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Abstract. By a basis in R
n we mean a collection of open and bounded sets B. In this paper

we show that, if the general maximal operator MB is bounded on Lp(Rn) for p > 1 and the weight w

belongs to the reverse Hölder RH∞,B class, then the weighted maximal operator MB,w is bounded

on Lp(Rn, w) for p > 1. When the general basis B has dyadic substructure with the Stein property,

we investigate the equivalence between the Muckenhoupt class A∞,B and the reverse Hölder class

RH 1,B. We also discuss equivalent ways of defining the reverse Hölder class RH 1,B.

1. Introduction

The purpose of this paper is to develop a theory of weights for general maximal
operators. We first fix some notations. By weights we will always mean non-negative,
locally integrable functions on R

n which are positive on a set of positive measure.
Given a measurable set E and a weight w, w(E) =

´

E
w(x) dx, |E| denotes the

Lebesgue measure of E and 1E denotes the characteristic function of E. Given
1 < p < ∞, p′ = p

p−1
will denote the conjugate exponent number of p. Let 0 < p ≤ ∞

and w be a weight. We define the weighted Lebesgue space Lp(Rn, w) = Lp(w) to
be a Banach space equipped with the norm (or quasi norm)

‖f‖Lp(w) =

(
ˆ

Rn

|f(x)|pw(x) dx
)1/p

.

In their paper [2], Alfonseca, Soria and Vargas proposed that directional maxi-
mal operators enjoy an almost-orthogonality principle in L2(R2). Motivated by an
extension of this interesting property to the setting of radial weights, we considered
in [18] the following weights: The weight w is of the form w(x) = w0(|x|), x ∈ R

2,
where w0 : [0,∞) → [0,∞) satisfies

(1.1) sup
r1<r<r2

w0(r) ≤
C

r2 − r1

ˆ r2

r1

w0(r) dr

for all 0 < r1 < r2 < ∞. Notice that ra with a > 0 satisfies this condition. For this
weight w we proved the following geometrical fact which was observed in [1] when
w ≡ 1.
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Let 0 < θ1, θ2 < π/4. Let

ω0 = (1, 0), ω1 = (cos θ1, sin θ1) and ω2 = (cos(−θ2), sin(−θ2)).

Let B be a rectangle whose longest side is parallel to ω1 and let R be a rectangle
whose longest side is parallel to ω2. Suppose that B ∩ R 6= ∅ and that the long side

length of B is bigger than that of R. Then there exists a rectangle R̃ ⊃ R whose
longest side is parallel to ω0 such that

w(R ∩ B)

w(R)
≤ C

w(R̃ ∩ B)

w(R̃)
,

where the constant C is independent of θ1, θ2, B and R.

One of the main ingredients for the proof of this somehow complicated fact is
that, w fulfills a quite nice formula:

(1.2)
w(R)

|R| ≈ 1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr

for any rectangle R ⊂ R
2, where

r1(R) = inf
x∈R

|x|, r2(R) = sup
x∈R

|x| and rad (R) = r2(R)− r1(R).

By the use of these relations (1.1) and (1.2), in [17], the first author established the
logarithmic boundedness of weighted small Kakeya maximal operators on L2(R2, w).

Fix N ≫ 1. For a real number a > 0 let KN,a be the family of all tubes in
R

n, n ≥ 2, which are congruent to the tubes with height Na and width a, but with
arbitrary directions and centers. Let KN =

⋃
a>0 KN,a. For an f ∈ L1

loc(R
n) the small

Kakeya maximal operator MKN,a
is defined by

MKN,a
f(x) = sup

T∈KN,a

1T (x)
1

|T |

ˆ

T

|f(y)| dy

and the Kakeya maximal operator MKN
is defined by

MKN
f(x) = sup

T∈KN

1T (x)
1

|T |

ˆ

T

|f(y)| dy.

It is conjectured that MKN
is bounded on Ln(Rn) with the operator norm which

grows no faster than O((logN)αn) for some αn > 0 as N → ∞. In the case n = 2,
this conjecture was solved affirmatively by Córdoba [3] with the exponent α2 = 2
and reproved by Strömberg [16] with α2 = 1. In the higher dimensional case, n > 2,
these estimates were proved so far only for some restricted class of functions; see for
example the references in [18].

For a weight w the corresponding weighted maximal operators are defined by

MKN,a,wf(x) = sup
T∈KN,a

1T (x)
1

w(T )

ˆ

T

|f(y)|w(y) dy,

MKN ,wf(x) = sup
T∈KN

1T (x)
1

w(T )

ˆ

T

|f(y)|w(y) dy.

It is shown in [18] that, if the weight w is of the form w(x) = |x|a, a > 0, then

(1.3) ‖MKN ,wf‖L2(R2,w) ≤ C logN‖f‖L2(R2,w)

and is also shown in [17] that, if w satisfies (1.1), then for any a > 0

(1.4) ‖MKN,a,wf‖L2(R2,w) ≤ C
√

logN‖f‖L2(R2,w).
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In this paper we shall prove a theorem concerning general maximal operator which
implies those two estimates (1.3) and (1.4) as a corollary; see Remark 2.8.

When the case B = Q, the collection of all cubes in R
n with sides parallel to

the coordinate axes, it is well known that the Muckenhoupt Ap condition character-
izes the weighted Lp estimate for several important operators; see for example [6].
The reverse Hölder class RH 1,Q is closely related to the Muckenhoupt class A∞,Q.
However, it seems that further much more is known about the Muckenhoupt class
A∞,Q than about the reverse Hölder class RH 1,Q. In [4], Cruz-Uribe and Neugebauer
investigated deeply the structure of the reverse Hölder class RH 1,Q. In this paper
we study the structure of the reverse Hölder classes with general basis B and prove
the equivalence between the Muckenhoupt class A∞,B and the reverse Hölder class
RH 1,B. Our essential tools are the Calderón–Zygmund decomposition and the dyadic
structure of the basis which is assumed a priori.

It is known that there are several characterizations of the Muckenhoupt class
A∞,Q, which are defined by many authors such as Muckenhoupt, Coifman and Fef-
ferman, Fujii and so on. However, these characterizations are not valid for a general
basis B instead of a basis Q. In the recent paper [5], Duoandikoetxea, Martín-
Reyes and Ombrosi compared several characterizations of A∞,B on a σ-finite mea-
sure space (X, µ), a basis is a collection of µ-measurable subsets B of X such that
0 < µ(B) < ∞. They established several implications among such conditions with-
out further assumptions on the basis (or, for example, assuming the boundedness of
the maximal operator associated with B), but their assumptions could not decide
whether the weights w ∈ A∞,B belong to RH 1,B.

The paper is organized as follows: In Section 2 we state and prove two theo-
rems (Theorems 2.6 and 2.10). For a general basis B, we consider the weight w
belonging to the reverse Hölder classes RH s,B, 1 < s ≤ ∞, and, for the weighted
general maximal operator MB,w, we introduce a sufficient condition for one-weight
norm inequalities to hold. As a corollary (Corollary 2.7), we show that, if the general
maximal operator MB is bounded on Lp(Rn) for p > 1 and the weight w belongs to
the reverse Hölder class RH∞,B, then the weighted general maximal operator MB,w

is bounded on Lp(Rn, w) for p > 1. In Section 3 we investigate some properties
of RH∞,B weights and show how they are related to the Muckenhoupt class A1,B.
In Section 4, under the assumption that the general basis B has dyadic substruc-
ture with the Stein property, we introduce the Gehring lemma (Theorem 4.6) and
investigate the equivalence between the Muckenhoupt class A∞,B and the reverse
Hölder class RH 1,B (Theorems 4.8 and 4.10). We also discuss an equivalent way
of defining the reverse Hölder class RH 1,B (Theorem 4.12) following their papers
[9] and [15]. In the final section (Section 5) we extend the nice formula (1.2) to
the higher dimensions (Lemma 5.1. This formula enables us that the weighted esti-
mates for strong maximal operators and the Kakeya maximal operators in the higher
dimensions (Proposition 5.3).

Throughout this paper all the notations are standard or will be defined as needed.
The letter C will be used for constants that may change from one occurrence to
another. Constants with subscripts, such as C1, C2, do not change in different oc-
currences. By A ≈ B we mean that c−1B ≤ A ≤ cB with some positive constant c
independent of appropriate quantities.
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2. General maximal operators and weight classes

By a basis in R
n we mean a collection of open and bounded sets B. For a basis

B we consider associated weights w such that 0 < w(B) < ∞ for every B ∈ B.
Given such a B and w, the corresponding maximal operator MB,w is defined by

MB,wf(x) = sup
B∈B

1B(x)
1

w(B)

ˆ

B

|f(y)|w(y) dy.

If w ≡ 1, we just write MBf(x). Following the notation in [4], we define B(w) = w(B)
|B|

.

Definition 2.1. Let 1 ≤ p < ∞. A weight w belongs to the Muckenhoupt class
Ap,B whenever its Muckenhoupt constant [w]Ap,B

is finite. That is,

[w]Ap,B
= sup

B∈B
B(w)B(w−1/(p−1))p−1 < ∞, 1 < p < ∞,

[w]A1,B
= sup

B∈B

B(w)

ess inf x∈B w(x)
< ∞.

Notice that by Hölder’s inequality, for 1 < p < q < ∞,

1 ≤ [w]Aq,B
≤ [w]Ap,B

< ∞
and hence the inclusion Ap,B ⊂ Aq,B holds. So, for 1 < p < ∞, the Muckenhoupt
classes Ap,B form an increasing chain and thus we define

A∞,B =
⋃

p>1

Ap,B.

Definition 2.2. Let 1 < p ≤ ∞. A weight w belongs to the reverse Hölder class
RH p,B if and only if

[w]RH p,B
= sup

B∈B

B(wp)1/p

B(w)
< ∞, 1 < p < ∞,

[w]RH∞,B
= sup

B∈B

ess sup x∈B w(x)

B(w)
< ∞.

It follows from Hölder’s inequality that, for 1 < p < q < ∞,

1 ≤ [w]RH p,B
≤ [w]RH q,B

< ∞
and hence that the inclusion RH p,B ⊃ RH q,B holds. So, for 1 < p < ∞, the reverse
Hölder classes RH p,B form a decreasing chain and thus we define

RH 1,B =
⋃

p>1

RH p,B.

For the general bases B and associated weights w, very little is known concerning
the boundedness of MB and MB,w on Lp(w). The most important result of one weight
theory for general maximal operators is theorem due to Jawerth [10]. This theorem
was reproved by Lerner [11] with better understanding of the dependency of the
constants.

Theorem 2.3. (Jawerth [10]) Let 1 < p < ∞. For the general bases B and
associated weights w, let σ = w−1/(p−1). Then MB is bounded on Lp(w) and on
Lp′(σ) if and only if w ∈ Ap,B, MB,σ is bounded on Lp(σ) and MB,w is bounded on
Lp′(w).
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The following abstract theorem from [14], which is proved by the use of Theo-
rem 2.3, gives a necessary and sufficient condition for the boundedness of the MB,w,
in terms of the unweighted maximal function MB in the special case w ∈ A∞,B.

Theorem 2.4. (Pérez [14]) The following are equivalent:

(i) For every 1 < p < ∞ and every w ∈ Ap,B, we have

MB : Lp(w) → Lp(w);

(ii) For every 1 < p < ∞ and every w ∈ A∞,B, we have

MB,w : L
p(w) → Lp(w).

Theorem 2.4 and some important examples (cf. [14]) motivate the following def-
inition.

Definition 2.5. A basis B is a Muckenhoupt basis if for every 1 < p < ∞ and
every w ∈ Ap,B, we have

MB : Lp(w) → Lp(w).

With this definition Theorem 2.4 states that B is a Muckenhoupt basis if and
only if the weighted maximal function satisfies MB,w : L

p(w) → Lp(w) for every
1 < p < ∞ and every w ∈ A∞,B.

We are interested in the theory of weights for the Kakeya maximal operators. The
main interest of this theory is to determine the factor N appearing in its operator
norms. From this point of view, Theorem 2.4 is quite abstract and thus it cannot
apply to our situation. Attempting one weighted estimate for the Kakeya maximal
operator MKN

in Wolff’s range (cf. [21]), we found the following theorem concerning
general maximal operators which is our first theorem of this paper.

Theorem 2.6. Let B be a basis and 1 < p, s ≤ ∞. Suppose that w ∈ RH s,B

with [w]RH s,B
= C1, ‖MB‖Lt(Rn) = C2 with t = p − (p− 1)/s > 1. Suppose further

that there exists a constant C3 > 0 such that

(2.1)
∑

j

w(E(Bj))

Bj(w)
≤ C3

∣∣∣∣∣
⋃

j

Bj

∣∣∣∣∣

holds for any countable subfamily {Bj} ⊂ B and any pairwise disjoint subset
E(Bj) ⊂ Bj for varying j. Then we have

‖MB,w‖Lp(w) ≤ 2C
1/p′

1 C
1/(p′s)′

2 C
1/p
3 .

Proof. Let f ∈ Lp(w). For every integer k, we shall consider the set

Sk = {x ∈ R
n : 2k < MB,wf(x) ≤ 2k+1}.

Using a limiting argument, we may assume that Sk are compact sets. From the
definition of MB,w, Sk ⊂

⋃
j Bk,j, where Bk,j ∈ B satisfies

1

w(Bk,j)

ˆ

Bk,j

|f(y)|w(y) dy > 2k.

Define E(Bk,1) = Bk,1 ∩ Sk and, for j > 1,

E(Bk,j) =

(
Bk,j \

⋃

i<j

Bk,i

)
∩ Sk.
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The sets Sk form a disjoint collection and each Sk is the disjoint union of the sets
E(Bk,j) for varying j. Thus,
ˆ

Rn

MB,wf(x)
pw(x) dx =

∑

k,j

ˆ

E(Bk,j)

MB,wf(x)
pw(x) dx ≤

∑

k,j

2(k+1)pw(E(Bk,j))

≤ 2p
∑

k,j

w(E(Bk,j))

(
1

w(Bk,j)

ˆ

Bk,j

|f(y)|w(y) dy
)p

.

Notice that(
1

w(Bk,j)

ˆ

Bk,j

|f(y)|w(y) dy
)p

= Bk,j(w)
−p

(
1

|Bk,j|

ˆ

Bk,j

|f(y)|w(y) dy
)p

and by Hölder’s inequality that
(

1

|Bk,j|

ˆ

Bk,j

|f(y)|w(y) dy
)p

=

(
1

|Bk,j|

ˆ

Bk,j

|f(y)|w(y)1/p · w(y)1/p′ dy
)p

≤
(

1

|Bk,j|

ˆ

Bk,j

|f(y)|p/tw(y)1/t dy
)t(

1

|Bk,j|

ˆ

Bk,j

w(y)s dy

)p/(p′s)

,

where we have used

p

t
=

p

p− (p− 1)/s
=

1

1− 1/(p′s)
=

p′s

p′s− 1
= (p′s)′.

These yield
ˆ

Rn

MB,wf(x)
pw(x) dx

≤ 2p
∑

k,j

w(E(Bk,j))

Bk,j(w)
Bk,j(w)

1−p
(
Bk,j(w

s)1/s
)p−1

(
1

|Bk,j|

ˆ

Bk,j

|f(y)|p/tw(y)1/t dy
)t

≤ 2pCp−1
1

∑

k,j

µk,jgk,j,

where

µk,j =
w(E(Bk,j))

Bk,j(w)
, gk,j =

(
1

|Bk,j|

ˆ

Bk,j

|f(y)|p/tw(y)1/t dy
)t

.

We view the sum
∑

k,j µk,jgk,j as an integral on a measure space (X, µ) built over the

set X = {(k, j)} by assigning to each (k, j) the measure µk,j. For λ > 0 call

Γ(λ) = {(k, j) ∈ X : gk,j > λ}, G(λ) =
⋃

(k,j)∈Γ(λ)

Bk,j.

Then
∑

k,j µk,jgk,j =
´∞

0
µ(Γ(λ)) dλ. Observe that

µ(Γ(λ)) =
∑

(k,j)∈Γ(λ)

w(E(Bk,j))

Bk,j(w)
≤ C3|G(λ)|

and that

G(λ) ⊂ {x ∈ R
n : MB[|f |p/tw1/t](x)t > λ}.
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These entail̂

Rn

MB,wf(x)
pw(x) dx ≤ 2pCp−1

1 C3

ˆ

Rn

MB[|f |p/tw1/t](x)t dx

≤ 2pCp−1
1 C3C

t
2

ˆ

Rn

|f(x)|pw(x) dx.

Consequently,

‖MB,w‖Lp(w) ≤ 2C
1/p′

1 C
1/(p′s)′

2 C
1/p
3 .

This completes the proof. �

The next corollary leads the relations (1.3) and (1.4).

Corollary 2.7. Let B be a basis and 1 < p ≤ ∞. Suppose that the weight w is
in RH∞,B with [w]RH∞,B

= C1 and that ‖MB‖Lp(Rn) = C2. Then we have

‖MB,w‖Lp(w) ≤ 2C1C2.

Proof. Since t = p and (p′s)′ = 1, we merely check the condition (2.1) with
C3 = C1. There holds

∑

j

w(E(Bj))

Bj(w)
≤
∑

j

|E(Bj)|
ess sup x∈Bj

w(x)

Bj(w)
≤ C1

∑

j

|E(Bj)| ≤ C1

∣∣∣∣∣
⋃

j

Bj

∣∣∣∣∣ ,

where we have used that the sets E(Bj) ⊂ Bj are pairwise disjoint. �

Remark 2.8. Let w(x) = w0(|x|), x ∈ R
2, and w0 satisfy (1.1). Then by (1.2)

we see that w belongs to RH∞,KN
. Thus, Corollary 2.7 yields (1.3) and (1.4) together

with well-known unweighted estimates; see [3, 16].

When s = ∞ the sufficient condition (2.1) in Theorem 2.6 can be checked quite
easily. But, when 1 < s < ∞, we cannot say any more. The next theorem (The-
orem 2.10) characterizes the boundedness of MB,w on Lp(w) in terms of a so-called
Tauberian condition.

Definition 2.9. We say that a weight w associated to the basis B satisfies the
Tauberian condition (A) if there are constants 0 < λ < 1, 0 < c = c(λ) < ∞ such
that for all measurable sets E

(A) w({x ∈ R
n : MB(1E)(x) > λ}) ≤ cw(E).

Theorem 2.10. Let B be a basis. Let w ∈ RH s,B, 1 < s ≤ ∞, and w
satisfy the condition (A). Suppose that MB : Lp(Rn) → Lp(Rn) for all p > 1. Then
MB,w : L

p(w) → Lp(w) holds for all p > 1.

Proof. Let f ∈ Lp(w). In the same manner as in the proof of Theorem 2.6, for
every integer k, we consider the set

Sk = {x ∈ R
n : 2k < MB,wf(x) ≤ 2k+1}.

We choose compact sets Kk ⊂ Sk and, for each k, we choose a finite cover {Bk,j} ⊂ B

such that

(2.2) Kk ⊂
⋃

j

Bk,j and
1

w(Bk,j)

ˆ

Bk,j

|f(y)|w(y) dy > 2k.

Now, we have
ˆ

⋃
k Kk

MB,wf(x)
pw(x) dx ≤ 2p

∑

k

2kpw

(⋃

j

Bk,j

)
.
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We claim that then there exists a subfamily {Bk,j} ⊂ {Bk,j} satisfying

(2.3)
∑

k

2kpw

(⋃

j

Bk,j

)
≤ C

∑

k

2kpw

(⋃

j

Bk,j

)

and, for each (k, j), there exists a subset E(Bk,j) ⊂ Bk,j such that

(2.4) (1− λ)|Bk,j| ≤ |E(Bk,j)|
and the sets E(Bk,j) are pairwise disjoint for varying (k, j).

We shall verify this claim. Without loss of generality we may assume that Bk,j =
∅ except for a finite number of (k, j). Let N = max{k : Bk,j 6= ∅}. We follow a
well-known selecting procedure argument (cf. [6, p. 463] for instance).

Step 1. Let BN,1 = BN,1 and, once BN,1, . . . , BN,j−1 have been selected, we
choose BN,j to be the first set in {BN,·} (if any) such that

(2.5)

∣∣∣∣∣BN,j ∩ (
⋃

s<j

BN,s)

∣∣∣∣∣ < λ|BN,j|.

Let EN =
⋃

j BN,j . Now we verify that

(2.6)
⋃

j

BN,j ⊂ {x ∈ R
n : MB[1EN

](x) ≥ λ}.

Let x ∈ ⋃j BN,j. If x ∈ EN , then it is obvious that it is contained on the set to the

right since λ < 1. If x /∈ EN , then x is contained in some discarded B in the selection
process and hence |B ∩ EN | ≥ λ|B|, which means that MB[1EN

](x) ≥ λ. Since w
satisfies the condition (A), (2.6) yields

w

(
⋃

j

BN,j

)
≤ Cw(EN).

If we let E(BN,j) = BN,j \
⋃

s<j BN,s, then we see that, by (2.5), {E(BN,j)} is a

disjoint family with E(BN,j) ⊂ BN,j and (1− λ)|BN,j| < |E(BN,j)|.
Step 2. Let BN−1,1 be the first set in {BN−1,·} such that

|BN−1,1 ∩ EN | < λ|BN−1,1|.
Once BN−1,1, . . . , BN−1,j−1 have been selected, we choose BN−1,j to be the first set
in {BN−1,·} (if any) such that

(2.7)

∣∣∣∣∣BN−1,j ∩ {EN ∪ (
⋃

s<j

BN−1,s)}
∣∣∣∣∣ < λ|BN−1,j|.

Let EN−1 =
⋃

j BN−1,j . By the same observation as the above, we can verify that
⋃

j

BN−1,j ⊂ {x ∈ R
n : MB[1EN−1∪EN

](x) ≥ λ}

and see that

w

(⋃

j

BN−1,j

)
≤ Cw(EN−1 ∪ EN).
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If we let

E(BN−1,j) = BN,j \
{
EN ∪

(⋃

s<j

BN−1,s

)}
,

then we have, by (2.7), {E(BN−1,j)}∪{E(BN,j)} is a disjoint family with E(BN−1,j) ⊂
BN−1,j and (1− λ)|BN−1,j | < |E(BN−1,j)|.

Continuing these steps, We obtain a subfamily {Bk,j} ⊂ {Bk,j} satisfying (2.4)
and

w

(
⋃

j

Bk,j

)
≤ Cw

(
N⋃

ℓ=k

Eℓ

)
,

where
Eℓ =

⋃

j

Bℓ,j.

It follows that

∑

k

2kpw

(
⋃

j

Bk,j

)
≤ C

∑

k

2kpw

(
N⋃

ℓ=k

Eℓ

)
≤ C

∑

k

2kp

(
N∑

ℓ=k

w(Eℓ)

)

= C
∑

k

(
∑

ℓ≤k

2ℓp

)
w(Ek) ≤ C

∑

k

2kpw(Ek)

= C
∑

k

2kpw

(
⋃

j

Bk,j

)
,

which is exactly (2.3).
There holds by (2.2) and (2.3)
ˆ

⋃
k Kk

MB,wf(x)
pw(x) dx ≤ C

∑

k

2kpw(
⋃

j

Bk,j) ≤ C
∑

k

2kpw(
⋃

j

Bk,j)

≤ C
∑

k,j

w(Bk,j)

(
1

w(Bk,j)

ˆ

Bk,j

|f(y)|w(y) dy
)p

.

Recalling t = p− (p− 1)/s,
(

1

w(Bk,j)

ˆ

Bk,j

|f(y)|w(y) dy
)p

≤ C
1

Bk,j(w)

(
1

|Bk,j|

ˆ

Bk,j

|f(y)|p/tw(y)1/t dy
)t

.

Thus, by (2.4),

ˆ

⋃
k Kk

MB,wf(x)
pw(x) dx ≤ C

∑

k,j

|Bk,j|
(

1

|Bk,j|

ˆ

Bk,j

|f(y)|p/tw(y)1/t dy
)t

≤ C
∑

k,j

|E(Bk,j)|
(

1

|Bk,j|

ˆ

Bk,j

|f(y)|p/tw(y)1/t dy
)t

≤ C
∑

k,j

ˆ

E(Bk,j)

MB[|f |p/tw1/t](x)t dx

≤ C

ˆ

Rn

MB[|f |p/tw1/t](x)t dx ≤ C

ˆ

Rn

|f(x)|pw(x) dx,
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where we have used the sets E(Bk,j) are pairwise disjoint. This completes the proof.
�

Remark 2.11. The weighted Tauberian condition for general maximal operators
appears in [10, 13], for instance. It is shown in [8] that the condition (A) is equivalent
to MB : Lp(w) → Lp(w) for sufficient large p provided that B is a homothecy invariant
basis consisting of convex sets.

3. The class RH∞,B

In this section, following [4], we show some properties of RH∞,B weights. Through-
out this section we fix a general basis B. We need some lemmas.

Lemma 3.1. Let 1 < p, s < ∞. A weight w is in Ap,B ∩ RH s,B if and only if
ws is in Aq,B where q = s(p− 1) + 1.

Proof. Suppose that w ∈ Ap,B∩ RH s,B. Then, noticing q−1 = s(p−1), we have

B(ws)B
(
(ws)−1/(q−1)

)q−1
= B(ws)B(w−1/(p−1))s(p−1)

≤ C{B(w)B(w−1/(p−1))p−1}s < ∞,

where we have used B(ws) ≤ CB(w)s.
Suppose, conversely, that ws ∈ Aq,B with q = s(p− 1) + 1. We have then

(3.1) B(ws)B(w−1/(p−1))s(p−1) ≤ C.

Noticing B(w)s ≤ B(ws),

B(w)B(w−1/(p−1))p−1 ≤ {B(ws)B(w−1/(p−1))s(p−1)}1/s ≤ C1/s.

Thus, w ∈ Ap,B. It follows from (3.1) that

B(ws)1/s ≤ CB(w−1/(p−1))1−p ≤ CB(w),

where we have used 1 ≤ B(w)B(w−1/(p−1))p−1. �

Lemma 3.2. Let p ≥ 2. If u ∈ Ap,B and v ∈ Ap′,B, then there exists a constant
C > 0 such that, for every B ∈ B,

(3.2) B(u)1/pB(v)1/p
′ ≤ CB(u1/pv1/p

′

).

Proof. Fix a B ∈ B. Then there is a constant C such that

B(u)B(u1−p′)p−1 ≤ C, B(v)B(v1−p)p
′−1 ≤ C.

Raise the first equation to the power 1/p and the second to the power 1/p′ and
multiply them together. Then after re-arranging terms we get

B(u)1/pB(v)1/p
′ ≤ CB(u1−p′)−1/p′B(v1−p)−1/p.

Since p/p′ = p− 1 and p′/p = p′ − 1, by Hölder’s inequality

B(u−1/pv−1/p′) ≤ B(u1−p′)1/p
′

B(v1−p)1/p.

Therefore, by combining these two inequalities we see that

B(u)1/pB(v)1/p
′ ≤ CB(u−1/pv−1/p′)−1.

By the use of the inequality 1 ≤ B(f)B(f 1−p′)p−1,

B(u−1/pv−1/p′)−1 ≤ B((u−1/pv−1/p′)1−p′)p−1 = B((u1/pv1/p
′

)p
′−1)p−1.



General maximal operators and the reverse Hölder classes 377

Noticing p ≥ 2, by applying Hölder’s inequality the above expression can be bounded
above by B(u1/pv1/p

′

). Therefore (3.2) holds. �

Lemma 3.3. Let 1 < p < ∞. If u ∈ A∞,B ∩ RH p,B and v ∈ A∞,B ∩ RH p′,B,
then there exists a constant C such that, for every B ∈ B,

(3.3) B(up)1/pB(vp
′

)1/p
′ ≤ CB(uv).

Proof. By the inclusion property of the class Ap,B we may assume that

u ∈ Aq1,B, v ∈ Ar1,B with p(r1 − 1) = p′(q1 − 1) = s > 1.

Since u ∈ RH p,B and v ∈ RH p′,B, then, by Lemma 3.1,

up ∈ Aq,B, vp
′ ∈ Ar,B with q = p(q1 − 1) + 1, r = p′(r1 − 1) + 1.

Since q = s(p− 1) and r = s(p′ − 1), by Lemma 3.1 again, this is equivalent to

up/s ∈ Ap,B ∩ RH s,B, vp
′/s ∈ Ap′,B ∩ RH s,B.

This relation and Lemma 3.2 yield

B(up)1/spB(vp
′

)1/sp
′ ≤ CB(up/s)1/pB(vp

′/s)1/p
′ ≤ CB((uv)1/s) ≤ CB(uv)1/s.

If we raise both sides to the power s, we get inequality (3.3). �

Theorem 3.4. If the weight w is in RH∞,B, then wr is in RH∞,B for r ≥ 1. If
the weight w is in A∞,B ∩ RH∞,B, then wr is in RH∞,B for 0 < r < 1.

Proof. Let r ≥ 1. Hölder’s inequality gives, for any B ∈ B and any x ∈ B,

w(x)r ≤ CB(w)r ≤ CB(wr).

Let 0 < r < 1. Assuming w ∈ Aq,B for some large q > 1 we have by Lemma 3.1

wr ∈ Ap,B ∩ RHB,1/r with q =
1

r
(p− 1) + 1 and p > 1.

Thus,
w(x)r ≤ CB(w)r ≤ CB(wr). �

Theorem 3.5. If u and v belong to A∞,B∩ RH∞,B, then uv belongs to RH∞,B.

Proof. Fix a B ∈ B and an x ∈ B. Then

u(x)v(x) ≤ CB(u)B(v) ≤ CB(u2)1/2B(v2)1/2.

Since u and v belong to A∞,B ∩ RH 2,B, by Lemma 3.3, the above expression can be
bounded above by CB(uv). This means that uv ∈ RH∞,B. �

Theorem 3.6. Fix p > 1. If w is in A1,B, then w1−p is in Ap,B ∩ RH∞,B.
Conversely, if w is in Ap,B ∩ RH∞,B, then w1−p′ is in A1,B.

Proof. That w ∈ A1,B implies w ∈ Ap′,B. So, w1−p ∈ Ap,B. It follows for B ∈ B

that
1 ≤ B(w)B(w1−p)1/(p−1) ≤ B(w1−p)1/(p−1) ess inf

x∈B
w(x)

and hence
ess sup

x∈B
w(x)1−p ≤ B(w1−p).

This means that w1−p ∈ Ap,B ∩ RH∞,B. Conversely, if w ∈ Ap,B ∩ RH∞,B, then, for
B ∈ B,

ess sup
x∈B

w(x)B(w1−p′)p−1 ≤ CB(w)B(w1−p′)p−1 ≤ C < ∞.
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This implies

B(w1−p′) ≤ C ess inf
x∈B

w(x)1−p′,

which means that w1−p′ ∈ A1,B. �

Remark 3.7. Suppose that MB : Lp(Rn) → Lp(Rn) for some p > 1. Then, using
the well-known Rubio de Francia algorithm, one can produce many A1,B-weights.
Theorem 3.6 asserts that, if w is in A1,B, then w−1 is in A∞,B ∩ RH∞,B. Hence, we
have many weights belonging to A∞,B ∩ RH∞,B.

4. The classes A∞,B and RH 1,B

In this section we discuss the equivalence between the classes A∞,B and RH 1,B

when the basis B has dyadic substructure with the Stein property. The following
definition expresses the relevant property of a basis needed for our purposes. In the
case when B = D, the usual collection of dyadic cubes in R

n, it was obtained by
Stein in [20].

Definition 4.1. We say that a basis B satisfies the Stein property if and only
if there exists a constant c such that, for any non-negative function f ∈ L1

loc(R
n),

B ∈ B and λ > B(f), we have

(4.1)

ˆ

{x∈B : f(x)>λ}

f(x) dx ≤ cλ|{x ∈ B : MB[f1B](x) > λ}|.

Under the assumption of the Stein property, Lerner and Ombrosi established
the self-improving property of general maximal operators on quasi-Banach function
spaces [12].

Definition 4.2. We say that the basis B has a dyadic substructure if and only
if, for all B ∈ B, there exists a dyadic subset D(B) ⊂ B that satisfies the following:

(1) If Q,R ∈ D(B) then Q ∩ R ∈ {Q,R, ∅};
(2) B ∈ D(B) and B is maximal in D(B) with respect to inclusion.

The family D(B) is referred to as a dyadic basis. We further assume that the basis
D(B) is unique and it is a density basis. That is, for all B ∈ B and any P ∈ D(B),
we have D(P ) = {P ∩Q : Q ∈ D(B)}. The basis D(B) is called a density basis if it
differentiates L∞(B), namely, if for every f ∈ L∞(B) and for almost every x ∈ B,
there exists a sequence {Qk} ⊂ D(B) such that Qk ∋ x and limk→∞Qk(f) = f(x).

Definition 4.3. We say that the basis B has dyadic substructure with the Stein
property if and only if B has dyadic substructure and each basis D(B) satisfies the
Stein property with uniform constant c for varying B ∈ B.

We first verify some lemmas.

Lemma 4.4. Suppose that the basis B has dyadic substructure with the Stein
property. Let f be a non-negative, locally integrable function on R

n and B ∈ B.
Let P,Q ∈ D(B) such that P ⊂ Q. Assume that

P (f) > λ and Q(f) ≤ λ.

Then λ < P (f) ≤ cλ.

Proof. We shall apply the Stein property to Q, g ≡ P (f)1P and λ. This is
justified by the fact that

Q(g) = Q(P (f)1P ) ≤ Q(f) ≤ λ.



General maximal operators and the reverse Hölder classes 379

Thus,
ˆ

P

g dx =

ˆ

{x∈Q : g(x)>λ}

g(x) dx ≤ cλ|{x ∈ Q : MD(Q)g(x) > λ}| = cλ|P |,

where we have used the facts that MD(Q)g(x) = Q(f) ≤ λ, when x ∈ Q \ P , and
MD(Q)g(x) = P (f) > λ, when x ∈ P . This proves P (f) ≤ cλ. �

Lemma 4.5. Suppose that the basis B has dyadic substructure with the Stein
property. Let B ∈ B.

(1) If the weight w is in Ap,D(B), 1 < p < ∞, then there exists a sequence of
weights {wk} ∈ Ap,D(B) ∩ L∞(B) such that limk→∞wk = w a.e.

(2) If the weight w is in RH p,D(B), 1 < p < ∞, then there exists a sequence of
weights {wk} ∈ RH p,D(B) ∩ L∞(B) such that limk→∞wk = w a.e.

Proof. Fix a w ∈ Ap,B. We perform the Calderón–Zygmund decomposition of
w at level k, k ≫ 1, with respect to D(B). Namely, let {Qk,j}j ⊂ D(B) be the
collection of dyadic bases in D(B) which are maximal among the Q ∈ D(B) that
satisfy Q(w) > k. The maximality of Qk,j yields that the sets Qk,j are pairwise
disjoint for varying j and, by Lemma 4.4, that Qk,j(w) ≤ ck. We now let

wk = w1Ek
+
∑

j

Qk,j(w)1Qk,j
,

where Ek = B \⋃j Qk,j. Then wk is in L∞(B), because the basis D(B) is a density
basis, and wk converges to w as k → ∞, because

∑

j

|Qk,j| ≤
w(B)

k
.

To verify wk ∈ Ap,B, we need only observe that

1 ≤ Qk,j(w)Qk,j(w
−1/(p−1))p−1

and hence

Qk,j(w)
−1/(p−1) ≤ Qk,j(w

−1/(p−1)).

When w ∈ RH p,B, we need only also observe that

Qk,j(w)
p ≤ Qk,j(w

p). �

A well known result in the theory of weighted norm inequalities due to Gehring
(cf. [7]) states that if w ∈ RH p,Q, then there exists ε > 0 such that w ∈ RH p+ε,Q.
Here, the symbol Q denotes the collection of all cubes in R

n with sides parallel to
the coordinate axes. We now extend this lemma to the general basis B.

Theorem 4.6. Suppose that the basis B has dyadic substructure with the Stein
property. Then, if w ∈ RH p,B for some 1 < p < ∞, there exists ε > 0 such that
w ∈ RH p+ε,B.

Proof. Fix a w ∈ RH p,B. Given B ∈ B, we shall prove that the inequality
(

1

|B|

ˆ

B

w(x)p(1+δ) dx

)1/(p(1+δ))

≤ CB(w)

holds for some C > 0 and δ > 0 independent of B. By a standard limiting argument
based upon Lemma 4.5, we may assume without loss of generality that w is in L∞(B).
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We now let a = B(wp). It follows from Fubini’s theorem that

1

|B|

ˆ

B

w(x)p(1+δ) dx =
δ

|B|

ˆ ∞

0

wp({x ∈ B : w(x)p > λ})λδ−1 dλ

≤ a1+δ +
δ

|B|

ˆ ∞

a

wp({x ∈ B : w(x)p > λ})λδ−1 dλ.

The Stein property yields

δ

|B|

ˆ ∞

a

wp({x ∈ B : w(x)p > λ})λδ−1 dλ

≤ c
δ

|B|

ˆ ∞

a

|{x ∈ B : MD(B)[w
p
1B](x) > λ}|λδ dλ

≤ c
δ

(1 + δ)|B|

ˆ

B

MD(B)[w
p
1B](x)

1+δ dx.

We notice that

MD(B)[w
p
1B](x) ≤ [w]RH p,B

MD(B)[w1B](x)
p.

Thus,

δ

|B|

ˆ ∞

a

wp({x ∈ B : w(x)p > λ})λδ−1 dλ

≤ Cδ

(1 + δ)|B|

ˆ

B

MD(B)[w1B](x)
p(1+δ) dx

≤ Cδ

1 + δ
‖MD(B)‖p(1+δ)

Lp(1+δ)(Rn)

1

|B|

ˆ

B

w(x)p(1+δ) dx.

By using an elementary fact

lim
δ→+0

‖MD(B)‖p(1+δ)

Lp(1+δ)(Rn)
= (p′)p,

we can select δ > 0 so that

Cδ

1 + δ
‖MD(B)‖p(1+δ)

Lp(1+δ)(Rn)
=

1

2
.

Hence, notice that the integral is finite, since w is in L∞(B) and B is a bounded set,

1

|B|

ˆ

B

w(x)p(1+δ) dx ≤ 2a1+δ ≤ 2(CB(w))p(1+δ),

which is our desired inequality. �

The next theorem (Theorem 4.8) states that A∞,B ⊂ RH 1,B. To prove the
theorem, we need the following lemma, which is well-known, but, for the reader’s
convenience, we will quote the proof from the lecture notes of Hytönen “Weighted
norm inequalities”, since now we are not able to get this from his website.

Lemma 4.7. Let D be a countable collection of measurable subsets of Rn with
the property that

∀Q,R ∈ D : Q ∩R ∈ {Q,R, ∅}.
Let µ be a positive measure on R

n and f be a locally µ-integrable function on R
n.

Define the maximal operator M0
D,µ by

M0
D,µf(x) = sup

Q∈D
1Q(x) exp

(
1

µ(Q)

ˆ

Q

log |f | dµ
)
.
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Then, for all p ∈ (0,∞],

‖M0
D,µf‖Lp(µ) ≤ e1/p‖f‖Lp(µ).

Proof. Define the maximal operator MD,µ by

MD,µf(x) = sup
Q∈D

1Q(x)
1

µ(Q)

ˆ

Q

|f | dµ.

By Jensen’s inequality and the basic properties of the logarithm, we have

M0
D,µf ≤ MD,µf, (M0

D,µf)
p = (M0

D,µ[|f |p/q])q ≤ (MD,µ[|f |p/q])q, q ∈ (0,∞).

By the Lq(µ) boundedness of MD,µ for q > 1, we have
ˆ

Rn

(M0
D,µf)

p dµ ≤
ˆ

Rn

(MD,µ[|f |p/q])q dµ ≤ (q′)q
ˆ

Rn

(|f |p/q)q dµ = (q′)q
ˆ

Rn

|f |p dµ.

As q → ∞, we have (q′)q → e, and hence

‖M0
D,µf‖pLp(µ) ≤ e‖f‖pLp(µ) for p ∈ (0,∞).

It is trivial for the case p = ∞. �

Theorem 4.8. Suppose that the basis B has a dyadic substructure with the
Stein property. Then, if w ∈ A∞,B, there exists ε > 0 such that w ∈ RH 1+ε,B.

Proof. Fix a w ∈ A∞,B, that is, fix w ∈ Ap,B for some large p. Given B ∈ B, we
shall prove that the inequality

(
1

|B|

ˆ

B

w(x)1+δ dx

)1/(1+δ)

≤ CB(w)

holds for some C > 0 and δ > 0 independent of B. In the same manner as above we
may assume that w is in L∞(B).

We now let a = B(w). It follows from Fubini’s theorem that

1

|B|

ˆ

B

w(x)1+δ dx =
δ

|B|

ˆ ∞

0

w({x ∈ B : w(x) > λ})λδ−1 dλ

≤ a1+δ +
δ

|B|

ˆ ∞

a

w({x ∈ B : w(x) > λ})λδ−1 dλ.

By the Stein property

δ

|B|

ˆ ∞

a

w({x ∈ B : w(x) > λ})λδ−1 dλ

≤ c
δ

|B|

ˆ ∞

a

|{x ∈ B : MD(B)[w1B](x) > λ}|λδ dλ

≤ c
δ

(1 + δ)|B|

ˆ

B

MD(B)[w1B](x)
1+δ dx.

We notice that,
MD(B)[w1B](x) ≤ [w]Ap,B

M0
D(B),dx[w1B](x).

Thus, by Lemma 4.7,

δ

|B|

ˆ ∞

a

w({x ∈ B : w(x) > λ})λδ−1 dλ

≤ C
δ

(1 + δ)|B|

ˆ

B

M0
D(B),dx[w1B](x)

1+δ dx ≤ Ceδ

1 + δ

1

|B|

ˆ

B

w(x)1+δ dx.
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We select δ > 0 so that
Ceδ

1 + δ
=

1

2
.

Hence,
1

|B|

ˆ

B

w(x)1+δ dx ≤ 2a1+δ = 2B(w)1+δ,

which is our desired inequality. �

To verify the converse relation RH 1,B ⊂ A∞,B, we must assume that w satisfies
the following assumption.

Assumption 4.9. Let w be a weight. Suppose that B has a dyadic substructure.
There exists a uniform constant c for varying B ∈ B such that

(4.2)

ˆ

{x∈B : f(x)>λ}

f(x)w(x) dx ≤ cλw({x ∈ B : MD(B),w[f1B](x) > λ})

holds for any non-negative function f ∈ L1
loc(wdx), B ∈ B and λ > w(B)−1

´

B
f wdx.

Theorem 4.10. Suppose that w satisfies Assumption 4.9. Then, if w ∈ RH s,B

for some 1 < s < ∞, there exists p > 1 such that w ∈ Ap,B.

Proof. If w ∈ RH s,B, then for any B ∈ B

B(ws)1/s ≤ [w]RH s,B
B(w).

This implies that
(

1

w(B)

ˆ

B

w(x)−1w(x) dx

)(
1

w(B)

ˆ

B

(w(x)−1)1−sw(x) dx

)s′−1

≤ [w]s
′

RH s,B
,

which means that
w−1 ∈ Aw

s′,B,

where the class Aw
s′,B is defined by the Muckenhoupt class replacing the Lebesgue

measure dx by wdx. Thanks to Assumption 4.9 and Lemma 4.7, the same manipu-
lation as in the proof of Theorem 4.8 gives us that the inequality

(
1

w(B)

ˆ

B

(w(x)−1)1+εw(x) dx

)1/(1+ε)

≤ C
|B|
w(B)

holds for some C > 0 and ε > 0 independent of B. A calculation shows that
(
w(B)

|B|

)ε/(1+ε)(
1

|B|

ˆ

B

w(x)−ε dx

)1/(1+ε)

≤ C

and that
B(w)B(w−ε)1/ε ≤ C(1+ε)/ε,

which means w ∈ Ap,B with 1/(p− 1) = ε. �

In the remainder of this section we discuss an equivalent way of defining the
reverse Hölder class RH 1,B (Theorem 4.12) following the papers [9] and [15].

Definition 4.11. A function Φ: [0,∞) → [0,∞] is said to be a Young function
if it is left-continuous, convex and increasing, and if Φ(0) = 0 and Φ(t) → ∞ as
t → ∞. Given a Young function Φ, define the mean Luxemburg norm of f on a finite
set B ⊂ R

n by

‖f‖Φ,B = inf

{
λ > 0:

1

|B|

ˆ

B

Φ

( |f(x)|
λ

)
dx ≤ 1

}
.
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If Φ(t) = t log(e+ t), we write the mean Luxemburg norm as ‖f‖LlogL,B.

Theorem 4.12. Suppose that the basis B has a dyadic substructure with the
Stein property. Then w is in RH 1,B if and only if

(4.3) [w]RH 1,B
= sup

B∈B

‖w‖LlogL,B
B(w)

< ∞.

Before proving Theorem 4.12, we show two equivalent quantities to the quantity
[w]1,B.

Proposition 4.13. The following two quantities are equivalent to the quantity
[w]1,B:

(4.4) [w]′RH 1,B
= sup

B∈B

1

w(B)

ˆ

B

w(x) log

(
e+

w(x)

B(w)

)
dx

and

(4.5) [w]′′RH 1,B
= sup

B∈B

1

w(B)

ˆ

B

MD(B)w(x) dx.

The quantity [w]′′RH 1,B
is known as Fujii–Wilson constant; see [9].

Proof of Proposition 4.13. If [w]′RH 1,B
= C2 < ∞, then we have

1

|B|

ˆ

B

w(x)

B(w)
log

(
e+

w(x)

B(w)

)
dx =

1

w(B)

ˆ

B

w(x) log

(
e +

w(x)

B(w)

)
dx < C2.

We notice that, for any Young function Φ, Φ(θt) ≤ θΦ(t) holds for all 0 < θ < 1.
This fact and C2 > 1 imply

1

|B|

ˆ

B

w(x)

C2B(w)
log

(
e+

w(x)

C2B(w)

)
dx ≤ 1

and, by the definition of the mean Luxemburg norm,

‖w‖LlogL,B ≤ C2B(w),

which means that [w]RH 1,B
≤ C2.

If [w]RH 1,B
= C1 < ∞, then we have

‖w‖LlogL,B ≤ C1B(w).

By the definition of the mean Luxemburg norm, we see that

1

|B|

ˆ

B

w(x)

C1B(w)
log

(
e+

w(x)

C1B(w)

)
dx ≤ 1.

Noticing that C1 > 1 and

1

C1

(
e +

w(x)

B(w)

)
≤
(
e +

w(x)

C1B(w)

)
,

we have

1 ≥ 1

wB)

ˆ

B

w(x)

C1
log

(
e+

w(x)

B(w)

)
dx− logC1

C1

and
1

wB)

ˆ

B

w(x) log

(
e+

w(x)

B(w)

)
dx ≤ 2C1,

which means that [w]′RH 1,B
≤ 2C1.
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The equivalence of the second and third quantities holds from the following
lemma.

Lemma 4.14. Suppose that the basis B has a dyadic substructure with the
Stein property. Then, for any B ∈ B and any measurable function w, we have

1

1 + c

ˆ

B

w(x) log

(
e+

w(x)

B(w)

)
dx ≤

ˆ

B

MD(B)[w1B](x) dx

≤ 10

ˆ

B

w(x) log

(
e+

w(x)

B(w)

)
dx.

(4.6)

Proof. Fix a B ∈ B. By homogeneity, we may assume that B(w) = 1. It follows
from Fubini’s theorem that
ˆ

B

w log(e + w) dx =

ˆ ∞

0

w({x ∈ B : w(x) > λ}) dλ

e+ λ
=

ˆ 1

0

· · ·+
ˆ ∞

1

· · · = I + II.

There holds

I ≤ w(B) ≤
ˆ

B

MD(B)[w1B] dx,

because D(B) is a density basis, and by the Stein property

II =

ˆ ∞

1

w({x ∈ B : w(x) > λ}) dλ

e+ λ

≤ c

ˆ ∞

1

|{x ∈ B : MD(B)[w1B](x) > λ}| λ

e+ λ
dλ

≤ c

ˆ ∞

0

|{x ∈ B : MD(B)[w1B](x) > λ}| dλ = c

ˆ

B

MD(B)[w1B](x) dx.

This gives the first inequality in (4.6). For the second inequality, we invoke the
elementary inequality

(4.7) |{x ∈ B : MD(B)[w1B](x) > λ}| ≤ 2

λ
w({x ∈ B : w(x) > λ/2}), λ > 0.

This implies
ˆ ∞

2

|{x ∈ B : MD(B)[w1B](x) > λ}| dλ ≤ 2

ˆ ∞

2

w({x ∈ B : w(x) > λ/2}) dλ
λ

= 2

ˆ ∞

1

w({x ∈ B : w(x) > λ}) dλ
λ

≤ 8

ˆ ∞

1

w({x ∈ B : w(x) > λ}) dλ

e+ λ

≤ 8

ˆ

B

w log(e + w) dx.

Noticing
ˆ 2

0

|{x ∈ B : MD(B)[w1B](x) > λ}| dλ ≤ 2|B| = 2w(B) ≤ 2

ˆ

B

w log(e + w) dx,

we obtain the second inequality in (4.6). �

To prove Theorem 4.12, we need one more lemma.
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Lemma 4.15. Let [w]′RH 1,B
= C2 < ∞ and B ∈ B. Then for any measurable

subset S ⊂ B and λ > 0, we have

(4.8)
|S|
|B| < e−λ implies

w(S)

w(B)
≤ 2C2

λ
+ e−λ/2.

Proof. Let

Eλ = {x ∈ B : w(x) > eλB(w)}.
Then

w(Eλ) ≤
1

λ

ˆ

B

w(x) log

(
e +

w(x)

B(w)

)
dx ≤ C2

λ
w(B)

by (4.4). Therefore,

w(S) = w(S ∩ Eλ/2) + w(S \ Eλ/2) ≤
2C2

λ
w(B) + eλ/2B(w)|S|

≤ 2C2

λ
w(B) + eλ/2e−λw(B) by the hypothesis in (4.8)

=
2C2

λ
w(B) + e−λ/2w(B).

This proves (4.8). �

Remark 4.16. If λ is sufficiently large, then we obtain α = e−λ < 1 and β =
2C2

λ
+ e−λ/2 < 1. Thus, by (4.8)

(4.9)
|S|
|B| < α implies

w(S)

w(B)
≤ β.

Proof of Theorem 4.12. Fix a w ∈ RH p,B for some 1 < p < ∞. The fact that
t log(e + t) ≤ (1 + e)tp, t > 1, implies that

[w]RH 1,B
≤ (1 + e)[w]RH p,B

< ∞.

We shall prove the converse. We follow the interesting argument in [15, p.18 proof
of Theorem 5.4]. Let [w]′RH 1,B

= C2 < ∞. We have to prove that, given B ∈ B, the
inequality

(
1

|B|

ˆ

B

w(x)1+δ dx

)1/(1+δ)

≤ CB(w)

holds for some C > 0 and δ > 0 independent of B. Observe that by homogeneity we
can assume that B(w) = 1. In the same manner as in the proof of Lemma 4.5 based
upon (4.5), we may assume without loss of generality that w is in L∞(B).

Set a > 1 so that c
a
= α, where c is the constant appearing in the definition of

the Stein property and α is the constant in Remark 4.16. It follows that
ˆ

B

w(x)1+δ dx ≤
ˆ

B

MD(B)[w1B](x)
δw(x) dx

= δ

ˆ ∞

0

w({x ∈ B : MD(B)[w1B](x) > λ})λδ−1 dλ

≤ w(B) + δ
∞∑

k=0

ˆ ck+1

ck
w({x ∈ B : MD(B)[w1B](x) > λ})λδ−1 dλ
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≤ |B|+ δcδ
∞∑

k=0

ˆ ak+1

ak
w({x ∈ B : MD(B)[w1B](x) > ak})akλ dλ

λ

= |B|+ δaδ log a

∞∑

k=0

akλw(Ωk),

where

Ωk = {x ∈ B : MD(B)[w1B](x) > ak}.
Noticing ak > 1 = B(w), we can apply the Calderón–Zygmund decomposition of w at
level ak to obtain a family of maximal non-overlapping dyadic bases {Qk,j}j ⊂ D(B)
for which Ωk =

⋃
j Qk,j and

(4.10) ak < Qk,j(w) ≤ cak,

where we have used Lemma 4.4. Now,
∞∑

k=0

akδw(Ωk) =
∑

k,j

akδw(Qk,j) ≤
∑

k,j

Qk,j(w)
δw(Qk,j).

Let Ek,j = Qk,j\Ωk+1 and Fk,j = Qk,j∩Ωk+1. Of course, we have |Qk,j| = |Ek,j|+|Fk,j|.
There holds by (4.10) that

|Fk,j| =
∑

Qk+1,i⊂Qk,j

|Qk+1,i| ≤
1

ak+1

∑

Qk+1,i⊂Qk,j

w(Qk+1,i)

≤ 1

ak+1
w(Qk,j) ≤

cak

ak+1
|Qk,j| =

c

a
|Qk,j| = α|Qk,j|.

This implies by (4.9)
w(Fk,j)

w(Qk,j)
≤ β

and hence

(1− β)w(Qk,j) ≤ w(Ek,j).

We also notice that the sets Ek,j are pairwise disjoint. Thus,

∑

k,j

Qk,j(w)
δw(Qk,j) ≤

1

1− β

∑

k,j

Qk,j(w)
δw(Ek,j)

≤ 1

1− β

∑

k,j

ˆ

Ek,j

MD(B)[w1B](x)
δw(x) dx

=
1

1− β

ˆ

B

MD(B)[w1B](x)
δw(x) dx.

Choosing δ so that
δaδ log a

1− β
=

1

2
,

we obtain
ˆ

B

w(x)1+δ dx ≤ 2|B|,

which is our desired inequality. �
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5. Volume formula

In this section we extend the nice formula (1.2) to higher dimensions. Throughout
this section we always assume that the weight w is a radial weight: w(x) = w0(|x|),
x ∈ R

n, for some non-negative function w0 on the half interval [0,∞). We suppose
further that w0 satisfies the supremum condition (1.1). When w0 satisfies (1.1), it is
not difficult to deduce that w0 has the doubling condition:

(5.1)

ˆ r2

r1

w0(r) dr ≤ C

ˆ r′2

r′1

w0(r) dr

for all 0 ≤ r1 ≤ r′1 ≤ r′2 ≤ r2 < ∞ with r2 − r1 = 2(r′2 − r′1). For an A ⊂ R
n we set

r1(A) = inf
x∈A

|x|, r2(A) = sup
x∈A

|x| and rad (A) = r2(A)− r1(A).

Let R be the family of all rectangles in R
n, n ≥ 2, with sides parallel to the coordinate

axes.

Lemma 5.1. Let R ∈ R be any rectangle. Then

w(R)

|R| ≈ 1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr.

Proof. Passing to polar coordinates, we observe that

w(R) =

ˆ r2(R)

r1(R)

σ(Sr ∩ R)w0(r) dr,

where Sr is sphere of radius r and centered at the origin and σ is its surface measure.
Since w0 satisfies the supremum condition (1.1), we get

w(R) ≤ sup
r1(R)<r<r2(R)

w0(r)

ˆ r2(R)

r1(R)

σ(R ∩ Sr) dr ≤ C
1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr · |R|.

Thus, we shall prove the converse:

w(R) ≥ C
1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr · |R|.

Because of the rotation invariance and the symmetry of the problem, we may
assume that the rectangle R is of the form

R =
n∏

i=1

(ai, bi), 0 < ai < bi < b1 < ∞.

For j = 2, . . . , n, set Rj = (a1, b1)× (aj, bj). We now observe that

rad (R) =
√
b21 + b22 + · · ·+ b2n −

√
a21 + a22 + · · ·+ a2n

=
(b21 + b22 + · · ·+ b2n)− (a21 + a22 + · · ·+ a2n)√
b21 + b22 + · · ·+ b2n +

√
a21 + a22 + · · ·+ a2n

≤
n∑

j=2

(b21 + b2j )− (a21 + a2j )√
b21 + b2j +

√
a21 + a2j

=

n∑

j=2

(√
b21 + b2j −

√
a21 + a2j

)
=

n∑

j=2

rad (Rj).
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By this observation, we may further assume that

(5.2) rad (R) ≤ (n− 1) rad (R2).

We now verify that

(5.3) rad (R2) ≤ 2
√
n rad (R).

Indeed,

rad (R) =
√

b21 + b22 + · · ·+ b2n −
√
a21 + a22 + · · ·+ a2n

≥
√

(b21 + b22) + (b23 + · · ·+ b2n)−
√

(a21 + a22) + (b23 + · · ·+ b2n)

=
(b21 + b22)− (a21 + a22)√

(b21 + b22) + (b23 + · · ·+ b2n) +
√
(a21 + a22) + (b23 + · · ·+ b2n)

≥ (b21 + b22)− (a21 + a22)

2
√
nb1

≥ 1

2
√
n

(b21 + b22)− (a21 + a22)√
b21 + b22 +

√
a21 + a22

=
1

2
√
n

(√
b21 + b22 −

√
a21 + a22

)
=

rad (R2)

2
√
n

.

Let R =
∏n

i=3(ai, bi). It follows by Fubini’s theorem that

w(R) =

ˆ

R

(
ˆ

R2

w0((x
2
1 + x2

2 + x2
3 + · · ·+ x2

n)
1/2) dx1dx2

)
dx3 · · · dxn.

Fix x ∈ R and let h = |x|. We shall estimate

I ≡
ˆ

R2

w0((x
2
1 + x2

2 + h2)1/2) dx1dx2.

In [18], it is shown that there exists a set A ⊂ R2 such that

(5.4) rad (R2) ≤ 8 rad (A)

and

(5.5) rad (A) inf
r1(A)<r<r2(A)

arc (A ∩ Cr) ≥
|R2|
32

,

where Cr is the circle of radius r and centered at the origin and arc (A ∩ Cr) is the
arc length of the arc A ∩ Cr. Moreover, it is also shown that

(5.6) r2(A) = max

(√
b21 + a22,

√
a21 + b22

)
.

The inequality (5.5) yields

I =

ˆ r2(R2)

r1(R2)

w0((r
2 + h2)1/2) arc (R2 ∩ Cr) dr

≥
ˆ r2(A)

r1(A)

w0((r
2 + h2)1/2) arc (A ∩ Cr) dr

≥ rad (A) inf
r1(A)<r<r2(A)

arc (A ∩ Cr) ·
1

rad (A)

ˆ r2(A)

r1(A)

w0((r
2 + h2)1/2) dr

≥ 1

rad (A)

ˆ r2(A)

r1(A)

w0((r
2 + h2)1/2) dr · |R2|

32
.
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There holds by (5.3)

(5.7) rad (A) ≤ rad (R2) ≤ 2
√
n rad (R).

Using the change of variables t = (r2 + h2)1/2, we have

ˆ r2(A)

r1(A)

w0((r
2 + h2)1/2) dr =

ˆ (r2(A)2+h2)1/2

(r1(A)2+h2)1/2
w0(t)

t√
t2 − h2

dt

≥
ˆ (r2(A)2+h2)1/2

(r1(A)2+h2)1/2
w0(t) dt.

It follows that

(5.8) rad (A) ≤ 2
√
n
(√

r2(A)2 + h2 −
√
r1(A)2 + h2

)
.

Indeed,

√
r2(A)2 + h2 −

√
r1(A)2 + h2 =

r2(A)
2 − r1(A)

2

√
r2(A)2 + h2 +

√
r1(A)2 + h2

≥ r2(A)
2 − r1(A)

2

2
√
nb1

≥ r2(A)
2 − r1(A)

2

2
√
n
√
b21 + a22

≥ 1

2
√
n

r2(A)
2 − r1(A)

2

r2(A) + r1(A)
=

r2(A)− r1(A)

2
√
n

=
rad (A)

2
√
n

by (5.6),

where we have used (5.6). By the inequalities (5.2), (5.4) and (5.8), we see that there
exists a open interval (a, b) ⊂ ((r1(A)

2 + h2)1/2, (r2(A)
2 + h2)1/2) ⊂ (r1(R), r2(R))

such that

rad (R) = 16(n− 1)
√
n(b− a).

This yields, thanks to the doubling condition 5.1,

(5.9)

ˆ (r2(A)2+h2)1/2

(r1(A)2+h2)1/2
w0(r) dr ≥

ˆ b

a

w0(r) dr ≥ C

ˆ r2(R)

r1(R)

w0(r) dr.

Thus, by (5.7) and (5.9),

I ≥ C
1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr · |R2|.

Integrating both sides of this inequality over R, we obtain

w(R) ≥ C
1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr · |R|,

which completes the proof. �

Fix N ≫ 1. Let KN be the family of all tubes in R
n, n ≥ 2, with eccentricity

N (the ratio of the length of long-sides and short-sides is equal to N). Lemma 5.1
yields the following.

Theorem 5.2. Suppose that w0 : [0,∞) → [0,∞) satisfies (1.1). Let w(x) =
w0(|x|), x ∈ R

n, be a radial weight. Then the weight w belongs to the reverse Hölder
class RH∞,R and the reverse Hölder class RH∞,KN

.
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Proof. Lemma 5.1 and (1.1) imply, for any R ∈ R,

R(w) =
w(R)

|R| ≥ C
1

rad (R)

ˆ r2(R)

r1(R)

w0(r) dr ≥ C sup
r1(R)<r<r2(R)

w0(r) = C ess sup
x∈R

w(x),

which means that w belongs to RH∞,R. For the case T ∈ KN , let L be the axis of
the tube T and let Π be the plane which contains the origin and L. Rotating Π to
the plane (x1, x2) and applying another rotation in the plane (x1, x2), we may assume
that T is of the form

T = (a1, b1)× (a2, b2)× (−c/2, c/2)n−2,

where 0 < a1 < b1, 0 < a2 < b2, b1 − a1 = Nc, b2 − a2 = c and c > 0. This
observation, Lemma 5.1 and (1.1) yield that w belongs to RH∞,KN

. �

It is well-known that the strong maximal operator MR is bounded on Lp(Rn) for
p > 1; see for example [6, p. 452]. It is also known that the Kakeya maximal operator
MKN

satisfies for 1 < p ≤ (n+2)/2 (see [22, Theorem 1] and, for the log-factors, [21,
Theorem 1]. The result of [21] is based on the argument in [19].)

‖MKN
‖Lp(Rn) ≤ CNn/p−1(logN)αn .

These facts, Corollary 2.7 and Theorem 5.2 yield the following.

Proposition 5.3. Suppose that w0 : [0,∞) → [0,∞) satisfies (1.1). Let w(x) =
w0(|x|), x ∈ R

n, be a radial weight. Then,

(a) for 1 < p ≤ ∞,
‖MR,wf‖Lp(w) ≤ C‖f‖Lp(w).

(b) for 1 < p ≤ (n+ 2)/2,

‖MKN ,wf‖Lp(Rn,w) ≤ CNn/p−1(logN)αn‖f‖Lp(Rn,w),

where the constants C and αn are independent of N .

References

[1] Alfonseca, A., F. Soria, and A. Vargas: A remark on maximal operators along directions
in R

2. - Math. Res. Lett. 10:1, 2003, 41–49.

[2] Alfonseca, A., F. Soria, and A. Vargas: An almost-orthogonality principle in L2 for
directional maximal functions. - In: Harmonic analysis at Mount Holyoke (South Hadley, MA,
2001), Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003, 1–7.

[3] Córdoba, A.: The Kakeya maximal function and the spherical summation multiplier. - Amer.
J. Math. 99:1, 1977, 1–22.

[4] Cruz-Uribe, D., and C. J. Neugebauer: The structure of the reverse Hölder classes. - Trans.
Amer. Math. Soc. 347:8, 1995, 2941–2960.

[5] Duoandikoetxea, J., F. J. Martín-Reyes, and S. Ombrosi: On the A∞ conditions for
general bases. - Math. Z. 282, 2016, 955–972.

[6] Garcia-Cuerva, J., and J. L. Rubio de Francia: Weighted norm inequalities and related
topics. - Math. Stud. 116, North-Holland, 1985).

[7] Gehring, F.W.: The Lp integrability of partial derivatives of a quasiconformal mapping. -
Acta Math. 130, 1973, 265–277.

[8] Hagelstein, P., T. Luque, and I. Parissis: Tauberian conditions, Muckenhoupt weights,
and differentiation properties of weighted bases. - Trans. Amer. Math. Soc. 367:11, 2015, 7999–
8032.

[9] Hytönen, T., and C. Pérez: Sharp weighted bounds involving A∞. - Anal. PDE 6:4, 2013,
777–818.



General maximal operators and the reverse Hölder classes 391

[10] Jawerth, B.: Weighted inequalities for maximal operators: linearization, localization and
factorization. - Amer. J. Math. 108:2, 1986, 361–414.

[11] Lerner, A.K.: An elementary approach to several results on the Hardy-Littlewood maximal
operator. - Proc. Amer. Math. Soc. 136:8, 2008, 2829–2833.

[12] Lerner, A.K., and S. Ombrosi: A boundedness criterion for general maximal operators. -
Publ. Mat. 54:1, 2010, 53–71.

[13] Pérez, C.: A remark on weighted inequalities for general maximal operators. Proc. Amer.
Math. Soc. 119:4, 1993, 1121–1126.

[14] Pérez, C.: Weighted norm inequalities for general maximal operators. - In: Conference on
Mathematical Analysis (El Escorial, 1989), Publ. Mat. 35:1, 1991, 169–186.

[15] Pérez, C.: The theory of Ap weights: a modern introduction. - Preprint.

[16] Strömberg, J.O.: Maximal functions associated to rectangles with uniformly distributed
directions. - Ann. of Math. (2) 107:2, 1978, 399–402.

[17] Saito, H., and Y. Sawano: A note on the Kakeya maximal operator and radial weights on
the plane. - Tôhoku Math. J. (to appear).

[18] Saito, H., and H. Tanaka: Directional maximal operators and radial weights on the plane.
- Bull. Austral. Math. Soc. 89:2, 2014, 397–414.

[19] Sogge, C.: Concerning Nikodym-type sets in 3-dimensional curved spaces. - J. Amer. Math.
Soc. 12:1, 1999, 1–31.

[20] Stein, E.M.: Note on the class L logL. - Studia Math. 32, 1969, 305–310.

[21] Tanaka, H.: The Fefferman–Stein type inequality for the Kakeya maximal operator in Wolff’s
range. - Proc. Amer. Math. Soc. 133:3, 2005, 763–772.

[22] Wolff, T.: - An improved bound for Kakeya type maximal functions. - Rev. Mat. Iberoam.
11:3, 1995, 651–674.

Received 2 November 2015 • Accepted 2 September 2016


