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Abstract. In this work we explore the preservation of quasiconvexity and∞-Poincaré inequal-
ity under sphericalization and flattening in the metric setting. The results developed in [22] show the
preservation of Ahlfors regularity, doubling property and the p-Poincaré inequality for 1 ≤ p < ∞
under the sphericalization and flattening transformations provided the underlying metric space is
annularly quasicovex. In this work, we propose a weaker assumption to still preserve quasiconvexity
and ∞-Poincaré inequality, called radially star-like quasiconvexity (corresponding to sphericaliza-
tion) and meridian-like quasiconvexity (corresponding to flattening) extending in particular a result
in [8] to a wider class of metric spaces and covering the case p =∞ in [22].

1. Introduction

The process of obtaining the Riemann sphere from the complex plane, and vice
versa, was generalized in the metric setting by using sphericalization and flattening.
See the work [2] by Buckley and Balogh. These conformal transformations are dual
to each other, and the performance of sphericalization followed by flattening or vice
versa results in a metric space that is biLipschitz equivalent to the original space.

The advantage of considering these transformations comes partly from the fact
that some results in analysis are easier to establish, either for bounded spaces or
for unbounded ones; see for example [20]. Indeed, the paper [5] established equiva-
lence between unbounded uniform domains and Gromov hyperbolic spaces, and their
technique needed the uniform domain to be unbounded. The paper [20] used the
sphericalization and flattening techniques to transform bounded uniform domains
into unbounded uniform domains, and hence succeeded in extending the results of [5]
to bounded uniform domains. As another example, recently the paper [1] proposed a
notion of prime end boundary for bounded domains in the metric setting, and such
a prime end boundary was the principal focus of the study of Dirichlet problems
in the metric setting in [14]. However, the results in [14] needed the domain to be
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bounded. To establish solutions to the Dirichlet problem for unbounded domains in
the metric setting, the thesis [13] used the procedure of sphericalization to transform
the unbounded domain into a bounded domain, consider the prime end boundary
of the resulting bounded domain, and then pulled back this prime end boundary
via flattening to construct the prime end boundary of the unbounded domain, thus
circumventing the problem related to non-compactness of the boundary.

A very natural problem is therefore to study which geometric properties are
preserved under these transformations. In this work we will focus on the preservation
of ∞-Poincaré inequality and quasiconvexity, a metric property of the space that
ensures that one can connect two points in the space by a curve whose length is
bounded by a universal constant times the distance between the two points. The
geometry of X at small scales is similar to the one of its sphericalized version. The
differences arise at large scales. For example, local quasiconvexity is preserved under
flattening and sphericalization (see [8, Proposition 4.3.]). In contrast, as shown in
[8, Example 6.2.], (global) quasiconvexity is not generally preserved under these
deformations. Buckley, Herron and Xie proved in [8] that, under the additional
hypothesis of annular quasiconvexity, quasiconvexity and annular quasiconvexity are
preserved under sphericalization and flattening.

Examples of annularly quasiconvex spaces include upper Ahlfors regular Loewner
spaces (such as Carnot groups and certain Riemannian manifolds with non-negative
Ricci curvature) or complete Ahlfors Q-regular metric measure spaces supporting a
p-Poincaré inequality for some p < Q (see [21]). However, there are some simple and
natural examples of quasiconvex spaces that are not annularly quasiconvex, but whose
sphericalized and flattened versions are still quasiconvex. The real line, the Euclidean
infinite strip R× [−1, 1], and some classes of metric trees are some examples.

Motivated by these examples, we define a new class of metric spaces that en-
compasses annularly quasiconvex spaces and for which quasiconvexity is still pre-
served under sphericalization and flattening. We define radially star-like quasiconvex
spaces related to the process of sphericalization (see Definition 3.1) and meridian-
like quasiconvex spaces linked to the process of flattening (see Definition 4.1). We
will show that these two concepts are duals: a radially star-like quasiconvex space is
meridian-like quasiconvex after sphericalizing, and becomes again radially star-like
quasiconvex when flattenned. This duality is shown in Lemmas 4.5 and 4.4. Some
of the main results of the present work are Theorem 3.4 and Theorem 4.6 that study
the preservation of quasiconvexity under sphericalization and flattening, respectively.
Examples 3.7 and 4.8 illustrate the sharpness of the results.

On the other hand, metric spaces endowed with a doubling measure and support-
ing a Poincaré inequality are nowadays considered a standard class of spaces when
developing a first order differential analysis in a metric measure space setting. See
for example [3], [9], [18], [16], [17] or [24] and the references therein. Li and Shanmu-
galingam considered the problem of transforming not only the metric, but also the
measure under sphericalization and flattening and showed in [22] that if (X, d, µ) is a
complete annularly quasiconvex metric measure space with µ doubling and support-
ing a p-Poincaré inequality for some 1 ≤ p <∞, the processes of sphericalization and
flattening yield doubling metric measure spaces supporting a p-Poincaré inequality
as well. See [22, Theorem 3.3.5, Theorem 4.3.3.].

On the other hand, it was shown in [11] and [12] that supporting an ∞-Poincaré
inequality is equivalent to∞-thick quasiconvexity and also equivalent to the fact that
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given any two points on the space and a null set N , there exists a quasiconvex path
γ connecting the two points so that L 1(γ−1(γ ∩N)) = 0.

Using this geometric characterization of∞-Poincaré inequality and Theorems 3.4
and 4.6, we also prove in Theorem 3.6 and Theorem 4.7 the preservation of ∞-
Poincaré inequality under sphericalization and flattening.

Moreover, by combining Theorem 3.6 and Theorem 4.7, together with the fact
that the flattening (with respect to the point {∞}) of a sphericalized space is biLips-
chitz equivalent to the original metric space, we can deduce the following main result,
extending the picture to the full range 1 ≤ p ≤ ∞ in [22].

Theorem 1.1. Let (X, d, µ) be an unbounded complete metric space endowed
with a doubling measure and K-radially star-like quasiconvex with respect to a base
point a ∈ X. Then (X, d, µ) supports an ∞-Poincare inequality if and only if the
sphericalized space (Ẋ, da, µa) supports an ∞-Poincare inequality.

The techniques used in the present paper are not straightforward generalizations
of a single technique. One of the key tools used is an analog of the Boman type chain-
ing arguments as developed in [15] and [4] and used in [22]. However, these chaining
results are developed to deal with integrals of functions and their gradients; we do
not need to deal with functions directly because of the geometric characterization of
∞-Poincaré inequality. We instead modify the chaining argument to construct by
hand the curves that are quasiconvex and avoid null sets almost all of the parametric
time.

The preprint [10] deals with preservation of p-Poincaré inequalities for 1 ≤ p <∞
under sphericalization and flattening under similar hypothesis as the ones used in the
present paper.

The work is organized as follows. Section 2 recalls the basic notions needed in
the paper related to metric measure spaces and to sphericalization and flattening.
Section 3 focuses on the preservation of ∞-Poincaré inequality and quasiconvexity
under sphericalization while Section 4 focuses on the preservation of those same
properties under flattening.

2. Basic concepts

2.1. Metric measure spaces. Let (X, d) be a metric space. We denote open
balls centered at x ∈ X and of radius r > 0 by B(x, r) := {y ∈ X : d(x, y) < r}
and closed balls by B(x, r) := {y ∈ X : d(x, y) ≤ r}. For λ > 0, λB denotes the
ball concentric with B (with respect to a predetermined center) but with radius λ-
times the radius of B. For 0 < r < R, A(a, r, R) denotes the annulus A(a, r, R) :=
B(a,R) \B(a, r).

By a curve in X we mean a continuous map γ : I → X, where I ⊂ R is an
interval. When I = [a, b] for some a, b ∈ R with a < b, the length `d(γ) of γ with
respect to the metric d is defined by

`d(γ) := sup
n−1∑
k=0

d(γ(tk), γ(tk+1)),

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b of the
interval [a, b]. A curve γ is rectifiable if `d(γ) <∞. We simply write `(γ) if the metric
is clear from the context. The image of a curve γ will also be denoted by γ. Given
two points x, y ∈ X, γxy denotes a curve connecting x to y. Given two curves β and
γ, the concatenation of β and γ will be denoted by β ∪ γ.
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A metric space (X, d) is C-quasiconvex if there is a constant C ≥ 1 such that
every pair of points x and y in the space can be connected by a curve γ such that
`d(γ) ≤ Cd(x, y). Such a curve is called C-quasiconvex. We say thatX is A-annularly
quasiconvex with respect to a base point a ∈ X if for every r > 0, and for each pair
of points x, y ∈ A(a, r/2, r) there is an A-quasiconvex curve γxy connecting x to y
inside the annulus A(a, r/A,Ar). We say that X is annularly quasiconvex if there
exists A ≥ 2 such that X is A-annularly quasiconvex for every a ∈ X. Notice that
being annularly quasiconvex with respect to some a does not imply that the space
is annularly quasiconvex. One can consider for example the half line X = [0,∞)
endowed with the euclidean metric which is annularly quasiconvex only with respect
to a = 0. Annular quasiconvexity was introduced in [21] and has been further used
for example in [8], [19] and [20].

The length function associated to a rectifiable curve γ : [a, b]→ X is sγ : [a, b]→
[0, `(γ)] given by sγ(t) = `(γ|[a,t]). Recall that every rectifiable curve admits a unique
1-Lipschitz parametrization by the arc-length γs : [0, `(γ)]→ X such that γ = γs ◦ sγ.
The line integral of a Borel function ρ : X → [0,∞] over a rectifiable path γ is defined
via the formula ˆ

γ

ρ ds :=

ˆ `(γ)

0

(ρ ◦ γs)(t) dt.

If ρ ≡ 1, the previous formula gives the length of γ. Given a real-valued function
u in a metric space X, a Borel function g : X → [0,∞] is an upper gradient of u if
|u(x)− u(y)| ≤

´
γ
gds, for each rectifiable curve γ joining x and y in X.

Let (X, d, µ) be a metric measure space, with µ a Borel measure on X. The
measure µ is doubling if balls have finite positive measure and there is a constant
Cµ ≥ 1 such that

µ(2B) ≤ Cµµ(B)

for all balls B. Let 1 ≤ p ≤ ∞. We say that (X, d, µ) supports a p-Poincaré inequality
if each ball in X has finite and positive measure and there are constants C, λ > 0
such that for every open ball B in X, for every measurable function u on B, and for
every upper gradient g of u we have

1

µ(B)

ˆ
B

|u− uB| dµ ≤ C rad(λB)

(
1

µ(λB)

ˆ
λB

gp dµ

)1/p

,

if 1 ≤ p <∞, and

1

µ(B)

ˆ
B

|u− uB| dµ ≤ C rad(λB)‖g‖L∞(λB),

if p =∞. Here, for arbitrary A ⊂ X with 0 < µ(A) <∞ we write uA = 1
µ(A)

´
A
u dµ.

Recall the following characterization of ∞-Poincaré inequality, which is inti-
mately connected to quasiconvexity.

Theorem 2.1. [11, Theorem 3.1.] Suppose that X is a locally complete metric
space supporting a doubling Borel measure µ. Then the following conditions are
equivalent:

(a) X supports an ∞-Poincaré inequality.
(b) There is a constant C ≥ 1 such that, for every null set N of X, and for every

pair of points x, y ∈ X there is a C-quasiconvex path γ in X connecting x to
y with γ /∈ Γ+

N , that is, L 1(γ−1(γ ∩N)) = 0.
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The interested reader can find in [18] a discussion of the recent advances in the
field of analysis on metric measure spaces, including those in [11] and [22] (see [18,
Chapter 14]).

2.2. Sphericalization and flattening. Sphericalization and flattening are
conformal deformations that generalize in the context of metric spaces, the process
of obtaining the Riemann sphere from the Euclidean plane and vice versa. They were
introduced by Balogh and Buckley in [2] and further studied in [8] and [20].

If X is an unbounded locally compact metric space, one can define its one-point
compactification Ẋ = X∪{∞}, where the topology on Ẋ is given by the union of the
topology on X and the collection of all sets that are complements in Ẋ of compact
subsets of X (see for instance, [23, Theorem 29.1]). Recall that a space X is said to
be locally compact if given x in X, there is a neighborhood V of x such that V is
compact.

Fixing points a, c ∈ X, one can define a spherical density da on Ẋ, and a flattening
density dc on the punctured space Xc = X \ {c}. See the Table 1 for the precise
formulas. As shown in [2], there exist metrics d̂a and d̂c bi-Lipschitz equivalent to the
densities da and dc respectively. Since there is no closed formula for the metrics d̂a
and d̂c, we will use for convenience the densities da and dc for defining balls in Ẋ and
Xc. Notice that the density function da we use satisfies the criterion of sphericalizing
function g(t) = (1 + t)−2 defined in [2]. The space (Ẋ, d̂a) is a bounded metric space
with diam(Ẋ) = 1, and is called the sphericalization of (X, d), while (Xc, d̂c) is an
unbounded metric space (if c is non-isolated) called the flattening of (X, d). As shown
in [6], the metric space resulting from flattening with respect to the point {∞} the
(bounded) sphericalized space (Ẋ, d̂a) is bi-Lipschitz equivalent to the (unbounded)
space (X, d), making sphericalization and flattening dual transformations.

From a technical point of view, one of the main difficulties that one might en-
counter is how to transform objects that involve the critical point {∞}. In complex
analysis, we know that we can use Möbius transformations to move {∞} to any
other point and still preserve the same geometric properties. But in a general metric
setting, one has to analyze the critical point {∞} separately.

X Ẋ := X ∪ {∞} a ∈ X Xc := X \ {c} c ∈ X

d da(x, y) =


d(x,y)

[1+d(x,a)][1+d(y,a)]
if x, y ∈ X,

1
1+d(x,a)

if x ∈ X, y =∞,
0 if x =∞ = y.

dc(x, y) =
d(x, y)

d(x, c)d(y, c)
if x, y ∈ Xc

B(x, r) Ba(x, r) Bc(x, r)

`(γ) `da(γ) =

ˆ `(γ)

0

1

[1 + d(γs(t), a)]2
ds(t) `dc(γ) =

ˆ `(γ)

0

1

d(γs(t), c)2
ds(t)

µ µa(A) =

ˆ
A\{∞}

1

µ(B(a, 1 + d(z, a)))2
dµ(z) µc(A) =

ˆ
A

1

µ(B(c, d(c, z)))2
dµ(z)

Table 1. Relevant formulas for flattening and sphericalization.

In the sequel, it will be also useful to know how a curve and its correspond-
ing length change under the sphericalization and flattening processes. Let γ be a
rectifiable curve in a rectifiably connected unbounded metric space X. Under spher-
icalization γ corresponds to γ̇ : [0, `(γ)] → Ẋ defined by γ̇(t) = γs(t), where γs is
the arc-length parametrization of γ with respect to the original metric d. By an
abuse of notation we will denote the corresponding curve in Ẋ by γ as well. One
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can check (see [2, Proposition 2.6]) that γ is rectifiable with respect to the metric d̂a
if it is rectifiable with respect to the original metric d. The formulas for the length
of γ̇ with respect to the metric d̂a and the length in the metric d̂c of a given a curve
γ : [a, b]→ Xc (notice that Xc ⊂ X) are given in the Table 1.

If X is equipped with a Borel-regular measure µ such that measures of non-empty
open sets are positive and measures of bounded sets are finite, we can construct an
induced measure µa on Ẋ and µc on Xc. It was shown in [22, Proposition 3.6] that
if µ is doubling, then so are µa and µc, from which follows in particular that because
Ẋ is bounded, µa(Ẋ) is finite. All the relevant formulas are gathered in Table 1. In
what follows, for further clarification, the base point in the sphericalization will be
denoted by a ∈ X, and the one in the flattening by c ∈ X.

Unless otherwise stated, the letter C denotes various positive constants whose
exact values are not important for the purposes of this paper, and its value might
change even within a line.

3. Preservation of quasiconvexity and ∞-Poincaré inequality under
sphericalization: radially star-like quasiconvex spaces

In [8, Section 6] Buckley, Herron and Xie studied the preservation of quasicon-
vexity (and annular quasiconvexity) under sphericalization under the hypothesis of
annular quasiconvexity. In view of the fact that natural examples such as the real line
or a broad class of metric trees are not annularly quasiconvex, our aim in this section
is to introduce a larger class of metric spaces that encompasses such examples and
whose transformations still preserve properties such as quasiconvexity or∞-Poincaré
inequality.

To motivate our definition, we go back to star-like domains that appear naturally
in complex analysis as sets for which the line segment connecting any point to a fixed
base point lies entirely inside the domain.

A relaxation of the star-likeness property, rough star-likeness, is enjoyed by some
proper geodesic Gromov hyperbolic spaces. A metric space isK-roughly star-like with
respect to a base point a ∈ X, if for every point x ∈ X there exists some geodesic ray
(isometric image in X to [0,∞)) emanating from a whose distance to x is at most K.
This property was first named in [5], although roughly star-like spaces were called
visual in [7]. Bonk, Heinonen and Koskela in [5] provided a way to transport questions
in Gromov hyperbolic spaces to questions in bounded uniform spaces, and vice versa.
In particular, the authors proved that if a metric space (X, d) is a uniform space, the
associated quasi hyperbolic metric is a proper geodesic Gromov hyperbolic space that
is roughly star-like. On the other hand, if one begins with a (typically unbounded)
proper geodesic roughly star-like Gromov hyperbolic space (X, dH) one can obtain a
bounded uniform domain (X, dε) depending on a sufficiently small parameter ε > 0.
In some sense, the process of flattening-sphericalization pursues a similar goal, though
the uniformization metric dε of [5] is not the same as the metrics studied in this paper.

The following definition is inspired by roughly star-like spaces, additionally re-
quiring that the point x is connected to the geodesic ray by a controlled quasiconvex
curve. Recall here that given two points x, y ∈ X, γxy denotes a curve connecting x
to y.

Definition 3.1. A space is K-radially star-like quasiconvex with respect to a
base point a ∈ X, if there exist a constant K ≥ 2 and a radius r0 > 0 such that for
every r > r0 and x ∈ A(a, r/2, r), there exist a base-point quasiconvex ray γa∞, a
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point y ∈ γa∞ and a quasiconvex curve γxy ⊂ A(a, r/K,Kr) connecting x to y such
that

`(γxy) ≤ Kd(a, y).

Here we say that a ray γ : [0,∞)→ X with γ(0) = a is base-point quasiconvex if for
each z ∈ γ, `(γaz) ≤ Kd(a, z), where γaz is the subcurve of γ ending at z.

Figure 1. Radially star-like quasiconvexity.

Remark 3.2. We will always assume in this paper that our curves are parametrized
by arc-length. Therefore, for a curve γ : [0,∞)→ X we have that `(γ|[0,s]) = s.

The following lemma shows that, in a general class of metric spaces, annular
quasiconvexity is stronger than radially star-like quasiconvexity. As mentioned in the
Introduction, R is K-radially star-like quasiconvex but is not annularly quasiconvex.

Lemma 3.3. Let (X, d) be an unbounded connected complete locally compact
metric space which is annularly quasiconvex with respect to a point a ∈ X. Then
(X, d) is radially star-like quasiconvex with respect to a.

Proof. First observe that a connected annularly quasiconvex space with respect
to a point a ∈ X is quasiconvex. Indeed, let x 6= y and assume d(x, a) ≥ d(y, a). Let
us denote Bi = B(a, 2−ir) for i ∈ N, where r = d(x, a). Because X is connected, for
each i ∈ N for whichX\Bi is non-empty, there exists yi ∈ X such that d(a, yi) = 2−ir.
Set y0 = x. By A-annular quasiconvexity with respect to the point a ∈ X, for each
such i ∈ N, there exists an A-quasiconvex curve γi ⊂ X connecting yi−1 to yi such
that γi ⊂ A(a, 2

−ir
A
, A2−ir). If y = a, then we choose γ to be the concatenation of

the curves γ1, γ2, · · · , and set β to be the constant curve starting and ending at a. If
y 6= a, then let N be the positive integer such that

2−N−1r ≤ d(y, a) < 2−Nr,

and let γ = γ1∪ γ2∪ · · · ∪ γN ∪β be the concatenation of γ1, γ2, . . . , γN , β, where β is
an A-quasiconvex curve connecting yN to y. Then the curve γ connects x to y and

`(γ) ≤
N∑
i=1

`(γi) + `(β) ≤ A

N∑
i=1

d(yi−1, yi) + Ad(yN , y)

≤A
N+1∑
i=1

(2−i+1r + 2−ir) = 3Ar
N+1∑
i=1

2−i = 3Ar(1− 2−N−1) ≤ 3Ad(x, y).

In the above, if y = a, then N =∞ and r ≈ d(x, a) = d(x, y). Thus we have that X
is quasiconvex with quasiconvexity constant 3A.
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We now show that X is radially star-like quasiconvex. To do so, fix a point
z ∈ A(a, r/2, r) for some r > 0. Let {xn}n be a sequence of points converging to
∞ with x1 = z, that is, limn→∞ d(xn, a) = ∞. For each n ∈ N, by the use of
Arzelá–Ascoli theorem, we can find a quasiconvex curve γn connecting a to xn so
that

`(γn) = inf
γ connects a toxn

`(γ).

With respect to the use of Arzelá–Ascoli theorem, we relax the requirement that
curves γ be arc-length parametrized with the requirement that γ : [0,∞)→ X with
the restriction of γ to [0, `(γ)] is arc-length parametrized and γ is constant on the
interval [`(γ),∞). Observe that a curve constructed in this way is base-point qua-
siconvex, that is, for any y ∈ γaxn , `(γay) ≤ Cd(a, y), where γay is the subcurve of
γaxn ending at y. Since for every finite closed interval I ⊂ [0,∞), the subcurves γn|I
have uniformly bounded length for any n ∈ N, we can extract, by Arzelá–Ascoli the-
orem, a subsequence {γnk

} converging to a ray γa∞. Observe that γa∞ is base-point
quasiconvex. To finish, for each x ∈ A(a, r/2, r) choose y ∈ γa∞ ∩ A(a, r/2, r) and
construct a quasiconvex curve γxy in the annulus A(a, r/A,Ar) connecting x to y
using the annular quasiconvexity. �

In fact, the proof has shown that annular quasiconvexity implies radially star-like
quasiconvexity, with radially star-like quasiconvexity constants independent of the
choice of r0 > 0 one would choose in the definition of radially star-like quasiconvexity.

We now state the main result of this section, namely, that quasiconvexity is
preserved under sphericalization for radially star-like quasiconvex spaces.

Theorem 3.4. Let (X, d) be an unbounded complete quasiconvex metric space.
Let a ∈ X be a base point onX, and assume (X, d) isK-radially star-like quasiconvex
with respect to a for some K ≥ 2. Then (Ẋ, da) is quasiconvex.

Proof. Given x1, x2 ∈ Ẋ, we have to prove that there exists a curve γ connecting
x1 and x2 such that `da(γ) ≤ Cda(x1, x2). Notice that in the case when d(x1, a) ≤ 2r0
and d(x2, a) ≤ 2r0 with r0 as in Definition 3.1, the original and the sphericalized met-
ric are bi-Lipschitz on the ball B(a, 2Cqr0) where Cq is the quasiconvexity constant
of X, and so we can take a quasiconvex curve γx1x2 with respect to the metric d
connecting x1 and x2, which is also quasiconvex with respect to the metric da. We
now break the remaining parts of the proof into four different cases: points that are
in the same annulus and far away from each other (Case 1), points that are in the
same annulus and close to each other (Case 2), points that lie in different annuli
(Case 3) and finally when one of the points is the point at ∞ (Case 4). The annuli
that appear in the proof are considered with respect to the original metric d.

Fix c′ > 0 such that 0 < c′ < 1/(4Cq) and let x1, x2 ∈ Ẋ. As pointed out before,
we can assume that at least one of x1, x2 is not in the ball B(a, r0).

Before addressing the above four cases, we give the following preliminary cal-
culations. If γ is a quasiconvex curve in X connecting two points x1 and x2 and
lying in the annulus A(a, r/K,Kr) for some r > 0, then whenever w ∈ γ, we have
d(w, a) ≥ r

K
≥ d(x1,a)

K2 , and thus it follows that

`da(γ) =

ˆ
γ

ds

[1 + d(γ(s), a)]2
≤ `(γ)

[1 + (d(x1, a)/K2)]2

≤ K2r

[1 + d(x1, a)/K2]2
≤ K4da(x1,∞).

(3.1)
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Case 1. x1 and x2 are in the same annulus A(a, r/2, r) for some r > r0, with
d(x1, x2) ≥ c′r. Note that by this assumption, neither of x1, x2 is the point ∞, and
by the discussion above, r > 2r0. By the K-radially star-like quasiconvex property,
there exist base-point quasiconvex rays γ1a∞, γ2a∞, points y1 ∈ γ1a∞, y2 ∈ γ2a∞ and
quasiconvex curves γx1y1 , γx2y2 such that

`(γx1y1) ≤ Kd(a, y1) and `(γx2y2) ≤ Kd(a, y2).

Let us show that the concatenation γ = γx1y1∪γ1y1∞∪{∞}∪γ
2
∞y2∪γy2x2 that connects

x1 and x2 satisfies that `da(γ) ≤ Cda(x1, x2). Here, γ1y1∞ is a subcurve of γ1a∞ with
end points y1 and ∞, and γ2y2∞ is the analogous subcurve for y2. By (3.1) above, we
have

`da(γx1y1) ≤ K4da(x1,∞).

On the other hand, since d(x1, x2) ≥ c′r ≥ c′d(x2, a), and d(x2, a) > r0, it follows
that

(1 + r0)d(x2, a) ≥ r0(1 + d(x2, a)).(3.2)

Hence, we have

da(x1, x2) =
d(x1, x2)

[1 + d(a, x1)][1 + d(a, x2)]
≥ c′r

[1 + d(a, x1)][1 + d(a, x2)]

≥ c′d(x2, a)

[1 + d(a, x2)]

1

[1 + d(a, x1)]
≥ c′

r0
1 + r0

da(x1,∞).

(3.3)

Therefore, `da(γx1y1) ≤
K4(1+r0)

c′r0
da(x1, x2). Similarly, we can show that `da(γx2y2) ≤

K4(1+r0)
c′r0

da(x1, x2).
We next obtain a bound for `da(γ1y1∞). By quasiconvexity, `(γay1) ≤ Cd(a, y1),

where γay1 is the subcurve of γ1a∞ ending at y1. Let us choose a sequence of points
{zn}n with with z0 = y1 and zn ∈ γ1a∞ such that `(γ1a∞|[a,zn]) = 2n`(γaz0). For
simplicity, we denote by γznzn+1 the subcurve of γ1a∞ joining zn and zn+1. For w ∈
γznzn+1 , we have γwa ⊂ γzn+1a, and hence by the base-point quasiconvexity of γ1a∞,

d(w, a) ≥ 1

C
`(γwa) ≥

1

C
d(zn, a) ≥ 1

C2
`(γazn) ≥ 2n

C2
`(γaz0) ≥

2n

C2
d(a, y1).(3.4)

Hence,

`da(γznzn+1) =

ˆ
γznzn+1

ds

[1 + d(γ(s), a)]2
≤

`(γznzn+1)

[1 + 2n

C2d(a, y1)]2

≤ 2n`(γaz0)

[1 + 2n

C2d(a, y1)]2
≤ 2nCd(a, y1)

[1 + 2n

C2d(a, y1)]2
.

Notice also that because d(x1, y1) ≤ 2r ≤ 4K d(a, y1),

d(x1, a) ≤ d(x1, y1) + d(y1, a) ≤ (1 + 4K)d(a, y1).

Therefore,

`da(γznzn+1) ≤
2nCd(a, y1)

[1 + 2n

C2d(a, y1)]2
≤ C3(1 +K)

2nd(a, x1)
=

C

2n d(a, x1)
.
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Summing up and using analogs of (3.2) and (3.3), with x1 and x2 switching roles, we
get

`da(γ1y1∞) =
∑
n

`da(γznzn+1) ≤
∑
n

C

2nd(a, x1)
≤ C

d(a, x1)

≤ C(r0 + 1)

r0

1

1 + d(a, x1)
≤ C(r0 + 1)2

c′r20
da(x1, x2).

(3.5)

We then have that for some C ≥ 1, `da(γ1y1∞)+`da(γx1y1) ≤ Cda(x1, x2). Similarly,
one can prove that `da(γ2y2∞) + `da(γx2y2) ≤ Cda(x1, x2). Putting all these estimates
together, we conclude that

`da(γ) = `da(γx1y1) + `da(γ1y1∞) + `da(γ2y2∞) + `da(γx2y2) ≤ Cda(x1, x2).

Case 2. x1 and x2 are in the same annulus A(a, r/2, r) for some r > r0 and
d(x1, x2) ≤ c′r. Note again that x1, x2 cannot be equal to ∞. By the quasiconvexity
of X, we can find a Cq-quasiconvex curve γx1x2 connecting x1 and x2. Because
c′ ≤ 1/(4Cq), we have that `(γx1x2) ≤ Cqd(x1, x2) ≤ r/4 and γx1x2 is contained in the
annulus A(a, r/4, 2Cqr). Suppose w ∈ γx1x2 , so d(w, x1) ≤ `(γx1x2) ≤ r/4.

Then d(w, a) ≥ d(x1, a)− d(w, x1) ≥ r/4. Therefore, we can estimate the length
of γx1x2 under the sphericalized metric as follows:

`da(γx1x2) =

ˆ
γx1,x2

ds

[1 + d(γ(s), a)]2
≤ `(γx1x2)

(1 + r/4)2
≤ 16Cqd(x1, x2)

(1 + r)2

≤ 16Cqd(x1, x2)

[1 + d(x1, a)][1 + d(x2, a)]
≤ 16Cqda(x1, x2).

Case 3. x1 and x2 are in different annuli. Then again we have that x1, x2 6= ∞.
We re-name x1 and x2 if necessary so that d(a, x1) < d(a, x2). If 2d(a, x1) > d(a, x2)
and d(x1, a) > r0, let r = d(x2, a) and we can apply Case 1 or Case 2 to prove
that there exists a curve γx1x2 connecting x1 to x2 with `da(γx1x2) ≤ Cda(x1, x2).
Furthermore, if d(a, x1) ≤ r0, then we can, by the connectivity of X, find a point
x′1 with d(x′1, a) = r0, find a quasiconvex curve connecting x′1 to x2, and concatenate
that curve with the quasiconvex curve connecting x1 to x′1, and obtain a quasiconvex
curve connecting x1 to x2. So without loss of generality, we can also assume that
d(a, x1) ≥ r0. Thus we will assume that 2r0 ≤ 2d(a, x1) ≤ d(a, x2).

We first find estimates for da(x1, x2) as follows:

da(x1, x2) =
d(x1, x2)

[1 + d(x1, a)][1 + d(x2, a)]
≤ d(x1, a) + d(x2, a)

[1 + d(x1, a)][1 + d(x2, a)]

≤ 3

2

d(x2, a)

[1 + d(x1, a)][1 + d(x2, a)]
≤ 3

2

1

1 + d(x1, a)
.

Furthermore, since we can take r0 ≥ 1 in the definition of radially star-like quasicon-
vexity, we also see that

d(x1, x2) ≥ d(x2, a)− d(x1, a) ≥ d(x2, a)/2 ≥ [1 + d(x2, a)]/4.

Therefore,

(3.6) da(x1, x2) ≥
1

4

1

1 + d(x1, a)
.

Let γ1a∞ be a base-point quasiconvex ray from a to ∞ associated with x1 via the
radial star-like quasiconvexity of X, and let y1 be a point on this ray linked to x1 as
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in the definition of radial star-likeness. Similarly, let γ2a∞ be a base-point quasiconvex
ray from a to ∞ associated with x2 via the radial star-like quasiconvexity of X, and
let y2 be a point on this ray linked to x2 as in the definition of radial star-likeness. We
will show that the the concatenation of the four curves γx1y1 , γy2x2 , the subcurve β1
of γ1a∞ with end points y1 and∞, and the subcurve β2 of γ2a∞ with end points y2 and
∞, forms the desired quasiconvex curve (with respect to the metric da) connecting
x1 to x2.

First, consider the quasiconvex curve γx1y1 connecting x1 to y1 and lying in the
annulus A(a, r/K,Kr), where r = d(x1, a), as stipulated in the definition of radial
star-likeness. Then for each point w on that curve, we know that d(w, a) ≥ r/K.
Therefore

`da(γx1y1) =

ˆ
γx1y1

1

[1 + d(w, a)]2
ds(w) ≤ `(γx1y1)

[1 + r/K]2
≤ C

r

[1 + r/K]2

≤ C
1

1 + r/K
≤ C

1 + d(x1, a)
≤ C da(x1, x2).

We used (3.6) to obtain the last inequality in the above chain of inequalities.
Next, we consider the quasiconvex curve γy2x2 connecting x2 and y2 that lies in

the annulus A(a,R/K,KR) with R = d(x2, a). Then for each point w in that curve,
we know that d(w, a) ≥ R/K. Hence

`da(γy2x2) =

ˆ
γy2x2

1

[1 + d(w, a)]2
ds(w) ≤ `(γy2x2)

[1 +R/K]2
≤ C

R

[1 +R/K]2

≤ C
1

1 +R/K
≤ C

1 + d(x2, a)
≤ C

1 + d(x1, a)
≤ C da(x1, x2).

We again used (3.6) to obtain the above last inequality.
We finally consider the curves β1 and β2, and set r = d(a, x1), R = d(a, x2). For

non-negative integers i let z1,i be the first point at which β1 intersects X \B(a, 2ir),
and let z2,i be the first point at which β2 intersects X \ B(a, 2iR). These points
break β1 and β2 up into sub-curves β1,i and β2,i, i = 0, 1, · · · . By the base-point
quasiconvexity of γ1a∞ (see Definition 3.1), whenever w is a point in β1,i, we must
have d(a, w) ≥ 2i−1r/K. It follows that

`da(β1,i) =

ˆ
β1,i

1

[1 + d(w, a)]2
ds(w) ≤ C

`(β1,i)

[1 + 2ir]2
.

By the base-point quasiconvexity again, `(β1,i) ≤ Kd(z1,i, a) ≤ K 2ir. Note that
1 ≤ r0 ≤ d(a, x1) = r. Hence,

`da(β1) =
∑
i

`da(β1,i) ≤ C
∑
i

2ir

[1 + 2ir]2
≤ C

∑
i

2ir

4i r2
≤ C

r
≤ C

1 + d(x1, a)
.(3.7)

Therefore, using (3.6), we obtain

`da(β1) ≤ C da(x1, x2).

A similar argument for β2, with r replaced by R, gives

`da(β2) ≤
C

1 +R
.

Because in Case 3 we have r < R, we have the desired inequality `da(β2) ≤ C da(x1, x2)
as well. Thus the concatenated curve has da-metric length at most 4C da(x1, x2),
yielding the desired quasiconvex curve.
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Case 4. x1 = ∞ 6= x2. If d(x2, a) ≤ r0, since X is unbounded, there exists x′
with d(x′, a) = r0. By the radially star-like quasiconvexity property and (3.7) (which
is valid for all base-point quasiconvex rays and all points on those rays), there is γx′∞
such that `da(γx′∞) ≤ Cda(x

′,∞). In addition, since x2, x′ ∈ B̄(a, r0), we have a
Cq-quasiconvex curve γx2x′ with respect to (X, d). By the argument at the beginning
of this proof, we can see that γx2x′ is also quasiconvex with respect to (Ẋ, da), so

`da(γx2x′) ≤ Cda(x
′, x2) ≤ Cda(x

′,∞) + da(x2,∞).

Moreover, we have

da(x
′, x2) =

d(x′, x2)

[1 + d(x′, a)][1 + d(x2, a)]
≤ 1

1 + d(x′, a)
+

1

1 + d(x2, a)
≤ 2da(x2,∞),

where the last inequality follows the fact that

da(x2,∞) =
1

1 + d(x2,∞)
≤ 1

1 + d(x′,∞)
= da(x

′,∞).

Therefore, when we concatenate the curves γx2x′ and γx′∞ to obtain a curve γx2∞
such that `da(γx2∞) ≤ Cd(x2,∞).

If d(x2, a) ≥ r0, by the radially star-like quasiconvexity property, we have a
base-point quasiconvex ray γa∞ associated to x2, and y2 be the point on the ray
connected to x2. By (3.1) and (3.7), we have `da(γx2y2) ≤ Cda(x2,∞) and `da(γy2∞) ≤
Cda(x2,∞). Therefore, we have shown the quasiconvexity of the metric space (Ẋ, da).

�

Remark 3.5. Example 3.7 will show that if we remove the hypothesis of radi-
ally star-like quasiconvexity, the previous theorem would be false. Notice also that
quasiconvexity cannot be removed either. Let X be a subspace of R2 given by
X = ([0,∞) × {1}) ∪ ([0,∞) × {−1}) ∪ ({0} × [−1, 1]) together with the inherited
Euclidean metric is radially star-like quasiconvex, not quasiconvex, and (Ẋ, da) is
not quasiconvex as well.

As a consequence of Theorem 3.4 we obtain that ∞-Poincaré inequality is also
preserved under sphericalization for radially star-like quasiconvex spaces.

Theorem 3.6. Let (X, d, µ) be a complete metric space endowed with a doubling
measure µ and supporting an ∞-Poincaré inequality. Let a ∈ X be a base point on
X, and assume (X, d) is K-radially star-like quasiconvex with respect to a for some
K ≥ 2. Then (Ẋ, da, µa) also supports an ∞-Poincaré inequality.

Proof. First notice that the doubling property of µa has been shown in [22,
Proposition 3.2.2]. Then, according to Theorem 2.1 we have to prove that there is
a constant C ≥ 1 such that, for every null set N of Ẋ, and for every pair of points
x, y ∈ Ẋ there is a C-quasiconvex path γ in Ẋ connecting x to y with γ /∈ Γ+

N . Given
N ⊂ X, we have µ(N) = 0 if and only if µa(N) = 0 (when we consider N as a
subset of Ẋ). Therefore, in the proof, we will not distinguish the null set N ⊂ X
and N ⊂ Ẋ.

Without loss of generality, assume x 6= ∞ and da(y,∞) ≤ da(x,∞). Since
da(y,∞) ≤ da(x,∞), it follows that d(x, a) ≤ d(y, a). As in the proof of Theorem 3.4,
we can assume also that d(y, a) ≥ 2r0 and d(x, a) ≥ r0 ≥ 1. If d(y, a) < 2r0, then
as in the first paragraph of the proof of Theorem 3.4, we see by the biLipschitz
equivalence of the two metrics d and da on B(a, 2Cqr0) and using the fact that
(X, d) supports an ∞-Poincaré inequality, that there is a quasiconvex curve γxy in
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B(a, 2Cqr0) connecting x to y (quasiconvex with respect to the metric d and hence
with respect to the metric da) such that γxy does not belong to Γ+

N . Thus in the
remainder of this proof we will assume that d(y, a) ≥ 2r0. If d(y, a) ≥ 2r0 and
d(x, a) < r0 then we can find x′ such that d(x′, a) = r0 and argue as before to find
a quasiconvex curve γxx′ connecting x and x′ with respect to the metric da that is
not in Γ+

N . Then we can take the concatenation of γxx′ and γx′y, where γx′y will be
constructed below.

Since (X, d, µ) is a complete metric space with a doubling measure µ and supports
an ∞-Poincaré inequality, it is in particular C ′-quasiconvex for some C ′ ≥ 1, so
Ẋ is also quasiconvex with respect to the metric da by Theorem 3.4. Therefore,
there is a quasiconvex curve γ with respect to the metric da that connects x and
y. If γ intersects B(a, r0), let p, q be the first and last time γ intersects the sphere
{z ∈ X : d(z, a) = r0}, and then by the fact that da, d are biLipschitz equivalent on
B(a, 2Cr0) and that (X, d) supports an ∞-Poincaré inequality, we can find a curve
β in B(a, Cr0) that is quasiconvex both with respect to d and da, and β 6∈ Γ+

N ,
with end points p, q, and we can replace the segment of γ with end points p, q with
the curve β. Hence we only have to concern ourselves with the part of γ that lies
outside the closed ball B(a, r0). We can decompose that part of γ into subcurves γi,
i ∈ I ⊂ N∪{∞}, so that for each i the sub-curve γi lies in an annulus A(a,Ri, 4Ri),
with Ri = 2jid(x, a) ≥ r0 for some ji ∈ Z, and γ is the concatenation of these curves.
Note that it is possible to have ji = jl even if i 6= l.

Let xi, yi be the end points of γi. We next choose a finite chain of points xi,1 =
xi, xi,2, · · · , xi,Ni

= yi ∈ γi such that for each j = 1, · · · , Ni,

d(xi,j, xi,j+1) ≤
Ri

2C ′
.

Since (X, d, µ) supports an ∞-Poincaré inequality, there exists βi,j connecting xi,j
and xi,j+1 with `(βi,j) ≤ C ′d(xi,j, xi,j+1) ≤ Ri/2, and βi,j /∈ Γ+

N .
Then, for every w ∈ βi,j, we have d(w, a) > Ri− Ri

2
= Ri

2
and so 1+d(w, a) > Ri

2
.

Furthermore, because Ri ≥ r0 ≥ 1 we have that 1 + d(xi,j, a) ≤ Ri + 4Ri = 5Ri and
so

da(xi,j, xi,j+1) =
d(xi,j, xi,j+1)

[1 + d(xi,j, a)][1 + d(xi,j+1, a)]
≥ d(xi,j, xi,j+1)

25R2
i

.

Hence

`da(βi,j) =

ˆ
βi,j

1

[1 + d(w, a)]2
ds(w) ≤

ˆ `(βi,j)

0

ds

[Ri/2]2

≤ 4C ′d(xi,j, xi,j+1)

R2
i

≤ Cda(xi,j, xi,j+1).

Furthermore, since xi,j, xi,j+1 are the end points of quasiconvex curves βi,j and these
points lie in γi, we also have

Ni∑
j=1

da(xi,j, xi,j+1) ≤ C`da(γi).

Setting βi to be the concatenation of the quasiconvex curves βi,j, j = 1, · · · , Ni and
summing over j we obtain

`da(βi) =

Ni∑
j=1

`da(βi,j) ≤ C

Ni∑
j=1

da(xi,j, xi,j+1) ≤ C `da(γi).
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Clearly βi 6∈ Γ+
N . It follows that the concatenation γ′ of the curves βi, i = 1, · · · , N

(together with β, if it is the case), is a curve connecting x to y with

`da(γ′) ≤ C `da(γ) ≤ C da(x, y),

with γ′ 6∈ Γ+
N . �

The following example gives a quasiconvex metric measure space endowed with
a doubling measure, which is not radially star-like quasiconvex, supporting an ∞-
Poincaré inequality but whose sphericalized space is not quasiconvex so in particular
does not support an ∞-Poincaré inequality.

Example 3.7. Consider a length space X ⊂ R2 (in fact it is a tree) with initial
point a = (0, 0) ∈ X, constructed in the following way. Let [0,∞)×{0} be a geodesic
ray and select the points xi, i ≥ 0 from [0,∞)×{0} such that d(xi, a) = 22i . We can
also take an i-th branch emanating from xi, with end point yi = (22i , 22i+1

). Then
we have d(xi, yi) = 22i+1 . So

X = [0,∞)× {0} ∪
⋃
i∈N

{22i} × [0, 22i+1

],

see Figure 2. In what follows [xi, yi] will denote the segment in R2 connecting xi to
yi. Since X is a length space, it is in particular quasiconvex. We now endow X with
the 1-dimensional Hausdorff measure µ = H1, which is doubling. In fact, it can be
shown that (X, d, µ) is Ahlfors 1-regular.

Figure 2. A metric tree which is not radially star-like quasiconvex.

Notice also that the i-th branch of the tree has length 22i+1 , whereas the distance
between a and xi is only 22i , so the ratio between d(xi, yi) and d(xi, a) would tend to
∞ as i tends to∞, which violates the assumption of radially star-like quasiconvexity.
On the other hand, (X, d, µ) supports an ∞-Poincaré inequality. Indeed, according
to Theorem 2.1, it is enough to check that for any null set N ⊂ X and x, y ∈ X,
there is a C-quasiconvex path connecting x to y, with γ /∈ Γ+

N . In this case, we can
let γ to be the geodesic connecting x and y.

To finish, we will show that the sphericalized space (Ẋ, da) is not quasiconvex,
so in particular it does not support an ∞-Poincaré inequality. Suppose i < j. Let yi
and yj be the end points of the i-th branch and j-th branch respectively. We have
that

d(yi, yj) = d(yi, xi) + d(xi, xj) + d(xj, yj) = 22i+1

+ 22j − 22i + 22j+1 ≈ 22j+1

and
d(a, yi) = 22i + 22i+1

, d(a, yj) = 22j + 22j+1

.
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Therefore,

da(yi, yj) ≈
22j+1

22i+122j+1 =
1

22i+1 .

In order to estimate the length of the curve γ connecting yi and yj, we have to take
into account that γ ⊃ [yi, xi] ∪ [xi, xj] ∪ [xj, yj]. Denoting by γi = [xi, yi], we have
that

`da(γ) ≥ `da(γi) + `da(γj) =

ˆ `(γi)

0

ds

[1 + d(γi(s), a)]2
+

ˆ `(γj)

0

ds

[1 + d(γj(s), a)]2

=

ˆ `(γi)

0

ds

[1 + s+ 22i ]2
+

ˆ `(γj)

0

ds

[1 + s+ 22j ]2

=
1

1 + 22i
− 1

1 + 22i + 22i+1 +
1

1 + 22j
− 1

1 + 22j + 22j+1 ≈
1

22i
.

Then,
`da(γ)

da(yi, yj)
≥ 22i+1

C22i
≈ 22i

C
, for all i ≥ 0.

Therefore, we have shown that (Ẋ, da) is not quasiconvex.

4. Preservation of quasiconvexity and ∞-Poincaré inequality
under flattening: meridian-like quasiconvex spaces

In this section we introduce a general class of (bounded) metric spaces, meridian-
like quasiconvex spaces, that preserves quasiconvexity and ∞-Poincaré inequalities
under the flattening process. Meridian-like quasiconvexity is the dual property of ra-
dially star-like quasiconvexity: radially star-like quasiconvex spaces become meridian-
like quasiconvex after sphericalization, and conversely, we recover radially star-like
quasiconvexity after flattening meridian-like quasiconvex spaces.

Definition 4.1. A (bounded) metric space is K-meridian-like quasiconvex with
respect to a base point c ∈ X, if there exists a constant K ≥ 2, a point a ∈ X and a
small radius r0 > 0 such that for every x ∈ A(c, r/2, r) with r < r0 there exist a double
base-point quasiconvex curve γac, a point y ∈ γac and a curve γxy ⊂ A(c, r/K,Kr)
connecting x to y such that

(4.1) `(γxy) ≤ Kd(y, c).

By double base-point quasiconvex curve we mean that for any z ∈ γac, `(γaz) ≤
Cd(a, z) and `(γcz) ≤ Cd(c, z). Here γaz and γcz denote the subcurves of γac with
end points a and z and c and z respectively.

Remark 4.2. The idea is to choose the point a ∈ X (in Definition 4.1) in
A(c, R/2, R) where R = supz∈X d(c, z). Additionally, when 0 < r � R and x ∈
B(c, r), we have d(x, a) ≈ d(a, c). Indeed, for x ∈ B(c, r), we have that

2d(a, c) > d(a, c) + d(x, c) ≥ d(a, x) ≥ d(a, c)− d(x, c)

≥ d(a, c)− r ≈ d(a, c).
(4.2)

Observe also that meridian-like quasiconvexity implies that c is not a cut point of X,
that is, X \ {c} is necessarily connected.

The following lemma shows that, for a general class of metric spaces, annular
quasiconvexity is stronger than meridian-like quasiconvexity.
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Lemma 4.3. Let (X, d) be a bounded connected complete locally compact met-
ric space which is annularly quasiconvex with respect to a point c ∈ X. Then (X, d)
is K-meridian-like quasiconvex with respect to c.

Proof. The proof is similar to the proof of Lemma 3.3. First observe that under
the hypothesis of the Lemma, the space X is quasiconvex (see proof of Lemma 3.3).
Given x ∈ A(c, r/2, r), we can find quasiconvex curves γcx and γxa to connect c to x
and x to a respectively. As done in the proof of Lemma 3.3, we now modify the two
curves in each annulus in order to ensure the base-point quasicovexity property with
respect to a and c respectively. After denoting the modified curves by γ′cx and γ′xa,
we can show that the concatenation γ = γ′cx∪ γ′xa is a double base-point quasiconvex
curve connecting c and a, which exactly passes through x. �

The next two lemmas show that radially star-like quasiconvexity and meridian-
like quasiconvexity are dual properties, with duality given via the sphericalization/
flattening procedures.

Lemma 4.4. Let (X, d) be an unbounded complete metric space. Let a ∈ X be
a base point on X, and assume (X, d) is K-radially star-like quasiconvex with respect
to the base point a for some K ≥ 2. Then (Ẋ, da) is K ′-meridian-like quasiconvex
with respect to c =∞ for some K ′ ≥ 2.

Proof. For x ∈ X, we know that d(x, a) > r0 if and only if da(x,∞) < 1− r0
1+r0

.
Let x ∈ Ba(∞, 1− r0

1+r0
)\{∞}. By theK-radially star-like quasiconvex property there

exist a base-point quasiconvex ray γa∞, a point y ∈ γa∞ and a quasiconvex curve
γxy connecting x to y in the annulus A(a, d(a, x)/K,Kd(a, x)) such that `(γxy) ≤
Kd(a, y). Notice that the sphericalization of the ray γa∞ is a base-point quasiconvex
curve in Ẋ connecting c =∞ to a. Indeed, for each z ∈ γa∞, we denote the segment
of γa∞ with end points z and ∞ by γz∞, and note that `da(γz∞) ≤ Cda(z,∞). We
have that (we denote the subcurve of γa∞ with end points a and w by γaw in the
following):

`da(γz∞) =

ˆ
γz∞

ds

[1 + d(γ(s), a)]2
≤
ˆ
γz∞

ds

[1 + `(γaγ(s))/K]2
≤ K2

ˆ ∞
`(γaz)

dt

(1 + t)2

≤ K2

1 + `(γaz)
≤ K3

1 + d(z, a)
= C da(z,∞),

where in the first inequality we have used the fact that γa∞ is a base-point quasiconvex
ray and the second inequality we have used the fact that γ is arc-length parametrized.

Moreover, `da(γxy) ≤ Cda(y, c). Indeed, let r = d(x, a) > r0. Because r/K ≤
d(w, a) ≤ Kr for any w ∈ γxy with `(γxy) ≤ Kr, we have that

`da(γxy) =

ˆ
γxy

ds

(1 + d(γ(s), a))2
≤ Kd(y, a)

(1 + r
K

)2
≤ K3

1 + r
K

≤ K5

1 +Kr
≈ da(y, c).

To finish notice that an annulus A(a, r/2, r) in the original metric is transformed
under sphericalization into another annulus comparable to an annulus A(∞, r′/2, r′)
in the sphericalized metric for some r′ > 0. �

Lemma 4.5. Let (X, d) be a bounded complete metric space. Let c ∈ X and
assume (X, d) is K-meridian-like quasiconvex with respect to the base point c for
some K ≥ 2. Then (Xc, dc) is K ′-radially star-like quasiconvex with respect to the
point a ∈ X (as in Remark 4.2) for some K ′ ≥ 2.
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Proof. BecauseX isK-meridian-like quasiconvex with respect to a base point c ∈
X, there exist a constantK ≥ 2, a point a ∈ X and a small radius r0 > 0 such that for
every x ∈ A(c, r/2, r) and r < r0, there exist a double base-point quasiconvex curve
γac connecting a to c, a point y ∈ γac and a curve γxy ⊂ A(c, r/K,Kr) connecting x
to y such that `(γxy) ≤ Kd(y, c).

Now, we can show that the double base-point quasiconvex curve γac is a base-
point quasiconvex ray after flattening. Let z ∈ γac and consider the subcurves γaz
and γzc of γac with starting points a, z and end points z, c respectively. Since `(γcz) ≤
Kd(z, c) and `(γaz) ≤ Kd(a, z) for any z ∈ γac, it follows that

`dc(γaz) =

ˆ
γaz

ds

[d(γ(s), c)]2
≤
ˆ `(γac)

`(γzc)

K2ds

s2
≤ C

(
1

`(γzc)
− 1

`(γac)

)
≤ C`(γaz)

`(γzc)`(γac)
≤ Cd(a, z)

d(c, z)d(c, a)
= Cdc(a, z).

(4.3)

Next we prove that for x, y and γxy satisfying (4.1), we have `dc(γxy) ≤ Cdc(a, y),
for some C ≥ 1 depending on K. See that for w ∈ γxy we have that d(w, c) ≥ r/K
so if r0 is small enough,

(4.4) `dc(γxy) =

ˆ
γxy

ds

[d(γ(s), c)]2
≤ C`(γxy)

r2
≤ Cd(y, c)

r2
≤ C

d(y, c)

(4.2)
≤ Cdc(a, y).

To finish, notice that an annulus A(c, r/K,Kr) in the original metric transforms
under flattening into another annulus comparable to an annulus A(a, r′/K ′, K ′r′) in
the flattened metric for some r′ > 0 that depends only on r andK, withK ′ depending
solely on K. �

Theorem 4.6. Let (X, d) be a bounded complete metric space. Let c ∈ X be a
base point on X, and assume (X, d) is quasiconvex and K-meridian-like quasiconvex
with respect the base point c for some K ≥ 2. Then (Xc, dc) is quasiconvex.

Recall that ` denotes the length of the original metric and `dc denotes the length
of the flattened metric.

Proof. Since (X, d) is quasiconvex and meridian-like quasiconvex, by Lemma 4.5
we know that (Xc, dc) is radially star-like quasiconvex with respect to a where a is
the second point associated with the notion of meridian-like quasiconvexity.

The idea for the proof of this theorem is similar to the one used in Theorem 3.4.
Given x1, x2 ∈ Xc, we have to prove that there exists a curve γ connecting x1 and
x2 such that `dc(γ) ≤ Cdc(x1, x2). Let r0 be as in Definition 4.1.

We divide the proof into five cases: points that are in the same annulus and far
away from each other (Case 1), points that are in the same annulus and close to each
other (Case 2), points lying in different annuli (Case 3) and points lying outside the
ball B(c, r0) (Case 4) and finally one point in the ball B(c, r0) and another point
outside of B(c, r0) (Case 5). In the proof, the annuli are considered with respect to
the original metric d.

Fix c′ > 0 such that 0 < c′ < 1/(4Cq) where Cq is the quasiconvexity constant of
X.

Case 1. x1, x2 are in the annulus A(c, r/2, r) for some r < r0 and d(x1, x2) ≥ c′r.
Then we can find two double base-point quasiconvex curves γ1ac, γ2ac and points y1 ∈
γ1ac, y2 ∈ γ2ac and quasiconvex curves γx1y1 , γx2y2 ⊂ A(c, r/K,Kr) satisfying (4.1). We
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want to show that the concatenation γ = γx1y1 ∪ γ1y1a ∪ γ
2
ay2
∪ γy2x2 is a quasiconvex

curve in the flattened metric.
Because d(a, x1), d(a, y1), d(a, x2), d(a, y2) and d(x1, x2) are all comparable to r,

we have that

dc(a, x1) ≈ dc(a, y1) ≈ dc(a, x2) ≈ dc(a, y2) ≈ dc(x1, x2).

Using (4.4), we can estimate `dc(γx1y1) as follows:

`dc(γx1y1) ≤ Cdc(y1, a) ≤ Cdc(x1, x2).

Next, because y1 ∈ B(c,Kr), by (4.3) we have

`dc(γay1) ≤ Cdc(a, y1) ≤ C dc(x1, x2).

Similar arguments give us estimates for `dc(γay2) and `dc(γx2y2) in terms of dc(x1, x2).
Therefore, we have `dc(γ) ≤ Cdc(x1, x2).

Case 2. x1, x2 are in the same annulus A(c, r/2, r), r ≤ r0, and d(x1, x2) ≤ c′r.
By the quasiconvexity of (X, d), we can find a Cq-quasiconvex curve γ connecting
x1, x2. Because c′ < 1/(4Cq), for w ∈ γ, we can get the estimate

d(w, c) ≥ d(x1, c)−d(x1, w) ≥ d(x1, c)− `(γ) ≥ r/2−Cqd(x1, x2) ≥ r/2− r/4 = r/4,

so
`dc(γ) =

ˆ
γ

ds

[d(γ(s), c)]2
≤ 16`(γ)

r2
≤ 16Cqd(x1, x2)

d(x1, c)d(x2, c)
≤ Cdc(x1, x2).

Hence, we have proved quasiconvexity in Case 2.
Case 3. 2d(x1, c) ≤ d(x2, c) ≤ r0. By the definition of meridian-like quasicon-

vexity, we can choose r0 as small as we need, and so we choose 0 < r0 < d(a, c)/2.
Then we have d(a, c) ≥ 2r0, and x1, x2 ∈ B(c, r0), we have d(a, x1) ≈ d(a, c) and
d(a, x2) ≈ d(a, c), and hence

dc(x1, x2) =
d(x1, x2)

d(x1, c)d(x2, c)
≥ d(x2, c)− d(x1, c)

d(x1, c)d(x2, c)
≥ 1

d(x1, c)
− 1

d(x2, c)

≥ 1

2d(x1, c)
≥ C−1

d(x1, a)

d(x1, c)d(a, c)
= C−1dc(x1, a).

Similarly, we have dc(x2, a) ≤ Cdc(x1, x2). Therefore, as in Case 1, by (4.3) and (4.4),

`dc(γ
1
y1a

) ≤ Cdc(y1, a) ≤ Cdc(x1, a) ≤ Cdc(x1, x2),

`dc(γ
2
y1a

) ≤ Cdc(y2, a) ≤ Cdc(x2, a) ≤ Cdc(x1, x2),

`dc(γx1y1) ≤ Cdc(x1, a) ≤ Cdc(x1, x2).

Therefore
`dc(γx2y2) ≤ Cdc(x2, a) ≤ Cdc(x1, x2).

So the concatenation γ = γx1y1 ∪ γ1y1a ∪ γ
2
ay2
∪ γy2x2 is quasiconvex.

Case 4. If x1, x2 /∈ B(c, r0), dc and d are biLipschitz equivalent on X \ B(c, r0).
Indeed, because r0 < d(xi, c) < diamX for i = 1, 2, we have

d(x1, x2)

(diamX)2
≤ d(x1, x2)

d(x1, c)d(x2, c)
= dc(x1, x2) ≤

d(x1, x2)

(r0)2
.

Because (X, d) is quasiconvex, we can find a Cq-quasiconvex curve γ connecting x1, x2
with respect to the metric d. If γ intersects B(c, r0), let p, q be the first and last time
that γ intersects the sphere {z ∈ X : d(z, c) = r0}. By the fact that dc and d are
biLipschitz equivalent on X \ B(c, r0), the subcurves of γ, γx1p and γqx2 , connecting
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x1 to p and q to x2 respectively, are also quasiconvex with respect to the metric dc.
Using either Case 1 or Case 2 (depending on the distance between p and q), we now
find a quasiconvex curve β with respect to the metric dc and replace the segment of
γ with end points p, q with the curve β. The concatenation of the curves γx1p, β and
γqx2 is a quasiconvex curve with respect to the metric dc connecting x1 and x2.

Case 5. x1 ∈ B(c, r0), x2 /∈ B(c, r0). Let d(x1, c) = r < r0 ≤ d(x2, c). If
d(x1, x2) ≤ c′r0, then as in Case 2, we can find a quasiconvex curve γx1x2 connecting
x1 to x2. Since c′ < 1/(4Cq), for z ∈ γx1x2 , d(z, c) ≥ r0 − Cqc′r0 ≥ r0/2, and so

`dc(γx1x2) ≤
ˆ
γx1x2

ds

[d(γ(s), c)]2
≤ 4`(γx1x2)

r20
≤ 4Cqd(x1, x2)

r20
,

and
dc(x1, x2) =

d(x1, x2)

d(x1, c)d(x2, c)
≥ d(x1, x2)

(2r0)(c′r0)
.

On the other hand, if d(x1, x2) ≥ c′r0, let x′ ∈ Xc with d(x′, c) = r0. Therefore,
by Case 1 or Case 2 (depending on the distance between x1 and x′), we can find a
quasiconvex curve γx1x′ with respect to the metric dc, and by case 4, we can find a
quasiconvex curve γx′x2 with respect to the metric dc with

`dc(γx1x′) ≤ Cdc(x1, x
′), `dc(γx′x2) ≤ Cdc(x′, x2).

Finally, we only need to show dc(x1, x
′) + dc(x′, x2) ≤ Cdc(x1, x2).

Notice that

dc(x1, x
′) =

d(x1, x
′)

d(x1, c)d(x′, c)
, dc(x2, x

′) =
d(x2, x

′)

d(x2, c)d(x′, c)
, dc(x1, x2) =

d(x1, x2)

d(x2, c)d(x′, c)

and we have d(x′, c) = r0, d(x1, x2) ≥ c′r0, d(x1, c) < r0 ≤ d(x2, c), so we can get
d(x2, x

′)

d(x2, c)d(x′, c)
≤ d(x2, x1) + d(x1, x

′)

d(x2, c)r0
≤ d(x1, x2)

d(x2, c)d(x1, c)
+

d(x1, x
′)

d(x1, c)r0
.

Therefore, we only need to show that
d(x1, x

′)

d(x1, c)r0
≤ C

d(x1, x2)

d(x2, c)d(x1, c)
,

that is, d(x1, x
′)d(x2, c) ≤ Cd(x1, x2)d(x′, c). Since d(x1, x

′) ≤ d(x1, c)+d(x′, c) ≤ 2r0
and c′r0 ≤ d(x1, x2) we can obtain

d(x1, x
′)d(x2, c) ≤ d(x1, x

′)[d(x1, x2) + d(x1, c)] ≤ 2r0d(x1, x2) + 2r20 ≤ 2Cr0d(x1, x2).

Combining the arguments above, we have proved that dc(x1, x′) + dc(x′, x2) ≤ dc(x1,
x2). �

As a consequence of Theorem 4.6 we obtain that ∞-Poincaré inequality is also
preserved under flattening for meridian-like quasiconvex spaces.

Theorem 4.7. Let (X, d, µ) be a complete bounded metric space endowed with
a doubling measure µ and supporting an ∞-Poincaré inequality. Let c ∈ X be a
base point on X, and assume (X, d) is K-meridian-like quasiconvex with respect to
the base point c for some K ≥ 2. Then (Xc, dc, µc) also supports an ∞-Poincaré
inequality.

Proof. The proof is similar to the proof of Theorem 3.6. Since (X, d, µ) is a
complete metric space with a doubling measure µ and supports and ∞-Poincaré
inequality, then it is C ′-quasiconvex for some C ′ ≥ 1, so by Theorem 4.6, (Xc, dc) is
quasiconvex and there is quasiconvex curve γ with respect to the metric dc connecting
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x and y. Notice that the doubling property of µc has been shown in [22, Proposition
4.2.1.]. Now, according to Theorem 2.1 we need to prove that there is a constant
C ≥ 1 such that, for every null set N of Xc, and for every pair of points x, y ∈ Xc

there is a C-quasiconvex path γ in Xc connecting x to y with γ /∈ Γ+
N . Given N ⊂ X

with c /∈ N , we have µ(N) = 0 if and only if µc(N) = 0 (if we consider N as a
subset of Xc). Therefore, in the proof, we will not distinguish the null set N ⊂ X
and N ⊂ Xc.

Without loss of generality, we assume d(x, c) ≤ d(y, c). Let x ∈ A(c, 2−kR,
2−k+1R), y ∈ A(c, 2−jR, 2−j+1R), for some j ≤ k, where R = supz∈X d(c, z).

First, we want to show that there exists m ≥ k + 2 with γ ∩ B(c, 2−mR) = ∅.
Assume γ ∩B(c, 2−mR) 6= ∅, for arbitrary big m ∈ N. Notice that

(4.5) `dc(γ) ≤ Cdc(x, y) = C
d(x, y)

d(x, c)d(y, c)
≤ C

2d(y, c)

d(x, c)d(y, c)
≤ 2C2k/R.

Let γm ⊂ A(c, 2−m+1R, 2−m+2R) be a subcurve of γ with end points zm, z′m such that
d(zm, c) = 2−m+1R, d(z′m, c) = 2−m+2R, then

(4.6) `dc(γzmz′m) =

ˆ `(γzmz′m
)

0

ds

(d(c, γ(s)))2
≥

`(γzmz′m)

(2−m+2R)2
≥ d(zm, z

′
m)

(2−m+2R)2
≥ 2m−3/R.

Combining (4.5) and (4.6), we can see that m cannot be too large.
Now, we can choose a sequence of points x0 = x, x1, · · · , xN = y in γ and

construct a collection of quasiconvex curves γ1, γ2, . . . , γN with respect to the metric
dc such that the end points of γi are xi−1 and xi for each 1 ≤ i ≤ N . We will
construct the curve γi by induction. First notice that x0 = x ∈ A(c, 2−kR, 2−k+1R)
and denote j0 = k. If `(γx0y) ≤ 2−j0R/(2C ′), we just let x1 = y. If not, let x1 ∈ γ be
a point such that the length of the subcurve of γ connecting x0 and x1 (denoted by
γx0x1) has length `(γx0x1) = 2−j0R/(2C ′).

Notice that `(γx0x1) ≤ 2−j0R/(2C ′), and for z ∈ γx0x1
d(z, c) ≥ d(x0, c)− `(γx0z) ≥ 2−j0R− 2−j0R/(2C ′) ≥ 2−j0R/2.

Similarly, we obtain that d(z, c) ≤ 2−j0+2R. Therefore, we can see that γx0x1 ⊂
A(c, 2−j0−1R, 2−j0+2R). Since x1 has been chosen, we take j1 as the integer such that
2−j1R ≤ d(x1, c) < 2−j1+1R. Since (X, d, µ) supports an ∞-Poincaré inequality, we
can take a C ′-quasiconvex curve γ1 /∈ Γ+

N connecting x0 and x1. On the other hand,
since d(x0, x1) ≤ `(γx0x1) ≤ 2−j0R/(2C ′), we have `(γ1) ≤ C ′d(x0, x1) ≤ 2−j0R/2,
similar to the argument above, we can show that for z ∈ γ1, we have 2−j0−1R ≤
d(z, c) ≤ 2−j0+2R. Hence, we can obtain γ1 ⊂ A(c, 2−j0−1R, 2−j0+2R). Also, we have

`dc(γ1) =

ˆ `(γ1)

0

ds

d(c, γ1(s))2
≈ `(γ1)

(2−j0R)2
≤ C

d(x0, x1)

(2−j0R)2
. dc(x0, x1).

By induction, suppose xi−1 has been chosen and take xi ∈ γxi−1y (subcurve of γ
connecting xi and y) satisfying `(γxi−1xi) = 2−ji−1R/(2C ′) for some ji ∈ N. If
`(γxi−1y) ≤ 2−ji−1R/(2C ′), then just let i = N and xi = y. As the argument above, we
can replace γxi−1xi by γi with the same endpoints, and we have `dc(γi) ≤ Cd(xi−1, xi),
for some C depending only on the ∞-Poincaré inequality of (X, d, µ) and the quasi-
convexity constant of (Xc, dc).

In equations (4.5) and (4.6), we have shown that γ ⊂ X \ B(c, 2−mR) for some
m ≥ k + 2. With the same argument, we can show that for every 1 ≤ i ≤ N ,
γi ⊂ X \ B(c, 2−m−1R), so we can get ji ≤ m + 1 for all i. Therefore, we can find
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an integer N such that xN = y, which means that this construction ends up after a
finite number of steps.

To finish, take γ′ as the concatenation of γ1, γ2, · · · , γN , that has

`dc(γ
′) ≤ C

N∑
i=1

dc(xi−1, xi) ≤ C`dc(γ) ≤ Cdc(x, y).

Therefore, we have shown that γ′ is a quasiconvex curve connecting x and y with
γ′ /∈ Γ+

N . �

Example 4.8. Observe that we cannot remove the hypothesis of meridian-like
quasiconvexity from Theorem 4.6 or Theorem 4.7. This example is considered in
[2, Example 3.6.] as a metric space that fails to have a reverse scape property. Let
ai = 1

(i+1)!
and bi = 1

i!
, i = 2, 3, . . . , and set

X = [0, 1]× {0} ∪
∞⋃
i=1

{ai} × [0, bi] ⊂ R2,

where X is endowed with the length metric on R2 and the 1-dimensional Hausdorff
measure µ. Let c = (0, 0) be the point to be moved to∞, and denote xi = (ai, 0), yi =

(ai, bi), a = (1, 0). We can see that |yi−xi||xi−c| = (i+1)!
i!

= i+1→∞, so X is not meridian-
like quasiconvex. We want to show that (X, d, µ) supports an∞-Poincaré inequality,
but (Xc, dc, µc) does not. First, one can show that (X, d, µ) is Ahlfors 1-regular.
Since X is a length space, it is in particular quasiconvex. However, the flattened
space (Xc, dc, µc) is not quasiconvex. Let i < j. Then

d(yi, c) =
1

i!
+

1

(i+ 1)!
, d(yj, c) =

1

j!
+

1

(j + 1)!
,

and
d(yi, yj) =

1

i!
+

1

j!
+

1

(i+ 1)!
− 1

(j + 1)!
≈ 1

i!
.

Then we can get

dc(yi, yj) =
d(yi, yj)

d(yi, c)d(yj, c)
≈

1
i!
1
i!

1
j!

= j!.

On the other hand, since (X, d, µ) is a tree, every geodesic curve γ connecting yi to
yj is of the form [xi, yi] ∪ [xi, xj] ∪ [xj, yj]. We only need to estimate `dc([xj, yj]).

`dc([xj, yj]) =

ˆ
[xj ,yj ]

dw

(d(w, c))2
=

ˆ 1
j!

0

dt

( 1
(j+1)!

+ t)2
=

1
1

(j+1)!

− 1
1

(j+1)!
+ 1

j!

=(j + 1)!− (j + 1)!

j + 2
≈ (j + 1)!.

Therefore, since `dc (γ)
dc(yi,yj)

≈ (j+1)!
j!
≈ j + 1 → ∞ when j → ∞, so (Xc, dc, µc) is not

quasiconvex and so cannot support an ∞-Poincaré inequality.
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