
r (R

2) is a weak solution to (1.1), then

Q(v) = 0. Moreover, v = 0 if λ ≥ 0 and D(v) = ‖v‖22 < 4π√
p−3

.

Proof. Let v ∈ H1
r (R

2) be a weak solution to (1.1). By Lemma 2.8, the following
Pohozaev identity

λ

ˆ

R2

|v|2 − 2

ˆ

R2

|v|2

|x|2

(
ˆ |x|

0

s

2
v2(s) ds

)2

+
2

p

ˆ

R2

|v|p = 0
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holds. Multiplying (1.1) by v and integrating we derive a second identity,

ˆ

R2

|∇v|2 − λ

ˆ

R2

|v|2 + 3

ˆ

R2

|v|2

|x|2

(
ˆ |x|

0

s

2
v2(s) ds

)2

−
ˆ

R2

|v|p = 0.

Thus we have immediately

Q(v) =

ˆ

R2

|∇v|2 +
ˆ

R2

|v|2

|x|2

(
ˆ |x|

0

s

2
v2(s) ds

)2

− p− 2

p

ˆ

R2

|v|p = 0.

Also with simple calculations, we obtain

(2.6) λD(v) =
2

2− p
A(v) +

2p− 6

p− 2
B(v).

By Lemma 2.3,

λD(v) =
2

2− p
A(v) +

2p− 6

p− 2
B(v) ≤ 2

2− p
A(v) +

p− 3

8π2(p− 2)
A(v)D(v)2

=

(
2

2− p
+

p− 3

8π2(p− 2)
D(v)2

)
A(v) ≤ 0,

(2.7)

if D(v) = ‖v‖22 < 4π√
p−3

. Thus, the proof is completed. �

Lemma 2.11. Let p ∈ (3,+∞). If uc is a critical point of I
∣∣
Sr(c) , then there

exists λc ∈ R such that (uc, λc) is a couple of solution to (1.1). Furthermore, λc < 0
if c < 4π√

p−3
.

Proof. Since uc is a critical point of I
∣∣
Sr(c) , there exists λc ∈ R such that

I
′

(uc)− λcuc = 0 in H−1
r (R2). Thus uc satisfies (1.1) with λ = λc. By Lemma 2.10,

we conclude that λc < 0 if c < 4π√
p−3

. �

Lemma 2.12. [12, Corollary 4.1.2] Let X be a real Banach space, U ⊂ X be an
open set. Suppose that f, g1, · · · , gm : U → R

1 are C1 functions and x0 ∈M is such
that f(x0) = inf

x∈M
f(x) with

M = {x ∈ U | gi(x) = 0, i = 1, 2, · · · , m}.
If {g′

i(x0)}mi=1 is linearly independent, then there exists λ1, · · · , λm ∈ R such that

f
′

(x0) +
m∑

i=1

λig
′

i(x0) = 0.

Lemma 2.13. Let p ∈ (4,+∞) and c > 0. Then each critical point of I
∣∣
V (c) is

a critical point of I
∣∣
Sr(c) .

Proof. Suppose that u is a critical point of I
∣∣
V (c) , then by Lemma 2.12, either

(i) Q′(u) and D′(u) are linearly dependent, or (ii) there exists λ1, λ2 ∈ R such that

(2.8) I
′

(u)− λ1Q
′

(u)− λ2u = 0 in H−1(R2).

If (i) holds, then u satisfies

−∆u − λ∗u+

(
h2(|x|)
|x|2

+

ˆ +∞

|x|

h(s)

s
u2(s) ds

)
u =

p− 2

2
|u|p−2

u
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for some λ∗ ∈ R. Multiplying the above equation by u and integrating, we get

A(u) + 3B(u)− p− 2

2
C(u)− λ∗D(u) = 0.

By Pohozaev identity, we derive

λ∗D(u)− 2B(u) +
p− 2

p
C(u) = 0.

Hence

A(u) +B(u)− (p− 2)2

2p
C(u) = 0.

Notice that Q(u) = 0 and p > 4, then we have, immediately, that C(u) = 0, a
contradiction. This implies that (i) does not occur and (ii) is true. It is enough to
show that λ1 = 0. By (2.8) we have

〈
I

′

(u)− λ1Q
′

(u)− λ2u, u
〉

= (1− 2λ1)(A(u) + 3B(u))− [1− λ1(p− 2)]C(u)− λ2D(u) = 0.
(2.9)

By Pohozaev identity (Lemma 2.8),

(2.10)
λ2

1− 2λ1
D(u)− 2B(u) +

2− 2(p− 2)λ1
p(1− 2λ1)

C(u) = 0.

Combining (2.9) with (2.10) we have

(2.11) (1− 2λ1)A(u) + (1− 2λ1)B(u)− p− 2

p
[1− (p− 2)λ1]C(u) = 0.

Since u ∈ V (c), A(u) +B(u) = p−2
p
C(u), then by (2.11) we have

(p− 4)(p− 2)

p
λ1C(u) = 0.

Hence λ1 = 0, for p > 4. �

Lemma 2.14. Let p ∈ (4,+∞), then infu∈V (c) I(u) = infu∈Sr(c)maxt>0 I(u
t),

where ut(x) = tu(tx).

Proof. For any u ∈ V (c), Q(u) = 0. By Lemma 2.6,

I(u) = max
t>0

I(ut) ≥ inf
u∈Sr(c)

max
t>0

I(ut),

then infu∈V (c) I(u) ≥ infu∈Sr(c)maxt>0 I(u
t). On the other hand, by Lemma 2.6, for

any u ∈ Sr(c), there exists a unique t0 > 0 such that ut0 ∈ V (c) and

max
t>0

I(ut) = I(ut0) ≥ inf
u∈V (c)

I(u).

Thus,

inf
u∈Sr(c)

max
t>0

I(ut) ≥ inf
u∈V (c)

I(u).

We end the proof. �

Lemma 2.15. Let p ∈ (4,+∞). Define m(c) := infu∈V (c) I(u), then there exists
a c∗ > 0 such that the function c→ m(c) is strictly decreasing on (0, c∗], where V (c)
is given in (1.10).
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Proof. By Lemma 2.7, m(c) ≥ C0 > 0 is well defined. For any 0 < c1 < c2 < +∞,
by Lemma 2.13, there exists u1 ∈ Sr(c1) such that

max
t>0

I(ut1) <

(
c2

c1

) 1
p−4

m(c1).

Set

u2(x) =

(√
c2

c1

)p

u1

((√
c2

c1

)p−1

x

)
,

then

A(u2) =

(
c2

c1

)p

A(u1), B(u2) =

(
c2

c1

)p+2

B(u1),

C(u2) =

(
c2

c1

) p2−2p+2
2

C(u1), D(u2) =
c2

c1
D(u1) = c2.

We claim that there exists a c∗ > 0 such that

(
c2

c1

)p

A(u1) +

(
c2

c1

)p+2

B(u1) ≤
(
c2

c1

)p+ 1
p−2

A(u1) +

(
c2

c1

)p+ 1
p−2

B(u1)

for 0 < c1 < c2 ≤ c∗. Indeed, by a simple calculation, we have

c
1

p−2

2

16π2

(
c22 − c21

)
≤ c

1
p−2

2 − c
1

p−2

1 ,

if 0 < c1 < c2 ≤ [2(p− 2)]
2−p

2p−5 . Let 0 < c1 < c2 ≤ [2(p− 2)]
2−p

2p−5 afterwards. Then we
get that

1

16π2

(
c22c

1
p−2

1 − c21c
1

p−2

2

)
≤ c

1
p−2

2

16π2

(
c22 − c21

)
≤ c

1
p−2

2 − c
1

p−2

1 .

This implies that

c21
16π2

[(
c2

c1

)2

−
(
c2

c1

) 1
p−2

]
A(u1) ≤

[(
c2

c1

) 1
p−2

− 1

]
A(u1).

By Lemma 2.3, we have that

B(u1) ≤
1

16π2
A(u1)c

2
1,

which implies that
[(

c2

c1

)2

−
(
c2

c1

) 1
p−2

]
B(u1) ≤

c21
16π2

[(
c2

c1

)2

−
(
c2

c1

) 1
p−2

]
A(u1) ≤

[(
c2

c1

) 1
p−2

−1

]
A(u1).

As a consequence,

A(u1) +

(
c2

c1

)2

B(u1) ≤
(
c2

c1

) 1
p−2

[A(u1) +B(u1)],



Normalized solutions for the Chern–Simons–Schrödinger equation in R
2

419

which is equivalent to our claim for 0 < c1 < c2 ≤ c∗ := [2(p− 2)]
2−p

2p−5 . Thus, by
Lemma 2.6,

m(c2) ≤ max
t>0

I(ut2) =
(p− 4)p

2
p−4

2(p− 2)
p−2
p−4

[A(u2) +B(u2)]
p−2
p−4

[C(u2)]
2

p−4

=
(p− 4)p

2
p−4

2(p− 2)
p−2
p−4

[( c2
c1
)pA(u1) + ( c2

c1
)p+2

B(u1)]
p−2
p−4

( c2
c1
)
p2−2p+2

p−4 [C(u1)]
2

p−4

≤ (p− 4)p
2

p−4

2(p− 2)
p−2
p−4

(
c2

c1

) −1
p−4 [A(u1) +B(u1)]

p−2
p−4

[C(u1)]
2

p−4

=

(
c2

c1

) −1
p−4

max
t>0

I(ut1) <

(
c2

c1

) −1
p−4
(
c2

c1

) 1
p−4

m(c1) = m(c1)

(2.12)

holds for 0 < c1 < c2 ≤ c∗. Thus, we complete the proof. �

Lemma 2.16. [10, Proposition 2.2 and Lemma 3.2] Let p > 2. Then B ∈
C1(H1

r (R
2)). Furthermore, if un ⇀ u in H1

r (R
2), as n→ +∞, then

lim
n→+∞

B(un) = B(u), lim
n→+∞

B′(un)un = B′(u)u and lim
n→+∞

B′(un)ϕ = B′(u)ϕ,

for any ϕ ∈ H1
r (R

2).

Proposition 2.17. Let p ∈ (4,+∞) and c ∈ (0, c∗]. Then m(c) := infu∈V (c) I(u)
is attained, where V (c) and c∗ are given in Lemma 2.15.

Proof. Let {un} be a minimizing sequence for m(c). By Lemma 2.7, {un} is
bounded in H1

r (R
2), then there exists u 6= 0 in H1

r (R
2) such that





un ⇀ u in H1
r (R

2),

un → u in Lq(R2),

un → u a.e. in R
2,

for 2 < q < +∞. Otherwise, un → 0 in Lp(R2). Since

Q(un) = A(un) +B(un)−
p− 2

p
C(un) = 0,

we have A(un) → 0 and B(un) → 0. Therefore, I(un) → 0 and m(c) = 0, which con-

tradicts to the fact that m(c) > 0. Next, we shall prove that ‖u‖22 = c. Just suppose

that ‖u‖22 = c ∈ (0, c), then by Lemma 2.15, m(c) > m(c). Since un ⇀ u in H1
r (R

2),
Q(u) ≤ lim

n→∞
Q(un) = 0. By Lemma 2.6, there exists t0 ∈ (0, 1] such that ut0 ∈ V (c).

Then

m(c) ≤ I(ut0) = I(ut0)− 1

p− 2
Q(ut0) =

p− 4

2(p− 2)

[
A(ut0) +B(ut0)

]

=
p− 4

2(p− 2)
t20 [A(u) +B(u)] ≤ p− 4

2(p− 2)
[A(u) +B(u)]

≤ lim
n→∞

{
p− 4

2(p− 2)
[A(un) +B(un)]

}
= lim

n→∞

[
I(un)−

1

p− 2
Q(un)

]

= m(c),

(2.13)
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which is a contradiction. So t0 = 1, c = c, i.e. ‖u‖22 = c and I(u) = m(c). Then
by (2.13) we have A(un − u) = o(1), un → u in H1

r (R
2) and u is a minimizer for

m(c). �

Proposition 2.18. Assume that p ∈ (4,+∞), c > 0 and Mc is defined by
(1.13). Then |uc| ∈ Mc if uc ∈ Mc.

Proof. Let uc ∈ H1
r (R

2) with uc ∈ V (c). Since B(|uc|) = B(uc), A(|uc|) ≤ A(uc),
we have that I(|uc|) ≤ I(uc) and Q(|uc|) ≤ Q(uc) = 0. In addition, by Lemma 2.6,
there exists t0 ∈ (0, 1] such that Q(|uc|t0) = 0. We claim that I(|uc|t0) ≤ t20 · I(uc).
Indeed, for uc ∈ V (c), |uc|t0 ∈ V (c), by the relationship between I(u) and Q(u) in
(2.13), we have I(uc), I(|uc|t0) > 0. Thus,

I(|uc|t0) = I
(
|uc|t0

)
− 1

p− 2
Q
(
|uc|t0

)
=

p− 4

2(p− 2)

(
A
(
|uc|t0

)
+B

(
|uc|t0

))

=
p− 4

2(p− 2)
t0

2 (A (|uc|) +B (|uc|)) ≤
p− 4

2(p− 2)
t0

2 (A (uc) +B (uc))

= t20

(
I (uc)−

1

p− 2
Q (uc)

)
= t20I(uc).

(2.14)

Therefore, if uc ∈ H1
r (R

2) is a minimizer of I(u) on V (c) we have

I(uc) = inf
u∈V (c)

I(u) ≤ I
(
|uc|t0

)
≤ t20I(uc),

which implies t0 = 1. Then Q(|uc|) = 0 and we conclude that A(|uc|) = A(uc) and
I(|uc|) = I(uc), thus the proof is completed. �

Let {Vn} ⊂ H1
r (R

2) be a strictly increasing sequence of finite-dimensional linear
subspaces in H1

r (R
2) such that

⋃
n Vn is dense in H1

r (R
2). We denote by V ⊥

n the
orthogonal space of Vn in H1

r (R
2).

Lemma 2.19. [4, Lemma 2.1] Let p ∈ (2,+∞). Then there holds

µn := inf
u∈V ⊥

n−1

´

R2

(
|∇u|2 + |u|2

)
(´

R2 |u|p
)2/p = inf

u∈V ⊥

n−1

‖u‖2

‖u‖2p
→ ∞ as n→ ∞.

Now for c > 0 fixed and for each n ∈ N
+ and n ≥ 2, we define Sr(c) by (1.5),

ρn := L
− 2

p−2 · µn

2
p−2 with L = max

x>0

(x2 + c)
p/2

xp + cp/2
,

Bn :=
{
u ∈ V ⊥

n−1 ∩ Sr(c) : ‖∇u‖22 = ρn
}
,(2.15)

and

(2.16) bn := inf
u∈Bn

I(u).

Then we have:

Lemma 2.20. Let p ∈ (2,+∞), then bn → ∞ as n→ ∞.
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Proof. For any u ∈ Bn, we have that

I(u) =
1

2

ˆ

R2

|∇u|2 + 1

2

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2

− 1

p

ˆ

R2

|u|p

≥ 1

2

ˆ

R2

|∇u|2 − 1

pµn

(
‖∇u‖22 + c

)p/2

≥ 1

2

ˆ

R2

|∇u|2 − L

pµn

(
‖∇u‖p2 + cp/2

)
=

(
1

2
− 1

p

)
ρn −

L

pµn
cp/2.

(2.17)

From this estimate and Lemma 2.19, it follows since p > 2, that bn → ∞ as n →
∞. �

Now we begin to set up our min-max procedure. First we introduce the map

κ : H1
r (R

2)×R → H1
r (R

2),

(u, θ) → κ(u, θ) := eθu
(
eθx
)
.

(2.18)

Observe that for any given u ∈ Sr(c), we have κ(u, θ) ∈ Sr(c) for all θ ∈ R. Also we
know from Lemma 2.5 that

(2.19)

{
A(κ(u, θ)) → 0, I(κ(u, θ)) → 0, θ → −∞,

A(κ(u, θ)) → +∞, I(κ(u, θ)) → −∞, θ → +∞.

Thus, we deduce that for each n ∈ N, there exists θn > 0, such that

(2.20) gn : [0, 1]× (Sr(c) ∩ Vn) → Sr(c), gn(t, u) → κ(u, (2t− 1)θn)

satisfying

(2.21)

{
A(gn(0, u)) < ρn, A(gn(1, u)) > ρn,

I(gn(0, u)) < bn, I(gn(1, u)) < bn.

Now we define

Γn := {g : [0, 1]× (Sr(c) ∩ Vn) → Sr(c) | g is continuous, odd in u

and such that ∀u : g(0, u) = gn(0, u), g(1, u) = gn(1, u)}.
(2.22)

Clearly gn ∈ Γn. Before proving the key intersection result, we need the following
linking property:

Lemma 2.21. [4, Lemma 2.3] For each g ∈ Γn, there exists (t, u) ∈ [0, 1] ×
(Sr(c) ∩ Vn) such that g(t, u) ∈ Bn with Bn defined in (2.15).

Lemma 2.22. For each n ∈ N
+,

γn(c) := inf
g∈Γn

max
0≤t≤1,u∈Sr(c)∩Vn

I(g(t, u)) ≥ bn.

Proof. It follows from Lemma 2.21 immediately. �

Next, we shall prove that the sequence {γn(c)} is indeed a sequence of critical
values for I restricted to Sr(c). To this end, we first show that there exists a bounded
Palais–Smale sequence at each level γn(c). From now on we fix an arbitrary n ∈ N

+.
To find such a Palais–Smale sequence, we apply the approach developed by Jeanjean
[18], already applied in [4]. First, we introduce the auxiliary functional

Ĩ : Sr(c)×R → R, (u, θ) → I(κ(u, θ)),
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where κ(u, θ) is given in (2.21), and the set

Γ̃n := {g̃ : [0, 1]× (Sr(c) ∩ Vn) → Sr(c)×R | g̃ is continuous, odd in u,

and such that κ ◦ g̃ ∈ Γn}.
(2.23)

Clearly, for any g ∈ Γn, g̃ := (g, 0) ∈ Γ̃n.

Observe the definition

γ̃n(c) := inf
g̃∈Γ̃n

max
0≤t≤1,u∈Sr(c)∩Vn

Ĩ(g̃(t, u)),

we have that γ̃n(c) = γn(c). Indeed, by the definition of γ̃n(c) and γn(c), this identity
follows immediately from the fact that the maps

ϕ : Γn → Γ̃n, g → ϕ(g) := (g, 0),

and

ψ : Γ̃n → Γn, g̃ → ψ(g̃) := κ ◦ g̃,
satisfy

Ĩ(ϕ(g)) = I(g) and I(ψ(g̃)) = Ĩ(g̃).

For r ∈ R, We define |r|R = r. Then we denote by E the space H1
r (R

2) × R

endowed with the norm ‖·‖2E = ‖·‖2 + |·|2
R
, and by E∗ its dual space and give an

useful result, which was proved by using Ekeland’s variational principle.

Lemma 2.23. Let ε > 0. Suppose that g̃0 ∈ Γ̃n satisfies

max
0≤t≤1,u∈Sr(c)∩Vn

Ĩ(g̃0(t, u)) ≤ γ̃n(c) + ε.

Then there exists a pair of (u0, θ0) ∈ Sr(c)×R such that:

(1) Ĩ(u0, θ0) ∈ [γ̃n(c)− ε, γ̃n(c) + ε];
(2) min

0≤t≤1,u∈Sr(c)∩Vn

‖(u0, θ0)− g̃0(t, u)‖E ≤ √
ε;

(3)

∥∥∥∥ Ĩ
′

∣∣∣
Sr(c)×R

(u0, θ0)

∥∥∥∥
E∗

≤ 2
√
ε , i.e.

∣∣∣∣
〈
Ĩ

′

(u0, θ0), z
〉
E∗×E

∣∣∣∣ ≤ 2
√
ε‖z‖E holds, for

all

z ∈ T̃(u0,θ0) := {(z1, z2) ∈ E, 〈u0, z1〉L2 = 0}.
Proof. The proof is the same as the proof of Lemma 2.3 in [18], so we omit it

here. �

Proposition 2.24. Let p ∈ (4,+∞). Then for any fixed c > 0 and n ∈ N+,
there exists a sequence {vnk} ⊂ Sr(c) satisfying as k → ∞,

(2.24)





I(vnk ) → γn(c),

I
′
∣∣
Sr(c)

(vnk ) → 0,

Q(vnk ) → 0.

In particular {vnk} ⊂ Sr(c) is bounded in H1
r (R

2).

Proof. From the definition of γn(c), we know that for each k ∈ N
+, there exists

a gk ∈ Γn such that

max
0≤t≤1,u∈Sr(c)∩Vn

I(gk(t, u)) ≤ γn(c) +
1

k
.
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Since γ̃n(c) = γn(c), g̃k = (gk, 0) ∈ Γ̃n satisfies

max
0≤t≤1,u∈Sr(c)∩Vn

Ĩ(g̃k(t, u)) ≤ γ̃n(c) +
1

k
.

Thus applying Lemma 2.23, we obtain a sequence {(unk , θnk )} ⊂ Sr(c)×R such that

(i) Ĩ(unk , θ
n
k ) ∈

[
γn(c)− 1

k
, γn(c) +

1
k

]
;

(ii) min
0≤t≤1,u∈Sr(c)∩Vn

‖(unk , θnk )− (gk(t, u), 0)‖E ≤
√

1
k
;

(iii)

∥∥∥∥ Ĩ
′

∣∣∣
Sr(c)×R

(unk , θ
n
k )

∥∥∥∥
E∗

≤ 2
√

1
k
, i.e.

∣∣∣∣
〈
Ĩ

′

(unk , θ
n
k ), z

〉
E∗×E

∣∣∣∣ ≤ 2
√

1
k
‖z‖E holds

for all

z ∈ T̃(un
k
,θn

k
) := {(z1, z2) ∈ E, 〈unk , z1〉L2 = 0}.

For each k ∈ N
+, let vnk = κ(unk , θ

n
k ). We shall prove that {vnk} ⊂ Sr(c) satisfies (2.24).

First from (i) we have that I(vnk ) → γn(c) as k → ∞, since I(vnk ) = I(κ(unk , θ
n
k )) =

Ĩ(unk , θ
n
k ). Secondly, note that

〈
Ĩ

′

(u, θ), (φ, r)
〉
= re2θ



ˆ

R2

|∇u|2 +
ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2



+ e2θ



ˆ

R2

∇u∇φ+

ˆ

R2

uφ

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)2



+

ˆ

R2

|u|2

|x|2

(
ˆ |x|

0

s

2
u2(s) ds

)
·
(
ˆ |x|

0

su(s)φ(s) ds

)

− (p− 2)r

p
e(p−2)θ

ˆ

R2

|u|p − e(p−2)θ

ˆ

R2

|u|p−2
uφ,

(2.25)

then we obtain

Q(vnk ) = A(vnk ) +B(vnk )−
p− 2

p
C(vnk )

= e2θ
n
k (A(unk) +B(unk))−

p− 2

p
eθ

n
k
(p−2)C(unk) =

〈
Ĩ

′

(unk , θ
n
k ), (0, 1)

〉
.

(2.26)

Thus (iii) yields Q(vnk ) → 0 as k → ∞, for (0, 1) ∈ T̃(un
k
,θn

k
). Finally, we prove that

I
′

∣∣∣
Sr(c)

(vnk ) → 0 as k → ∞.

We claim that for k ∈ N sufficiently large,

∣∣∣
〈
I

′

(vnk ), ω
〉∣∣∣ ≤ 2

√
2√
k
‖ω‖ holds for all ω ∈ Tvn

k
,
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where Tvn
k

= {ω ∈ H1
r (R

2), 〈vnk , ω〉L2 = 0}. Indeed, for ω ∈ Tvn
k
, setting ω̃ =

κ(ω,−θk), one has

〈
I

′

(vnk ), ω
〉
=

ˆ

R2

∇vnk∇ω +

ˆ

R2

vnkω

|x|2
ˆ |x|

0

s

2

(
vnk (s))

2 ds
)2

+

ˆ

R2

|vnk |2

|x|2

(
ˆ |x|

0

s

2
(vnk (s))

2 ds

)
·
(
ˆ |x|

0

svnk (s)ω(s) ds

)

−
ˆ

R2

|vnk |p−2
vnkω =

〈
Ĩ

′

(unk , θ
n
k ), (ω̃, 0)

〉
.

(2.27)

Since
´

R2 u
n
k ω̃ =

´

R2 v
n
kω, we obtain (ω̃, 0) ∈ T̃(un

k
,θn

k
) ⇔ ω ∈ Tvn

k
. From (ii) it follows

that

|θnk | = |θnk − 0| ≤ min
0≤t≤1,u∈Sr(c)∩Vn

‖(unk , θnk )− (gk(t, u), 0)‖E ≤ 1√
k
,

by which we deduce that, for k large enough,

‖(ω̃, 0)‖2E = ‖ω̃‖2 =
ˆ

R2

|ω|2 + e−2θn
k
s

ˆ

R2

|∇ω|2 ≤ 2‖ω‖2.

Thus, by (iii) we have,

∣∣∣
〈
I

′

(vnk ), ω
〉∣∣∣ =

〈
Ĩ

′

(unk , θ
n
k ), (ω̃, 0)

〉
≤ 2√

k
‖(ω̃, 0)‖E ≤ 2

√
2√
k
‖ω‖.

As a consequence,
∥∥∥∥I

′

∣∣∣
Sr(c)

(vnk )

∥∥∥∥ = sup
ω∈Tvn

k
,‖ω‖≤1

∣∣∣
〈
I

′

(vnk ), ω
〉∣∣∣ ≤ 2

√
2√
k

→ 0, k → ∞.

To end the proof of the proposition, it remains to show that {vnk} ⊂ Sr(c) is bounded
in H1

r (R
2). But since p ∈ (4,+∞), this follows from the relationship between I(u)

and Q(u),

�(2.28) I(u)− 1

p− 2
Q(u) =

p− 4

2(p− 2)
(A(u) +B(u)).

Next, we show the compactness of our Palai–Smale sequence {vnk} obtained in
Proposition 2.24. First, we give a useful lemma.

Lemma 2.25. Let F be a C1 functional on H1(R2), if {xk} ⊂ S(c) is bounded
in H1(R2), then

F
′

∣∣∣
S(c)

(xk) → 0 in H−1(R2) ⇐⇒ F
′

(xk)− 〈F ′

(xk) , xk〉xk → 0 in H−1(R2)

as k → ∞.

Proof. The proof is the same as the proof of Lemma 3 in [9], so we omit it
here. �

Proposition 2.26. Let p ∈ (4,+∞), c > 0 and {vk} ⊂ Sr(c) be a sequence
satisfying as k → ∞,

(2.29)





I(vk) → ρ(c) ∈ R \ {0},
I

′
∣∣
Sr(c)

(vk) → 0,

Q(vk) → 0.
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Then there exists v ∈ H1
r (R

2) and {λk} ⊂ R such that up to a subsequence, as
k → +∞,

(i) vk ⇀ v 6= 0 in H1
r (R

2);

(ii) λk → λ̃ in R;
(iii) I

′

(vk)− λkvk → 0 in H−1
r (R2);

(iv) I
′

(v)− λ̃v = 0 in H−1
r (R2).

Moreover, if λ̃ < 0, then we have vk → v in H1
r (R

2) as k → ∞.

Proof. Since by (2.28) and (2.29), {vk} ⊂ Sr(c) is bounded, up to a subsequence,
there exists v ∈ H1

r (R
2) such that





vk ⇀ v in H1
r (R

2),

vk → v in Lp(R2),

vk → v a.e. in R
2.

If v = 0, we have C(vk) = o(1). Thus we obtain A(vk) = o(1) and B(vk) = o(1)
for Q(vk) = o(1). As a consequence, I(vk) = o(1), which contradicts with ρ(c) 6= 0.
Thus (i) is obtained. By Lemma 2.25 above,

I
′

∣∣∣
S(c)

(vk) → 0 in H−1(R2) ⇐⇒ I
′

(vk)− 〈I ′

(vk) , vk〉vk → 0 in H−1(R2) as k → ∞.

Since for any ω ∈ H1(R2),

〈
I

′

(vk)−
〈
I

′

(vk), vk

〉
vk, ω

〉

=

ˆ

R2

∇vk∇ω +

ˆ

R2

vkω

|x|2
ˆ |x|

0

s

2

(
vk(s))

2 ds
)2

+

ˆ

R2

|vk|2

|x|2

(
ˆ |x|

0

s

2
(vk(s))

2 ds

)
·
(
ˆ |x|

0

svk(s)ω(s) ds

)

−
ˆ

R2

|vk|p−2
vkω − λk

ˆ

R2

vkω,

(2.30)

where

(2.31) λk = 〈I ′

(vk) , vk〉 = A(vk) + 3B(vk)− C(vk).

Thus (iii) is proved. Since each term in the right hand of (2.31) is bounded, there

exists λ̃ ∈ R such that λk → λ̃ as k → +∞ up to a subsequence. Thus (ii) is proved
and (iv) follows from (iii). By (ii),(iii) and (iv) we have

(2.32)
〈
I

′

(vk)− λ̃vk, vk − v
〉
= o(1) and

〈
I

′

(v)− λ̃v, vk − v
〉
= 0.

By Lemma 2.16, we get

A(vk − v)− λ̃D(vk − v) = o(1).

If λ̃ < 0, we have A(vk − v) = o(1) and D(vk − v) = o(1), thus vk → v in H1
r (R

2) as
k → ∞. �
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3. Proof of main results

At this point we can prove our main results.

Proof of Theorem 1.1. Let u ∈ Sr(c), set ut(x) = tu(tx), t > 0. Then
ut ∈ Sr(c) and

I(ut) =
1

2
t2(A(u) +B(u))− 1

p
t2C(u) → 0 as t→ 0.

Thus γ(c) ≤ 0 for all c > 0. On the other hand, by Lemma 2.2, for any u ∈ Sr(c),

I(u) =
1

2
A(u) +

1

2
B(u)− 1

4
‖u‖44 ≥

1

2
A(u) +

1

2
B(u)− A(u)

1
2B(u)

1
2

=
1

2

(
A(u)

1
2 − B(u)

1
2

)2
≥ 0.

(3.1)

Then γ(c) ≥ 0. (i) is proved. Just suppose γ(c) has a minimizer u if 0 < c < 2 ‖W4‖22,
by Lemma 2.2,

0 = I(u) =
1

2
A(u) +

1

2
B(u)− 1

4
‖u‖44 ≥

1

2
A(u) +

1

2
B(u)− A(u)

1
2B(u)

1
2

=
1

2

(
A(u)

1
2 − B(u)

1
2

)2
≥ 0.

(3.2)

Then, by Lemma 2.4,

A(u) = B(u) =
1

4
‖u‖44 ≤

c

2 ‖W4‖22
A(u).

Thus A(u) = 0, u = 0, a contradiction. (ii) is proved. To prove (iii), we suppose that
I has a constraint critical point v on Sr(c) if c < 2‖W4‖22. By Lemma 2.10, Q(v) = 0,
then I(v) = 1

2
Q(v) = 0, we can get a contradiction as in proving (ii). To prove (iv),

set

u(l, x) =

√
8l

1 + |lx|2
∈ H1

r (R
2), l ∈ (0,+∞),

then D(u(l, x)) = 8π. By Lemma 2.2, I(u(l, x)) = 0 and u(l, x) is a minimizer for
γ(8π) for any l ∈ (0,+∞). Thus, there exists λ(l) ∈ R such that (u(l, x), λ(l))
satisfies (1.1). Then we have

A(u(l, x)) + 3B(u(l, x))− C(u(l, x))− λ(l)D(u(l, x)) = 0.

By Lemma 2.2 and the fact that D(u(l, x)) = 8π, λ(l) = 0. We end the proof. �

Proof of Theorem 1.2. The first part follows from Lemma 2.11, Lemma 2.13,
Proposition 2.17 Proposition 2.18 and Lemma 2.9. By Lemma 2.10, Q(uc) = A(uc)+
B(uc)− p−2

p
C(uc) = 0, then, by Lemma 2.4,

A(uc) +B(uc) =
p− 2

p
C(uc) ≤

p− 2

2 ‖W‖p−2
2

A(uc)
p−2
2 · c.

Then,

A(uc)
4−p

2 ≤ p− 2

2 ‖W‖p−2
2

· c→ 0

as c→ 0+, i.e. A(uc) → +∞ as c→ 0+. Moreover,

m(c) = I(uc) =
p− 4

2(p− 2)
(A(uc) +B(uc)) → +∞
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as c → 0+. From (1.1), we have A(uc) + 3B(uc) − C(uc) − λcD(uc) = 0, then, by
Lemma 2.3,

λc =
1

c
[A(uc) + 3B(uc)− C(uc)] =

1

c
· [ 2

2− p
A(uc) +

2p− 6

p− 2
A(uc)]

≤ 1

c
· [ 2

2− p
A(uc) +

p− 3

8π2(p− 2)
A(uc)D(uc)

2]

=
1

c
· [ 2

2− p
+

p− 3

8π2(p− 2)
D(uc)

2]A(uc) ≤
1

c
· 1

2− p
A(uc) → −∞,

(3.3)

as c→ 0+, for p ∈ (4,+∞). Thus the proof is completed. �

Proof of Theorem 1.3. By Proposition 2.24 and Proposition 2.26, there exists

(vn, λ̃n) ∈ H1
r (R

2)\{0}×R which satisfies (1.1) and it is enough to prove that λ̃n < 0,
for each n ∈ N

+. However, this point has been proved in Lemma 2.11. Since

I(vn)−
1

p− 2
Q(vn) =

p− 4

2(p− 2)
(A(vn) +B(vn)) = γn(c),

for Q(vn) = 0, then by Lemma 2.3, we get that {vn} is unbounded in H1
r (R

2) from
the fact in Lemma 2.20 and Lemma 2.22 that γn(c) ≥ bn → ∞ as n→ ∞. Thus the
proof is completed. �
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