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Abstract. We observe that upper densities and spherical Federer densities may differ on all

two dimensional surfaces of the sub-Riemannian Heisenberg group. This provides an entire class of

intrinsic rectifiable sets having upper density strictly less than one.

1. Introduction

Area formulae in homogeneous groups are part of the wider project to develop
Geometric Measure Theory in a non-Euclidean framework. Here a basic difficulty
is the possible difference between Hausdorff dimension and topological dimension
of smooth submanifolds. It turns out that such submanifolds cannot be rectifiable,
according to the metric notion of rectifiability, [6]. This problem already appears in
the Heisenberg group, which is the simplest noncommutative homogeneous group,
see for instance [24].

Measure theoretic area formulae are the key tool to overcome the lack of Lipschitz
parametrizations. If Sα is the α-dimensional spherical measure, A ⊂ X is a Borel set
of a metric space X, Sα(A) < +∞ and µxA is absolutely continuous with respect
to SαxA, then the following integration formula holds

(1) µ(B) =

ˆ

B

θα(µ, x) dSα(x)

for each Borel set B ⊂ A, where µ is a Borel regular measure on X. The previous
formula also requires that X is the countable union of open sets having µ finite
measure, that for instance (0,+∞) ∋ r → diam(B(x, r)) is continuous for all x ∈ X
and all metric balls with positive radius have positive diameter, see [16, Theorem 11].
The point is the explicit formula of the spherical Federer α-density θα(µ, ·), namely,

(2) θα(µ, x) = inf
ε>0

sup

{

µ(B)

cαdiam(B)α
: x ∈ B, B is a closed ball, diam(B) < ε

}

,

where cα > 0 can be arbitrarily fixed. This formula suggests that θα(µ, x) can be
seen as a kind of “non-centered upper density”, that may differ from the standard
upper α-density

Θ∗α(µ, x) = lim sup
r→0+

µ
(

B(x, r)
)

cα(2r)α
.

We refer to 2.10.19 of [6] for more information on upper and lower α-densities in
metric spaces. When they coincide, their common value is the α-density, denoted by
Θα(µ, ·).
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In the important case of rectifiable measures, where E ⊂ R
n is k-rectifiable, Hk

|·|
is the Euclidean Hausdorff measure and setting µ = Hk

|·|xE, we have

(3) Θk(Hk
|·|xE, ·) = θk(Hk

|·|xE, ·) = 1

Hk
|·| a.e. in E, see for instance 3.2.19 of [6]. This implication holds for more general

rectifiable sets in metric spaces, [11, Theorem 9]. Conversely, in Euclidean space
it is well known that the validity of (3) a.e. implies the k-rectifiability of E, [18,
Theorem 2.1]. Moreover, only the existence of the k-density a.e. implies the same
k-rectifiability, [21]. A recent account on densities and rectifiability in the Euclidean
space can be found in [4].

Natural notions of “intrinsic rectifiability” in Heisenberg groups and general
stratified groups have also been studied, playing an analogous role to the classi-
cal rectifiability, [7, 8, 15]. Thus, we may ask to what extent we can expect to find
deep relationships between rectifiability and densities in these groups.

A first promising result is by Mattila, Serapioni and Serra Cassano, who charac-
terize the intrinsic rectifiability in Heisenberg groups by the a.e. existence of suitable
tangent subgroups of fixed dimension, [19]. More recently, the Marstrand’s density
theorem in Heisenberg groups have been proved by Chousionis and Tyson, [3].

We focus our attention on one codimensional intrinsic rectifiable sets of the first
Heisenberg group H, which are called H-rectifiable sets, see Definition 2.4. H-
rectifiable sets may be far from being C1 smooth and form a strictly larger class
of C1 smooth surfaces, [1], [12]. Our question is the following: is it reasonable to
expect (3) to persist also when E is H-rectifiable? The following theorem answers
the above question, when the sub-Riemannian distance ρ, in short SR distance, is
fixed in H.

Theorem 1.1. There exists a geometric constant 0 < γρ < 1, only depending on

ρ, such that for each S3

ρ -measurable and H-rectifiable set Σ ⊂ H with S3

ρ(Σ) < +∞,

we have

(4) Θ∗3(H3

ρxΣ, x) ≤ Θ3(S3

ρxΣ, x) = γρ

for S3

ρ -a.e. x ∈ Σ, where H3

ρ is the Hausdorff measure constructed by ρ.

Let us point out that the inequality in (4) is a simple consequence of the existence
of Θ3(S3

ρxΣ, x). Theorem 1.1 is strictly related to the shape of the metric unit ball
Bρ, see (7). In fact, the geometric constant γρ is a quotient between the areas of
two suitable slices of Bρ, according to (9), (10) and (18). Let us point out that the
densities in (4) are independent of the constant c3 of (9), that is used for both their
definition and for the construction of the measures H3

ρ and S3

ρ .
The estimate (4) shows that the SR distance is not suitable to develop analogues

of the classical rectifiability theorems. On the other hand, a few intriguing ques-
tions are now in order. If we choose a different homogeneous distance d of H, see
Definition 2.2, what can we say about the existence of the density Θ3(H3

dxΣ, ·) and
its value? It is also unclear whether the upper density Θ∗3(H3

dxΣ, ·) is either one
or strictly less than one H3

d-a.e. in Σ. The proof of Theorem 1.1 follows from the
fact that the 3-density for the spherical measure S3

ρxΣ actually S3

ρ -a.e. exists and
it is equal to γρ. This is a consequence of the a.e. blow-up of the perimeter mea-
sure, see [9, Theorem 3.1], and its integral representation with respect to S3

ρ , see [17,
Theorem 1.3].
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We wish to stress that the strict inequality γρ < 1 is possible due to the non-
convex shape of the metric ball Bρ. This special sub-Riemannian phenomenon could
not appear in R

n equipped with the usual commutative operations, since here any
homogeneous distance gives a Banach norm and all metric balls of a Banach space
are convex. In fact, in any finite dimensional Banach space Theorem 1.1 cannot hold,
as a consequence of [11, Theorem 9].

The estimate (4) also affects the relationship between the spherical measure S3

ρ

and the centered Hausdorff measure C3

ρ . The latter, especially known in Fractal
Geometry, was introduced by Saint Raymond and Tricot, [23]. It is a variant of the
spherical measure, that could be seen as “dual” of the packing measure, in view of
its relationship to upper density as the packing measure has with its lower density,
see [23, Theorem 1.1] and [5] for more information. We have the following theorem.

Theorem 1.2. For each H-rectifiable set Σ ⊂ H such that 0 < S3

ρ (Σ) < +∞,

there holds

(5) S3

ρ (Σ) < C3

ρ(Σ).

Let us point out that in general S3

ρ ≤ C3

ρ . By contrast, in the same Heisenberg

group, we have S4

ρ = C4

ρ , where 4 is the Hausdorff dimension of H and this fact extends
to more general groups, [10, Corollary 4.13]. It is worth comparing Theorem 1.2 also
with Euclidean results. In fact, here spherical measures and centered Hausdorff
measures always coincide on rectifiable sets, see both Corollary 9.4 and Corollary 9.5
of [23]. It can be also observed that in the assumptions of Theorem 1.2, replacing ρ
by any homogeneous distance d whose unit ball is convex, then C3

d(Σ) = S3

d(Σ), see
Remark 2.2. All of these facts show how Theorem 1.2 provides another unexpected
feature of intrinsic rectifiable sets of H, when seen through the SR distance.

Some additional questions are still to be understood. In fact, again in the case
where the metric unit ball with respect to homogeneous distance d is convex, then
the same arguments for the proof of Theorem 1.1, joined with Theorem 5.2 of [17],
imply that

(6) Θ3(S3

dxΣ, x) = 1

for S3

d -a.e. x ∈ Σ, where Σ is H-rectifiable, see Remark 2.3. Since we may choose an
H-rectifiable set Σ0 that is not rectifiable in the metric sense, [12], formula (6) shows
the existence of a metric space (H, d) having an unrectifiable set Σ0 whose 3-density
with respect to S3

dxΣ is equal to one a.e. in Σ. To the author’s knowledge, the
question of finding a metric space along with a subset which is not k-rectifiable and
whose k-density equals one a.e. is still an important open question when k > 1. For
k = 1 this cannot happen and it is a consequence of the main theorem of [22]. The
point in our case is that the 3-density refers to the 3-dimensional Hausdorff measure
and the exact formula relating S3

dxΣ and H3

dxΣ in H is still unknown, even for
2-dimensional smooth submanifolds.

For this reason, it is not yet clear how far the previous example is from the open
question of finding suitable k-unrectifiable sets of a metric space, having k-density,
with respect to the Hausdorff measure, that is equal to one a.e. and k > 1.
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2. Basic definitions and proofs

We consider the three dimensional Heisenberg group H, which is represented by
R

3 equipped with the Lie group operation

(x, y, t) · (x′, y′, t′) = (x+ x′, y + y′, t+ t′ − 2xy′ + 2x′y)

for all (x, y, t), (x′, y′, t′) ∈ H and the left invariant vector fields

X = ∂x + 2y∂t, Y = ∂y − 2x∂t and T = ∂t.

This system of coordinates also yields an auxiliary Euclidean structure on H, where
| · | denotes the Euclidean norm of R3, that is automatically induced on H.

Now we introduce the distance that makes H an SR manifold. It is well known
that H is pathwise connected by horizontal curves, namely absolutely continuous
curves γ : [0, 1] → H such that γ̇(t) is a linear combination of X(γ(t)) and Y (γ(t))
for a.e. t ∈ [0, 1]. This permits us to define the following SR distance

ρ(p, q) = inf

{
ˆ

1

0

√

〈γ̇(t), γ̇(t)〉g dt : γ is horizontal and connects p with q

}

between any couple of points p, q ∈ H, where 〈·, ·〉g denotes the left invariant Rie-
mannian metric that makes the vector fields X, Y, T everywhere orthonormal.

Explicit formulae for geodesics with respect to ρ and the equations for the the
boundary of the SR unit ball

(7) Bρ = {p ∈ H : ρ(p, 0) ≤ 1}
are well known facts, see for instance [20] and [2]. Precisely, the boundary of Bρ is
the image of the mapping

Φ: [0, 2π]× [−2π, 2π] → R
3,

whose components are defined as follows


























Φ1(θ, ϕ) =
cos θ(1− cosϕ) + sin θ sinϕ

ϕ
,

Φ2(θ, ϕ) =
− sin θ(1− cosϕ) + cos θ sinϕ

ϕ
,

Φ3(θ, ϕ) = 2

(

ϕ− sinϕ

ϕ2

)

,

(8)

where we understand Φ1(θ, 0) = sin θ, Φ2(θ, 0) = cos θ and Φ3(θ, 0) = 0. The precise
shape of the unit ball Bρ will play an important role in the subsequent computation.

The distance ρ allows us to construct the associated spherical measure and Haus-
dorff measure. These measures can be constructed in a general metric space.

Definition 2.1. (Hausdorff measures) Let X be a metric space equipped with
a distance d. Let F ⊂ P(X) be a nonempty class of closed subsets of X, let α > 0
and cα > 0. If δ > 0 and E ⊂ X, then we define

φδ(E) = inf

{ ∞
∑

j=0

cα diam(Bj)
α : E ⊂

⋃

j∈N
Bj, diam(Bj) ≤ δ, Bj ∈ F

}

.

When F is the family of closed balls, then the α-dimensional spherical measure is
defined by Sα(E) = supδ>0

φδ(E), for every E ⊂ G. When F is the family of
closed subsets, then the α-dimensional Hausdorff measure is defined by Hα(E) =
supδ>0 φδ(E). In the case cα = 2−α, we will use the notation Sα

0
and Hα

0
.
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If in the previous definition the distance d coincides with the SR distance ρ,

(9) c3 = βρ 2
−3 and βρ = max

w∈Bρ

H2

|·|(Bρ ∩ wN0),

whereN0 = {(x, 0, z) ∈ R
3}, then the corresponding spherical measure and Hausdorff

measure are denoted by S3

ρ and H3

ρ, respectively. We also introduce

(10) β0

ρ = H2

|·|(Bρ ∩N0).

A more general class of distances than ρ can be considered in H, as shown in the
next definition.

Definition 2.2. (Dilations and homogeneous distances) For every s > 0, we
define the dilation δs : H → H as

δs(x, y, z) = (sx, sy, s2z) for every (x, y, z) ∈ H.

A distance d in H is homogeneous if it is continuous, and for each q, w, u ∈ H and
r > 0 we have d(qw, qu) = d(w, u) and d(δrw, δru) = rd(w, u).

It is well known that ρ is a homogeneous distance, see for instance [13].

Definition 2.3. (Centered Hausdorff measure) LetX be a metric space equipped
with a distance d. We fix α > 0 and cα > 0 and denote by Fb the family of closed
balls in X. For any δ > 0 and S ⊂ X, we define

Cα
δ (S) = inf

{ ∞
∑

j=0

cαdiam(Bj)
α : S⊂

⋃

j∈N
Bj , Bj ∈ Fb is centered in S, diam(Bj) ≤ δ

}

.

Thus, we set C̃α(S) = supδ>0
Cα
δ (S) and for E ⊂ X we define

Cα(E) = sup
{

C̃α(S) : S ⊂ E
}

.

According to [23, Lemma 3.1], Cα is a Borel regular outer measure, called the α-
dimensional centered Hausdorff measure. When cα = 2−α, we use the notation Cα

0
.

Let us point out that C̃α may not be a measure. In fact, an example of [23,
Section 4], shows that it is not monotone. The following standard inequalities also
hold

Hα ≤ Sα ≤ Cα ≤ 2αHα.

For a 3-dimensional centered Hausdorff measure C3

d , which is constructed by a ho-
mogeneous distance d of H, we use the same constant c3 = βρ 2

−3 of the spherical
measure S3

ρ .

Definition 2.4. (H-rectifiable set and H-regular set) We say that S ⊂ H is
H-rectifiable if for each j ∈ N there exists a function fj : Ωj → R, where Ωj ⊂ H is
an open set, such that the directional derivatives

Ωj ∋ x→ Xfj and Ω ∋ x→ Y fj

are continuous, the mapping Ωj ∋ x→ (Xf, Y f) is everywhere nonvanishing and

H3

ρ

(

S \
∞
⋃

j=1

f−1

j (0)

)

= 0.

The sets f−1

j (0) are called H-regular.
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Remark 2.1. Notice that the defining functions fj in the previous definition
may not be necessarily differentiable in the classical sense, even on a set of positive
measure, [14].

2.1. Proof of Theorem 1.1. Following notation and definitions of [17], Σ is
contained in a countable union of portions of reduced boundaries of h-finite perimeter
sets, up to an S3

ρ negligible set. By our assumptions on Σ, standard arguments allow
us to assume that

Σ = Ω ∩ FHE,

without any loss of generality. In the previous formula, Ω ⊂ H is an open set,
E ⊂ H is a set of h-finite perimeter and the reduced boundary FHE intersected with
Ω coincides with Ω∩∂E, that is an H-regular set. Since H-regular sets are obviously
H-rectifiable, Theorem 1.2 of [17] gives

(11) |∂HE|xΩ = β(ρ, νE)S3

0
x(Ω ∩ FHE) = β(ρ, νE)S3

0
xΣ

and for each x ∈ Σ there holds

β
(

ρ, νE(x)
)

= max
z∈Bρ

H2

|·|(Bρ(z, 1) ∩N
(

νE(x)
)

)

where N
(

νE(x)
)

is the vertical plane orthogonal to the generalized inward normal
νE(x), see for instance [17] for more information on these notions.

The rotational symmetry of Bρ follows from (8) and it implies that β(ρ, ·) is
constant. Taking into account that translations preserve the Euclidean Hausdorff
measure H2

|·| between translated vertical planes, it follows that

βρ = β(ρ, ·),

where βρ is defined in (9). For the same reasons, the function

v → H2

|·|
(

Bρ ∩N(v)
)

= β0

ρ

is independent of v as it varies in R
2 ×{0} and β0

ρ is defined in (10). As a result, by

(11), we get |∂HE|xΩ = S3

ρxΣ. Since Ω ∩ FHE = Σ, we can apply Theorem 3.1 of
[9] at any point x ∈ Σ, hence obtaining that

lim
r→0+

|∂HE|(B(x, r))

r3
= H2

|·|(Bρ ∩N0) = β0

ρ .

It follows that

Θ∗3(S3

ρxΣ, x) = lim sup
r→0+

|∂HE|(B(x, r))

βρr3
= lim

r→0+

|∂HE|(B(x, r))

βρr3

= Θ3(S3

ρxΣ, x) =
β0

ρ

βρ
.

(12)

Finally, our claim follows by checking that β0

ρ < βρ. This is a direct computation that

can be carried out by using equations (8). Since Φ2

1
(θ, ϕ)+Φ2

2
(θ, ϕ) = (2−2 cosϕ)/ϕ2

one realizes that the intersection of ∂Bρ with {(x, 0, z) : x, z ≥ 0} can be parametrized
by the curve

(13) Φ̃(ϕ) =

(√
2− 2 cosϕ

ϕ
, 0,

2ϕ− 2 sinϕ

ϕ2

)
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defined on [0, 2π], where we understand Φ̃(0) = (1, 0, 0). It follows that the closed
upper half of ∂Bρ is the image of the mapping F : [0, 2π]× [0, 2π] → R

3 defined as






























F1(ψ, ϕ) =

√
2− 2 cosϕ

ϕ
cosψ,

F2(ψ, ϕ) =

√
2− 2 cosϕ

ϕ
sinψ,

F3(ψ, ϕ) = 2

(

ϕ− sinϕ

ϕ2

)

,

(14)

where F1(ψ, 0) = cosψ, F2(ψ, 0) = sinψ and F3(ψ, 0) = 0. From both the rotational
and the antipodal symmetry of Bρ, if we set Aρ = Bρ ∩ {(x, 0, z) ∈ R

3 : x, y ≥ 0}
and take into account (10), then Gauss–Green’s theorem applied to the curve Φ̃ of
(13) gives

(15)
β0

ρ

4
= H2(Aρ) = 2

ˆ

2π

0

√
2− 2 cosϕ

ϕ4
(2 sinϕ− ϕ cosϕ− ϕ) dϕ.

Intersecting Bρ with the subset

S1 =
{

(x, y, z) ∈ R
3 : y = 2

√
2/3π, x, z ≥ 0

}

,

we get the curve F̃ : [0, 3π/2] → R
3, defined as

(16) F̃ (ϕ) =

(

√

2− 2 cosϕ

ϕ2
− 8

9π2
,
2
√
2

3π
,
2ϕ− 2 sinϕ

ϕ2

)

,

where we understand F̃ (0) =
(
√

1− 8/9π2, 2
√
2

3π
, 0
)

. In fact, the function

ϕ→ 1− cosϕ

ϕ2

is decreasing on (0, 2π), it vanishes on 3π/2 and the image of F̃ is the set

S1 ∩ ∂Bρ.

Thus, setting A1

ρ = Bρ ∩ S1, Gauss–Green’s theorem gives

(17) H2

|·|(A
1

ρ) = 2

ˆ 3π

2

0

√

2− 2 cosϕ

ϕ2
− 8

9π2

(

2 sinϕ− ϕ cosϕ− ϕ

ϕ3

)

dϕ,

where introducing the plane

N1 =
{

(x, y, z) ∈ R
3 : y = 2

√
2/3π

}

,

the rotational symmetry of Bρ gives

H2

|·|(Bρ ∩N1) = 4H2

|·|(A
1

ρ).

Using for instance the computer program Maple, one can verify that the integral in
(15) is strictly less than the integral in (17), hence

(18) γρ =
β0

ρ

βρ
≤

β0

ρ

H2

|·|(Bρ ∩N1)
< 1.

This concludes the proof of Theorem 1.1. �

2.2. Proof of Theorem 1.2. The arguments of [10, Theorem 4.28] allow us
to replace S3

ρxΣ by the perimeter measure |∂HE|xΩ, for an h-finite perimeter set
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E ⊂ H, with no loss of generality. The measure theoretic area formula (1.4) of [10]
and Theorem 3.1 of [9], joined with Theorem 1.2 of [17], give the equalities

|∂HE|xΩ = β0

ρ C3

ρxΣ = βρ S3

ρxΣ.

In view of (18), we have

S3

ρ(Σ) =
β0

ρ

βρ
C3

ρ(Σ) < C3

ρ(Σ),

hence concluding the proof. �

Remark 2.2. It may be surprising that despite the validity of Theorem 1.2,
the equality S3

dxΣ = C3

dxΣ holds when d = d∞ and Σ is a general H-rectifiable
set. This is proved in [10] where this formula is obtained for G-rectifiable sets in
a stratified group G and the dimension of the measures is Q − 1, where Q is the
Hausdorff dimension of the group. Indeed, the previous formula can be extended to
every homogeneous distance d, whose unit ball is a convex set with respect to the
linear structure assumed on the group, namely

(19) SQ−1

d xΣ = CQ−1

d xΣ

where Σ ⊂ G is a G-rectifiable set. This can be proved following the same arguments
of [10], joined with Theorem 5.2 of [17].

Remark 2.3. The same arguments in the proof of Theorem 1.1 can be carried
out with respect to any another homogeneous distance. As a consequence, by The-
orem 5.2 of [17] the ratio in (12) becomes equal to one, where ρ is replaced by a
homogeneous distance whose unit ball is a convex set.
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