
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 42, 2017, 393–404

A GENERALIZATION OF THE EICHLER

TRACE FORMULA FOR MORPHISMS

BETWEEN RIEMANN SURFACES

Masaharu Tanabe

Tokyo Institute of Technology, Department of Mathematics
Ohokayama, Meguro, Tokyo, 152-8551, Japan; tanabe.m.ac@m.titech.ac.jp

Abstract. Let T be an automorphism of a closed Riemann surface. The Eichler trace formula

asserts that the trace of the pull-back action of T on the space of holomorphic 1-forms can be

evaluated in terms of the local behavior of T around the fixed points. In this paper, we will

generalize this formula for morphisms between closed Riemann surfaces of possibly different genera.

1. Introduction

Throughout this paper, all of the Riemann surfaces are closed and of genera
≥ 1. We recall the Eichler trace formula. Let T be an automorphism of order q of
a Riemann surface X. Suppose that there are t fixed points p1, p2, · · · , pt. We put
ζ = e2πi/q. Choosing a coordinated neighbourhood around pj properly, we may write

T : z → ζkjz

for some kj, 1 ≤ kj ≤ q − 1 in the neighbourhood of pj. T induces the pull-back
action on the space of holomorphic 1-forms on X. Let χ denote the trace of a matrix
representation of the action on the space of holomorphic 1-forms. Then the Eichler
trace formula is

(1) χ = 1−
t

∑

j=1

ζkj

ζkj − 1
.

The Eichler trace formula is closely related to the Lefschetz fixed-point formula. From
(1), we can derive

t = 2− χ− χ.

This is the Lefschetz fixed-point formula for closed Riemann surfaces.
Since the trace χ is invariant under base changes, it is characterized by an au-

tomorphism. Conversely, it is known that an automorphism is characterized by the
trace of induced action on the space of holomorphic 1-forms. A number of articles
studying the traces of automorphisms of Riemann surfaces have appeared. We refer
the reader to [1] and references therein for further discussion of this point.

Fuertes and González-Diez (see [4]) applied the Lefschetz fixed-point formula
to study the number of coincidences, that is, the number of points p ∈ X with
f1(p) = f2(p) for two distinct morphisms fi : X → Y (i = 1, 2) between Riemann
surfaces. They gave a sharp bound for the number of coincidences of two morphisms.
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Theorem 1.1. (Fuertes and González-Diez) Let fi : X → Y be two distinct

morphisms of degree di (i = 1, 2) between closed Riemann surfaces of genera g and

γ, respectively, and let L(f1, f2) denote the number of coincidences appropriately

counted. We have

i) L(f1, f2) ≤ d1 + 2γ
√
d1d2 + d2.

ii) In case γ ≥ 2, this bound is attained if and only if Y is hyperelliptic and

f2 = J ◦ f1, where J denotes the hyperelliptic involution of Y .

Their results generalize the well known fact about the number of fixed points of
automorphisms, namely, the number of fixed points is less than or equal to 2g + 2
for an arbitrary automorphism of a closed Riemann surface. More recently, Fuertes
[3] showed several results concerning the number of coincidences by composing mor-
phisms with meromorphic functions on the target Y .

In [7] the author studied the case where there exists no coincidence of two distinct
morphisms fi : X → Y (i = 1, 2) between closed Riemann surfaces, namely, the case
where L(f1, f2) = 0. Roughly speaking, trace(f ∗

1 ◦ f2∗|H1
DR

(X)) defines an inner-

product on the space of morphisms from X to Y , where f∗ : H
1
DR(X) → H1

DR(Y ) is
defined by the property

´

Y
f∗v ∧w =

´

X
v ∧ f ∗w, for any w ∈ H1

DR(Y ). A necessary
and sufficient condition for L(f1, f2) = 0 in terms of the inner-product was given.
The holomorphic Lefschetz number for coincidences L(f1, f2,O) was defined as

L(f1, f2,O) =
1

∑

q=0

(−1)q tracef ∗
1 ◦ f2∗|H0,q

∂
(X),

to be used for the proofs.
In this paper, we investigate the holomorphic Lefschetz number more, and show

that the number can be evaluated in terms of the local behavior of two morphisms
around the coincidences. As a result, a generalization of the Eichler trace formula
for morphisms between Riemann surfaces is given. This is all done in section 4. We
exhibit examples for the generalized Eichler trace formula in section 5. In section 6,
we examine the possibility of diagonalizing matrix representations of f ∗

1 ◦ f2∗.

2. The Lefschetz trace formula

In the following, we use the notation of [4] and Chapter 3.4 of [5]. Let X be a
Riemann surface and let T ∈ Aut(X). We put ΓT = {(p, T (p))} ⊂ X ×X the graph
of T . A fixed point of T is corresponds to a point of intersection of the graph ΓT and
the diagonal submanifold ∆ ⊂ X ×X. The Lefschetz number of T is defined to be

L(T ) = ♯(∆ · ΓT ).

By using integral,

L(T ) =

ˆ

ΓT

ϕ∆ =

ˆ

X

(id.× T )∗ϕ∆,

where ϕ∆ ∈ H2
DR(X×X) is a closed form representing the cohomology class Poincaré

dual to the class of ∆. For each q let

{ψq,µ}
be a collection of closed q-forms representing a basis for Hq

DR(X), and let

{ψ∗
2−q,µ}
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be closed forms representing the dual basis for H2−q
DR (X), i.e., such that

ˆ

X

ψq,µ ∧ ψ∗
2−q,ν = δµ,ν .

Let π1 and π2 denote the two projection maps X ×X → X. Then one has

ϕ∆ =
∑

q

(−1)q
∑

µ

π∗
1ψq,µ ∧ π∗

2ψ
∗
2−q,µ.

Thus we can evaluate the Lefschetz number by

L(T ) =

ˆ

ΓT

ϕ∆ =

ˆ

X

(id.× T )∗ϕ∆ =
∑

q

(−1)q
∑

µ

ˆ

X

ψq,µ ∧ T ∗ψ∗
2−q,µ

=
k=2
∑

k=0

(−1)ktrace (T ∗|Hk
DR

(X)),

(2)

where k = 2− q. The obtained formula

L(T ) =

k=2
∑

k=0

(−1)ktrace (T ∗|Hk
DR

(X))

is so called the Lefschetz trace formula (for two-dimensional case).
In the rest of this paper, fi : X → Y will always mean two distinct morphisms of

degree di (i = 1, 2) between closed Riemann surfaces of genera g and γ, respectively.
For two distinct morphisms fi (i = 1, 2), we define the Lefschetz number as follows.

Definition 2.1. The Lefschetz number of two distinct morphisms fi : X →
Y (i = 1, 2) is defined to be

L(f1, f2) =

ˆ

X

(f1 × f2)
∗ϕ∆,

where ϕ∆ ∈ H2
DR(Y × Y ) is the Poincaré dual of the diagonal ∆ ⊂ Y × Y .

Thus letting Γf1,f2 = {p ∈ X | (f1(p), f2(p))} ∈ H2(Y × Y,Z) be the homology
class of the image of X via f1 and f2, we have

L(f1, f2) =

ˆ

X

(f1 × f2)
∗ϕ∆ =

ˆ

Γf1,f2

ϕ∆ = ♯(∆ · Γf1,f2).

Definition 2.2. Let f : X → Y be a morphism between Riemann surfaces. We
define a linear map

f∗ : H
k
DR(X) → Hk

DR(Y )

by the property
ˆ

Y

f∗v ∧ w =

ˆ

X

v ∧ f ∗w,

for any w ∈ H2−k
DR (Y ).
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Then the analogue to (2) takes the form

L(f1, f2) =

ˆ

X

(f1 × f2)
∗ϕ∆ =

∑

q

(−1)q
∑

µ

ˆ

X

f ∗
1ψq,µ ∧ f ∗

2ψ
∗
2−q,µ

=
∑

q

(−1)q
∑

µ

ˆ

Y

f2∗ ◦ f ∗
1ψq,µ ∧ ψ∗

2−q,µ

=

q=2
∑

q=0

(−1)qtrace (f2∗ ◦ f ∗
1 |Hq

DR
(Y )) =

k=2
∑

k=0

(−1)ktrace (f ∗
1 ◦ f2∗|Hk

DR
(X)),

(3)

where we use the same symbol {ψq,µ} and {ψ∗
2−q,µ} for the basis for Hq

DR(Y ) and for

the dual basis for H2−q
DR (Y ), respectively. The last equality comes from the fact that

for any two matrices A and B, the trace of AB and BA agree whenever the two
products make sense.

Observing (3), we easily have

L(f1, f2) = L(f2, f1).

Fuertes and González-Diez [4] showed the following lemma.

Lemma 2.3. i) f ∗
1 ◦ f2∗ : H0(X) → H0(X) is multiplication by d2.

ii) f ∗
1 ◦ f2∗ : H2(X) → H2(X) is multiplication by d1.

Thus the Lefschetz trace formula is written as

(4) L(f1, f2) =
k=2
∑

k=0

(−1)ktrace (f ∗
1 ◦ f2∗|Hk

DR
(X)) = d1 − trace f ∗

1 ◦ f2∗|H1
DR

(X) + d2.

Definition 2.4. Let p ∈ X be a coincidence of f1 and f2, and let

f1(z)− f2(z) = ckz
k + ck+1z

k+1 + . . . , ck 6= 0

be the Taylor expansion of f1 − f2 with respect to small parametric discs D around
p and D′ around fi(p). We define the multiplicity of f1 and f2 at p to be

mp(f1, f2) = k.

By the definition, mp(f1, f2) is always positive. Furthermore, one can show that
(see [4])

L(f1, f2) =
∑

{p∈X;f1(p)=f2(p)}

mp(f1, f2).(5)

Thus L(f1, f2) is always greater than or equal to the actual number of coincidences.

3. The holomorphic Lefschetz number

A morphism f : X → Y acts not only on the de Rham cohomology groups but
on the Dolbeault cohomology groups. Let M be a compact Kähler manifold. By the
Hodge decomposition,

Hr(M,C) ∼=
⊕

p+q=r

Hp,q

∂
(M),

Hp,q

∂
(M) = Hq,p

∂
(M).

Thus, for a Riemann surface X,

H1(X,C) ∼= H1,0

∂
(X)

⊕

H0,1

∂
(X)
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holds, where we may identify H1,0

∂
(X) with the space of holomorphic 1-forms and

H0,1

∂
(X) being the complex conjugate of H1,0

∂
(X). H0 and H2 are trivial in this case.

Now the Lefschetz number L(f1, f2) is written as

L(f1, f2) =

ˆ

X

(f1 × f2)
∗ϕ∆ =

∑

p,q

(−1)p+qtrace (f ∗
1 ◦ f2∗|Hp,q

∂
(X)).

Let π1 and π2 denote the two projection maps Y × Y → Y . For each p and q let

{ψp,q,µ}
be a collection of ∂-closed (p, q)-forms representing a basis for Hp,q

∂
(Y ), and let

{ψ∗
1−p,1−q,µ}

be ∂-closed forms representing the dual basis for H1−p,1−q

∂
(Y ) under the pairing

Hp,q

∂
(Y )⊗H1−p,1−q

∂
(Y ) → C

given by

ψ ⊗ ϕ 7→
ˆ

Y

ψ ∧ ϕ.

A basis for H1,1

∂
(Y × Y ) is represented by the forms

{ϕp,q,µ,ν = π∗
1ψp,q,µ ∧ π∗

2ψ
∗
1−p,1−q,ν},

and the dual basis for H1,1

∂
(Y × Y ) is represented by

{ϕ∗
1−p,1−q,µ,ν = π∗

1ψ
∗
1−p,1−q,µ ∧ π∗

2ψp,q,ν}.
The Dolbeault class of the diagonal is represented by the form

ϕ∆ =
∑

p,q,µ

(−1)p+qϕp,q,µ,µ.

Set

ϕ0
∆ =

∑

q,µ

(−1)qϕ0,q,µ,µ = ϕ0,0 −
∑

µ

ϕ0,1,µ,µ.

We put

η0∆(Γf1,f2) =

ˆ

Γf1,f2

ϕ0
∆

integration of ϕ0
∆ over Γf1,f2. We have

η0∆(Γf1,f2) =

ˆ

Γf1,f2

ϕ0
∆ =

ˆ

X

(f1 × f2)
∗ϕ0

∆ =

ˆ

X

∑

q,µ

(−1)qf ∗
1ψ0,q,µ ∧ f ∗

2ψ
∗
1,1−q,µ

=

ˆ

Y

∑

q,µ

(−1)qf2∗ ◦ f ∗
1ψ0,q,µ ∧ ψ∗

1,1−q,µ =
1

∑

q=0

(−1)q tracef2∗ ◦ f ∗
1 |H0,q

∂
(Y )

=

1
∑

q=0

(−1)q tracef ∗
1 ◦ f2∗|H0,q

∂
(X).

The last equality comes from the fact that for any two matrices A and B, the trace
of AB and BA agree whenever the two products make sense.



398 Masaharu Tanabe

Definition 3.1. We define the holomorphic Lefschetz number of (f1, f2) to be

L(f1, f2,O) =

1
∑

q=0

(−1)q tracef ∗
1 ◦ f2∗|H0,q

∂
(X).

By Lemma 2.3 i), we see

(6) L(f1, f2,O) = d2 − tracef ∗
1 ◦ f2∗|H0,1

∂
(X).

We also have

(7) L(f2, f1,O) = d1 − tracef ∗
1 ◦ f2∗|H1,0

∂
(X)

since
ˆ

X

(f2 × f1)
∗ϕ0

∆ =

ˆ

X

∑

q,µ

(−1)qf ∗
2ψ0,q,µ ∧ f ∗

1ψ
∗
1,1−q,µ

=

ˆ

Y

∑

q,µ

(−1)qψ0,q,µ ∧ f2∗ ◦ f ∗
1ψ

∗
1,1−q,µ

=

1
∑

q=0

(−1)1−q tracef2∗ ◦ f ∗
1 |H1,q

∂
(Y )

=

1
∑

q=0

(−1)1−q tracef ∗
1 ◦ f2∗|H1,q

∂
(X).

Summing (6) and (7), we have

L(f1, f2) = L(f1, f2,O) + L(f2, f1,O).

In [7], the holomorphic Lefschetz number was used to show a theorem giving a
condition for L(f1, f2) = 0. As a consequence of the theorem, the following corollary
was deduced.

Corollary 3.2. Let fi : X → Y be two distinct morphisms of degree di (i = 1, 2)
between closed Riemann surfaces of genera g and γ = 1, respectively. The following

two conditions are equivalent.

1) L(f1, f2) = 0.
2) The difference between f1 and f2 is only a translation on the torus Y .

For details, we refer to [7].

4. The Eichler trace formula

According to the method in [5], we can evaluate the number η0∆(Γf1,f2) in terms
of the local behavior of f1 and f2 around their coincidences.

Let Ap,q(Y ) denote the space of differential forms of type (p, q), and let

A(p1,q1),(p2,q2)(Y × Y )

denote the space of differential forms of bitype (p1, q1), (p2, q2) where (p1, q1) and
(p2, q2) come from the first and the second factor of the product Y ×Y , respectively.
We have the decomposition of forms on Y × Y into bitype

Ap,q(Y × Y ) =
⊕

p1+p2=p
q1+q2=q

A(p1,q1),(p2,q2)(Y × Y ).
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We denote by T∆ the current of the diagonal ∆ ⊂ Y × Y . Let T 0
∆ be the

component of T∆ of bitype (0, ∗), (1, 1 − ∗), where ∗ = 0, 1, that is, the current
defined by the linear function

T 0
∆(ψ) =

ˆ

∆

1
∑

q=0

ψ(1,1−q),(0,q)

on test forms ψ. Then T 0
∆ is ∂-closed and represents the Dolbeault cohomology class

η0∆. We will smooth the current, namely, solve the equation of currents

T 0
∆ = ϕ + ∂k

with k any (1, 0)-current and ϕ a smooth form. Then we will have

η0∆(Γf1,f2) =

ˆ

Γf1,f2

ϕ.

The Bochner–Martinelli kernel on C×C is given by

k(z, ζ) = C1
dζ

z − ζ
,

where

C1 =
−1

2πi
.

Apparently, ∂k(z, ζ) = 0 on C×C−∆ and therefore the current defined by k(z, ζ)
has distributional derivative ∂k supported on ∆. Further, it is known that ∂k = T 0

∆

in the sense of distributions. This gives the smoothing of T 0
∆ in C×C.

Let fi : X → Y be two distinct morphisms of degree di (i = 1, 2) between closed
Riemann surfaces and let {pα} be their coincidences possibly empty set. Put the
image of coincidences qα = fi(pα). We denote by Bǫ(qα, qα) the ball of radius ǫ
around (qα, qα) in Y × Y , and let ρα be a bump function with ρα ≡ 1 in Bǫ(qα, qα)
and ρα ≡ 0 in Y × Y − B2ǫ(qα, qα). Let kǫ be the current on Y × Y given by

kǫ =
∑

α

ρα · k(zα, ζα),

where k(zα, ζα) is the Bochner–Martinelli kernel.
In Bǫ(qα, qα)

∂kǫ = ∂k(zα, ζα) = T 0
∆,

and if we put

ϕ = T 0
∆ − ∂kǫ,

ϕ is a ∂-closed current representing η0∆, smooth in an open set containing Γf1,f2 and

equal to −∂kǫ away from ∆. Let ξα be a local coordinate around pα. We evaluate

η0∆(Γf1,f2) =

ˆ

Γf1,f2

ϕ = −
ˆ

Γf1,f2
−∪Bǫ(qα,qα)

∂kǫ =
∑

α

ˆ

∂(Γf1,f2
∩Bǫ(qα,qα))

kǫ

=
∑

α

ˆ

|ξα|=ǫ

k(f1(ξα), f2(ξα)) =
∑

α

C1

ˆ

|ξα|=ǫ

f ′
2(ξα)

f1(ξα)− f2(ξα)
dξα.

If {pα} is the empty set, it is easy to see that the third integral is 0. Then

C1

ˆ

|ξα|=ǫ

f ′
2(ξα)

f1(ξα)− f2(ξα)
dξα = Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

,
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where

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

denotes the residue of the function at pα, which is independent of the choice of ǫ.
Thus

η0∆(Γf1,f2) =
∑

α

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

,

and we have established

Theorem 4.1. Let fi : X → Y be two distinct morphisms of degree di (i = 1, 2)
between closed Riemann surfaces and let {pα} be their coincidences possibly empty

set. The holomorphic Lefschetz number of (f1, f2) is given by

L(f1, f2,O) =
∑

α

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

.

If {pα} is empty, then we take the right hand side to be 0.

By the definition of L(f1, f2,O) and the fact that

tracef ∗
1 ◦ f2∗|H0,1

∂
(X) = tracef ∗

1 ◦ f2∗|H1,0

∂
(X),

we easily derive

Corollary 4.2. (The Eichler trace formula for coincidences) With the same no-

tation as in Theorem 4.1, we have

tracef ∗
1 ◦ f2∗|H1,0

∂
(X) = d2 −

∑

α

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

.

For automorphisms, namely if X = Y and f2 is the identity map on X and
f1 6= id. then a coincidence is a fixed point of f1 and

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

=
1

1− f ′
1(ξα(pα))

.

Substituting this into Corollary 4.2, we obtain the Eichler trace formula

tracef ∗
1 |H1,0

∂
(X) = 1−

∑

α

1

1− f ′
1(ξα(pα))

= 1−
∑

α

f ′
1(ξα(pα))

f ′
1(ξα(pα))− 1

,

since |f ′
1(ξα(pα))| = 1.

Remark. For another proof of the Eichler trace formula, we refer to [2] in which
for an automorphism T of a Riemann surface X, tr T denotes trace (T−1)∗|H1,0

∂
(X) in

our notation. Also in [2], the genera of Riemann surfaces are assumed to be > 1
although we do not exclude tori.

We return to Theorem 4.1. Changing the order of f1 and f2, we have

L(f2, f1,O) =
∑

α

Res

(

f ′
1(ξα)

f1(ξα)− f2(ξα)
; pα

)

.
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Thus

L(f1, f2,O) + L(f2, f1,O)

=
∑

α

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

+
∑

α

Res

(

f ′
1(ξα)

f1(ξα)− f2(ξα)
; pα

)

=
∑

α

Res

(

f ′
2(ξα)− f ′

1(ξα)

f2(ξα)− f1(ξα)
; pα

)

.

Recalling (5), we have again obtained

L(f1, f2) = L(f1, f2,O) + L(f2, f1,O).

If the multiplicity of f1 and f2 at pα is 1, then

Res

(

f ′
2(ξα)

f2(ξα)− f1(ξα)
; pα

)

=
f ′
2(ξα(pα))

f ′
2(ξα(pα))− f ′

1(ξα(pα))
.

In this case, we have

Corollary 4.3. Let the conditions of Theorem 4.1 hold, and suppose that every

coincidence has multiplicity one. Then the difference in degree between f1 and f2 is

given by

d2 − d1 =
∑

α

|f ′
2(ξα(pα))|2 − |f ′

1(ξα(pα))|2
|f ′

2(ξα(pα))− f ′
1(ξα(pα))|2

.

Proof. Recalling that

L(f1, f2,O) = d2 − tracef ∗
1 ◦ f2∗|H0,1

∂
(X),

L(f2, f1,O) = d1 − tracef ∗
1 ◦ f2∗|H1,0

∂
(X),

and

tracef ∗
1 ◦ f2∗|H0,1

∂
(X) = tracef ∗

1 ◦ f2∗|H1,0

∂
(X),

we easily derive the conclusion from Theorem 4.1. �

5. Examples

In this section, we exhibit examples for Corollary 4.2.

Example 1. Consider the torus

T = C/(i, 1)Z2.

For any positive integer n, define the multiplication by n on T

nT : T → T

by

x 7→ nx.

Let n1 and n2 be positive integers distinct from each other. We consider the coinci-
dences of f1 = n1T and f2 = n2T . The number of coincidences is (n1−n2)

2. Now, we
recall that the push-forward of a holomorphic 1-form f∗ω is expressed by the local
behavior of the morphism f and the local value of the form ω as below (we refer to [3,
p. 344]). Let f : X → Y be a morphism between Riemann surfaces of degree d and
ω be a holomorphic 1-form on X. Let U ′ be an open set of Y with the property that
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f−1(U ′) is the disjoint union of open sets Ui (i = 1, 2, · · · , d) such that the restriction
of f to each of them is an isomorphism. We assign to each such open set U ′ the form

ω′|U ′ =

d
∑

i=1

((f |Ui
)−1)∗ω.

Then we can obtain a globally well defined holomorphic form ω′ and this is f∗ω.
Observing this expression, we calculate the left hand side of the equation in

Corollary 4.2 to be n1n2. The right hand side is n2
2− (n1−n2)

2 · n2

n2−n1
which is equal

to n1n2.

Fuertes [3] computed the multiplicities of coincidences of morphisms given below.

Example 2. Let X and Y be hyperelliptic Riemann surfaces defined by the
equations y2 = x2n−1 and y2 = xn−1 with n even, respectively. Then X is of genus
n − 1 and Y is of genus (n − 2)/2. Let fj : X → Y (0 ≤ j ≤ n − 1) be morphisms
defined by

fj(x, y) = (ζjx2, y),

where ζ = e2πi/n. Then deg fj = 2 for any j. We put

p1 = (x, y) = (0,+i), p2 = (x, y) = (0,−i)
on X. Then p1 and p2 are coincidences of f0 and fk for any k 6= 0. It is seen that the
multiplicity of each of these coincidences is 2 as indicated in [3]. Taking the variable
x of defining equation for X as a local coordinate around pi (i = 1, 2), we compute

Res

(

f ′
0(x)

f0(x)− fk(x)
; pi

)

=
1

2πi

ˆ

|x|=ǫ

2x

x2 − ζkx2
dx =

2

1− ζk
.

We denote by ∞1 and ∞2 the two points at infinity of X. These points are the rest
of the coincidences of f0 and fk. We take s = x−1 as a local coordinate around ∞1.
Then the local expression of f0 around ∞1 is

s 7→
(

1

s
,

√
1− s2n

sn

)

7→
(

1

s2
,

√
1− s2n

sn

)

7→ s2,

and similarly the local expression of fk around ∞1 is

s 7→ s2

ζk
.

Thus we compute

Res

(

f ′
0(s)

f0(s)− fk(s)
; ∞1

)

=
1

2πi

ˆ

|s|=ǫ

2s

s2 − ζ−ks2
ds =

2

1− ζ−k
.

Similarly, we obtain

Res

(

f ′
0(s)

f0(s)− fk(s)
; ∞2

)

=
2

1− ζ−k
.

It is known that
dx

y
,
xdx

y
, · · · , x

n−2 dx

y

form a basis for H1,0

∂
(X). The eigenvectors of f ∗

k ◦ f0∗ are pull-back forms via f0

xdx

y
,
x3dx

y
, · · · , x

n−3dx

y
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corresponding eigenvalues being

2ζ2k, 2ζ4k, · · · , 2ζ (n−2)k,

where the factor 2 comes from deg f0. Then the left hand side of the equation in
Corollary 4.2 is

tracef ∗
k ◦ f0∗|H1,0

∂
(X) =

n−2

2
∑

l=1

2ζ2kl = 2ζ2k
1− ζ2k(

n
2
−1)

1− ζ2k
= −2,

and the right hand side is

deg f0 −
∑

α

Res

(

f ′
0(s)

f0(s)− fk(s)
; pα

)

= 2− 2
2

1− ζk
− 2

2

1− ζ−k
= −2.

6. Diagonalization of f∗

1
◦ f2∗

Our purpose in this section is to examine the possibility of diagonalizing matrix
representations of f ∗

1 ◦f2∗. We recall that the vector space H1,0

∂
(X) carries a hermitian

inner-product defined by

〈v, w〉X = i

ˆ

X

v ∧ w.

We denote by

〈v, w〉Y
the hermitian inner-product on H1,0

∂
(Y ) as well. Then for any v ∈ H1,0

∂
(X) and

w ∈ H1,0

∂
(Y ),

(8) 〈fi∗v, w〉Y = i

ˆ

Y

fi∗v ∧ w = i

ˆ

X

v ∧ f ∗
i w = 〈v, f ∗

i w〉X.

Let

Ω = {ω1, · · · , ωg}
be an orthonormal basis for H1,0

∂
(X) and let

Λ = {λ1, · · · , λγ}

be an orthonormal basis for H1,0

∂
(Y ). We denote by A the matrix representation of

fi∗ with respect to Ω and Λ. Then (8) means that

A∗ = tA

is the matrix representation of f ∗
i with respect to Λ and Ω. This observation gives

Lemma 6.1. Let A be the matrix representation of fi∗ : H
1,0

∂
(X) → H1,0

∂
(Y )

with respect to orthonormal bases. Then the matrix representation of f ∗
i is A∗.

Now we will show

Theorem 6.2. Let fi : X → Y (i = 1, 2) be distinct morphisms between closed

Riemann surfaces of genera greater than one. Let Ω = {ω1, · · · , ωg} be an orthonor-

mal basis for H1,0

∂
(X). A matrix representation of f ∗

1 ◦ f2∗ with respect to Ω is

diagonalizable by a unitary matrix if and only if there is an automorphism h of Y
with f1 = h ◦ f2.
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Proof. A matrix is diagonalizable by a unitary matrix if and only if it is a normal
matrix. Thus we will show that there is an automorphism h of Y with f1 = h ◦ f2 if
and only if the matrix representation of f ∗

1 ◦ f2∗ is normal.
Suppose that there is an automorphism h of Y with f1 = h ◦ f2. Let Λ =

{λ1, · · · , λγ} be an orthonormal basis for H1,0

∂
(Y ). Let Fi (i = 1, 2) and H denote

the matrix representations of fi∗ and h∗ respectively with respect to Ω and Λ. It
suffices to show that F∗

1F2 is a normal matrix. Using Lemma 6.1, we compute

(F∗
1F2)

∗ (F∗
1F2) = (F∗

2H∗F2)
∗ (F∗

2H∗F2) = F∗
2HF2F∗

2H∗F2 = d2F∗
2F2.

On the other hand,

(F∗
1F2) (F∗

1F2)
∗ = (F∗

2H∗F2) (F∗
2H∗F2)

∗ = F∗
2H∗F2F∗

2HF2 = d2F∗
2F2.

Thus we see that a matrix representation of F∗
1F2 is normal.

Conversely, we assume that the matrix representation of f ∗
1 ◦f2∗ is normal. Then

(F∗
1F2)

∗ (F∗
1F2) = (F∗

1F2) (F∗
1F2)

∗. We compute

(F∗
1F2)

∗ (F∗
1F2) = F∗

2 F1F∗
1F2 = d1F∗

2 F2,

and
(F∗

1F2) (F∗
1F2)

∗ = F∗
1F2F∗

2 F1 = d2F∗
1 F1.

Thus we have
d1f

∗
2 ◦ f2∗ = d2f

∗
1 ◦ f1∗.

This means that there is an automorphism h of Y with f1 = h ◦ f2 by Kani’s
rigidity theorem [6, p. 186, Theorem 2]. �
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