
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 42, 2017, 285–302

MULTIPLE POSITIVE SOLUTIONS FOR THE
NONLINEAR SCHRÖDINGER–POISSON SYSTEM

Weiming Liu∗ and Miaomiao Niu

Hubei Normal University, School of Mathematics and Statistics
Huangshi, 435002, P. R. China; whu.027@163.com

Beijing Normal University, School of Mathematical Sciences
Beijing, 100875, P. R. China; miaomiaoniu@mail.bnu.edu.cn

Abstract. We consider the following Schrödinger–Poisson system in R
3

(0.1)

{

−∆u+ u+ αK(|x|)Φ(x)u = |u|p−2u, x ∈ R
3,

−∆Φ = K(|x|)u2, x ∈ R
3,

where 2 < p < 6, α can be regarded as a parameter and K(r)(r = |x|) is a positive continuous

function. There are constants a ∈ R and b ∈ (0, 1
2
], such that K(r) ∼ rae−br, as r → +∞. Then,

(0.1) possesses a non-radial positive solution with exactly m maximum points for suitable range of

α.

1. Introduction and main result

The following Schrödinger–Poisson system

(1.1)

{

−∆u + V (x)u+K(x)Φ(x)u = |u|p−2u, x ∈ R
3,

−∆Φ = K(x)u2, x ∈ R
3,

has been studied extensively by many researchers, where 2 < p < 6. This system
has been first introduced in [5] as a physical model describing a charged wave inter-
acting with its own electrostatic field in quantum mechanic. The unknowns u and
Φ represent the wave functions associated to the particle and electric potential, and
functions V and K are respectively an external potential and nonnegative density
charge. We refer to [5] and the references therein for more physical background.

In recent years, there has been increasing interest in studying problem (1.1). In
the case of V (x) ≡ 1, K(x) ≡ λ > 0, the existence of radially symmetric positive
solutions of system (1.1) was obtained by D’Aprile and Mugnai in [9] and Ruiz in
[20] for p ∈ (3, 6). Azzollini and Pomponio in [4] established the existence of ground
state solutions for p ∈ (3, 6). For p ∈ (2, 3), λ = 1, Ruiz in [20] proved that (1.1)
does not admit any nontrivial solution. When K(x) ≡ 1 and V (x) is not a constant,
the authors proved that there exist radially symmetric solutions concentrate on the
spheres in [12, 14] and a positive bound state solution concentrates on the local
minimum of the potential V in [13]. By using constrained minimization on the sign-
changing Nehari manifold and the Brouwer degree theory, Wang and Zhou in [23]
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studied the existence of sign-changing solutions for (1.1). Ruiz and Vaira in [21]
constructed the multi-bump solutions whose bumps concentrated around the local
minimum of the potential V . The proofs explored in [21] are based on a singular
perturbation, essentially a Lyapunov–Schmidt reduction method. In [11], He and Li
concerned with the problem (1.1) with critical nonlinearity. For the more general
nonlinearity f(u), by applying the method of penalized functions, Sun et al. in [22]
proved the system (1.1) has one nontrivial solution in the case 3 < p ≤ 4. For more
related results, one can refer to [3, 1, 5, 7, 10, 15, 24, 25] and the references therein.

Our motivation to study (1.1) mainly comes from the results: In [18], Lin et al.
proved the single Schrödinger equation

−∆u+ (1 + ǫK(x))u = |u|p−2u, x ∈ R
N ,

has multi-bump solutions with the condition:

(1.2) K(x) ∈ C(RN ,R+), lim
|x|→∞

K(x) = 0, lim
|x|→∞

ln(K(x))

|x|
= 0.

In [17], Li et al. consider the infinitely many positive solutions of the following
Schrödinger–Poisson system

(1.3)

{

−∆u+ u+K(|x|)Φ(x)u = Q(|x|)|u|p−2u, x ∈ R
3,

−∆Φ = K(|x|)u2, x ∈ R
3,

where K(|x|) and Q(|x|) are bounded and positive functions, 2 < p < 6. K(|x|) and
Q(|x|) have the following expansions:

K(r) =
a

rm
+O

(

1

rm+θ

)

, (a > 0, m >
1

2
, θ > 0), r = |x| → +∞,(1.4)

Q(r) = Q0+
b

rn
+O

(

1

rn+ϑ

)

, (Q0 > 0, b ∈ R, n > 1, ϑ > 0), r = |x| → +∞.(1.5)

As we can see, the expansion (1.4) is a special form of (1.2). Motivated by all
results mentioned above, it is very natural for us to pose an interesting question: if the

condition lim|x|→∞
ln(K(x))

|x|
< 0 holds, can we obtain the multiple positive solutions

for the problem (1.1)? Especially, in [19], Long and Peng studied the existence
of multiple positive solutions for the single Schrödinger equation under the above
codition. Now, our answer is positive. We consider the following condition (K)

which satisfies lim|x|→∞
ln(K(x))

|x|
< 0.

In this paper, we studied the following Schrödinger–Poisson system

(1.6)

{

−∆u + u+ αK(|x|)Φ(x)u = |u|p−2u, x ∈ R
3,

−∆Φ = K(|x|)u2, x ∈ R
3,

where K(r)(r = |x|) is a positive continuous function, 2 < p < 6. We assume that
K(r) satisfies the following condition:

(K) There are constants a ∈ R and b ∈ (0, 1
2
], such that

K(r) ∼ rae−br,

as r → +∞.

We summarize our main results as follows.

Theorem 1.1. If K(r) satisfies (K), for a fixed integer m > 1, provided one of

the following conditions holds:
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(1) If b > sin π
m

, then α > α1 for suitable large α1 > 0;
(2) If b < sin π

m
, then 0 < α < α2 for suitable small α2 > 0, where α1 and α2 are

only dependent on b and m.

Then problem (1.6) possesses a non-radial positive solution with exactly m maximum

points.

In the following, we sketch the main idea in the proof of Theorem 1.1. The
Sobolev space H1(R3) is endowed with the standard norm

‖u‖ =
√

〈u, u〉, u ∈ H1(R3),

which is induced by the inner product

〈v1, v2〉 =

ˆ

R3

∇v1∇v2 +

ˆ

R3

v1v2.

The homogeneous Sobolev space

D1,2(R3) = {u ∈ L2∗(R3) : ∇u ∈ L2(R3)},

with the norm

‖u‖D1,2 =

(
ˆ

R3

|∇u|2
)

1
2

.

For every u ∈ H1(R3), the Riesz theorem implies that there exists a unique
Φu ∈ D1,2(R3) such that −∆Φu = K(x)u2 and Φu can be represented by

Φu(x) =
1

4π

ˆ

R3

K(y)u2(y)

|x− y|
dy.(1.7)

Furthermore, one has
‖Φu‖D1,2 ≤ c‖u‖2,

where c > 0. Thus system (1.6) can be reduced into equation

(1.8) −∆u + u+K(|x|)Φuu = |u|p−2u.

The solution of (1.6) can be approximated by using the solution U of the following
problem

(1.9)

{

−∆u+ u = up−1, u > 0 in R
3,

u(0) = max
x∈R3

u(x).

It is well-known that the unique solution U of (1.9) satisfies U(x) = U(|x|) and
U ′ < 0 (see [16]).

For any positive integer m > 1, let us define

(1.10) yj =

(

r cos
2(j − 1)π

m
, r sin

2(j − 1)π

m
, 0

)

:= (y′j, 0), j = 1, 2, . . . , m,

where r ∈
[

(1−τ) lnα

b−sin π
m

,
(1+τ) lnα

b−sin π
m

]

for some τ > 0 small enough. Define

H =
{

u : u ∈ H1(R3), u is even in xh, h = 2, 3; u(r cos θ, r sin θ, x3)

= u
(

r cos
(

θ +
2πj

m

)

, r sin
(

θ +
2πj

m

)

, x3

)

, j = 1, 2, . . . , m
}

.

Let

(1.11) Uy(x) =

m
∑

j=1

Uyj (x),
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where Uyj (·) = U(· − yj).
Theorem 1.1 is a direct consequence of the following result.

Theorem 1.2. Suppose K(r) satisfies (K), b 6= sin π
m

and provided one of fol-

lowing conditions holds:

(1) If b > sin π
m

, then α > α1 for suitable large α1 > 0;
(2) If b < sin π

m
, then 0 < α < α2 for suitable small α2 > 0, where α1 and α2 are

only dependent on b and m.

Then (1.6) has a positive solution um of the form

um = Uym(x) + wm,

where wm ∈ H, rm ∈
[

(1−τ) lnα

b−sin π
m

,
(1+τ) lnα

b−sin π
m

]

, τ > 0 small enough and as α → +∞(or 0+),

‖wm‖H1 → 0.

Our paper is organized as follows. In section 2, we will carry out Lyapunov–
Schmidt reduction. Then, we will study the reduced finite-dimensional problem and
prove our mian result in section 3. Some technical estimates are left in the appendix.

2. Finite-dimensional reduction

We begin the Lyapunov–Schmidt for the proof of Theorem 1.2. Assume

(2.1) r ∈ Λm :=

[

(1− τ) lnα

b− sin π
m

,
(1 + τ) lnα

b− sin π
m

]

,

where τ > 0 small enough. Define

I(u) =
1

2

ˆ

R3

|∇u|2 +
1

2

ˆ

R3

u2 +
α

4

ˆ

R3

K(|x|)Φuu
2 −

1

p

ˆ

R3

|u|p, ∀u ∈ H.

It is easy to check that
ˆ

R3

∇u1∇u2 +

ˆ

R3

u1u2 − (p− 1)

ˆ

R3

Up−2
y u1u2 + α

ˆ

R3

K(|x|)ΦUy
u1u2

+ 2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyu1 dy

)

Uyu2, u1u2 ∈ H,

is a bounded bi-linear functional in H . Hence, by Lax–Milgram Theorem there is a
bounded linear operator L from H to H , such that

〈Lu1, u2〉 =

ˆ

R3

∇u1∇u2 +

ˆ

R3

u1u2 − (p− 1)

ˆ

R3

Up−2
y u1u2 + α

ˆ

R3

K(|x|)ΦUy
u1u2

+ 2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyu1dy

)

Uyu2, u1u2 ∈ H.

The following result implies that L is invertible in H .

Lemma 2.1. There are positive constants C, small α2 and α1 sufficiently large

such that for α > α1 when b > sin π
m

or 0 < α < α2 when b < sin π
m

,

‖Lu‖ ≥ C‖u‖, u ∈ H.

Proof. We only prove the lemma for the case b > sin π
m

. Here we prove it by
a contradiction argument. Suppose to the contrary that there exist αk → +∞ and
uk ∈ H with

‖Luk‖ = o(1)‖uk‖.
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Then we have

(2.2) 〈Luk, ϕ〉 = o(1)‖uk‖‖ϕ‖, ∀ϕ ∈ H.

We may assume that ‖uk‖2 = 1.
Denote

Ωj =

{

x = (x′, x3) ∈ R
2 ×R :

〈

x′

|x′|
,
y′j

|y′j|

〉

≥ cos
π

m

}

, j = 1, 2, · · · , m.

By symmetry, we see from (2.2),
ˆ

Ω1

∇uk∇ϕ+

ˆ

Ω1

ukϕ− (p− 1)

ˆ

Ω1

Up−2
y ukϕ+ α

ˆ

Ω1

K(|x|)ΦUy
ukϕ

+ 2α

ˆ

Ω1

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyuk dy

)

Uyϕ = o(1)‖ϕ‖, ϕ ∈ H.

(2.3)

Particularly, choosing ϕ = uk we get
ˆ

Ω1

|∇uk|
2 +

ˆ

Ω1

u2
k − (p− 1)

ˆ

Ω1

Up−2
y u2

k + α

ˆ

Ω1

K(|x|)ΦUy
u2
k

+ 2α

ˆ

Ω1

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyuk dy

)

Uyuk = o(1)

(2.4)

and

(2.5)

ˆ

R3

|∇uk|
2 +

ˆ

R3

u2
k = 1.

Let ũk(x) = uk(x− y1). It is easy to check that for any R > 0, we can choose k

large enough such that BR(y1) ⊂ Ω1. Consequently, (2.5) yields that
ˆ

BR(0)

|∇ũk|
2 +

ˆ

BR(0)

ũ2
k ≤ 1.

Thus we may assume that there exists a u ∈ H1(R3) such that as k → +∞,

ũk ⇀ u, weakly in H1(R3)

and
ũk → u, strongly in L2

loc(R
3).

Noting that ũk is even in xh, h = 2, 3, then u is even in xh, h = 2, 3. On the other
hand, from

ˆ

R3

∂Uy1

∂r
Up−2
y1

uk = 0,

we obtain
ˆ

R3

∂U

∂x1

Up−2ũk = 0.

So u satisfies

(2.6)

ˆ

R3

∂U

∂x1
Up−2u = 0.

Now we prove that u satisfies

−∆u + u− (p− 1)Up−2u = 0, in R
3.

Define

H̃ =

{

ϕ : ϕ ∈ H1(R3),

ˆ

R3

∂U

∂x1

Up−2ϕ = 0

}

.
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For any R > 0, let ϕ ∈ C∞
0 (BR(0))∩ H̃ be any function, satisfying that ϕ is even

in xh, h = 2, 3. Then ϕ1(x) =: ϕ(x− y1) ∈ C∞
0 (BR(y1)). By using (2.4), we find

(2.7)

ˆ

R3

∇u∇ϕ+

ˆ

R3

uϕ− (p− 1)

ˆ

R3

Up−2uϕ = 0.

Furthermore, since u is even in xh, h = 2, 3, (2.7) is true for any function ϕ ∈
C∞

0 (R3), which is odd in xh, h = 2, 3. Therefore, (2.7) is true for any ϕ ∈
C∞

0 (BR(0)) ∩ H̃ . Since C∞
0 (R3) is dense in H1(R3), it is easy to prove that

(2.8)

ˆ

R3

∇u∇ϕ+

ˆ

R3

uϕ− (p− 1)

ˆ

R3

Up−2uϕ = 0, ∀ϕ ∈ H̃.

But (2.8) is true for ϕ = ∂U
∂x1

. Thus (2.8) is true for any ϕ ∈ H1(R3), and hence

u = c ∂U
∂x1

because u is even in xh, h = 2, 3. By (2.6), we find u = 0. Consequently,
ˆ

BR(y1)

u2
k = o(1), ∀R > 0.

By the Hölder inequality and Lemma A.2, we have
∣

∣

∣

∣

α

ˆ

Ω1

K(|x|)ΦUy
u2
k + 2α

ˆ

Ω1

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyuk dy

)

Uyuk

∣

∣

∣

∣

≤ αrae−brC

ˆ

R3

u2
k + α

ˆ

R3

K(|x|)
∣

∣ΦUy

∣

∣

1
2
∣

∣Φuk

∣

∣

1
2Uyuk

≤ αrae−brC + αrae−brr
a
2 e−

b
2
rC

ˆ

R3

∣

∣Φuk

∣

∣

1
2Uyuk

≤ αrae−brC + αrae−brC‖uk‖
2

(
ˆ

R3

U2
y

) 1
2

→ 0.

Thus, by (2.2) and (K), we have

o(1) =

ˆ

Ω1

|∇uk|
2 +

ˆ

Ω1

u2
k − (p− 1)

ˆ

Ω1

Up−2
y u2

k + α

ˆ

Ω1

K(|x|)ΦUy
u2
k

+ 2α

ˆ

Ω1

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyukdy

)

Uyuk

≥

ˆ

Ω1

|∇uk|
2 +

ˆ

Ω1

u2
k + o(1) + oR(1)

ˆ

Ω1

u2
k ≥

1

2
> 0,

which is impossible for large R. �

Now, we prove the following proposition.

Proposition 2.2. Under the assumptions of Lemma 2.1, there exists a C1 map

with respect to r from Λm to H : ϕ = ϕ(r), satisfying ϕ ∈ H, and

〈∂J(ϕ)

∂ϕ
, v
〉

= 0, ∀v ∈ H.

Moreover, there is a small τ > 0, such that

(2.9) ‖ϕ‖ ≤ C
(

αe−(1−τ)2br + e−min{p−1−σ,2−σ}r sin π
m

)

.

Proof. Denote

J(ϕ) = I(Uy + ϕ), ϕ ∈ H.
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By direct computation, we have

J(ϕ) = I (Uy + ϕ) =
1

2

ˆ

R3

|∇Uy +∇ϕ|2 +
1

2

ˆ

R3

(Uy + ϕ)2

+
α

4

ˆ

R3

K(|x|)ΦUy+ϕ(Uy + ϕ)2 −
1

p

ˆ

R3

|Uy + ϕ|p

=
1

2

ˆ

R3

|∇Uy|
2 +

1

2

ˆ

R3

U2
y +

α

4

ˆ

R3

K(|x|)ΦUy
U2
y −

1

p

ˆ

R3

|Uy|
p

+

ˆ

R3

(

m
∑

j=1

Up−1
yj

− Up−1
y

)

ϕ+ α

ˆ

R3

K(|x|)ΦUy
Uyϕ

+
1

2

ˆ

R3

|∇ϕ|2 +
1

2

ˆ

R3

ϕ2 −
p− 1

2

ˆ

R3

|Uy|
p−2ϕ2 +

α

2

ˆ

R3

K(|x|)ΦUy
ϕ2

+ α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
Uyϕdy

)

Uyϕ

+ α

ˆ

R3

K(|x|)ΦϕUyϕ+
α

4

ˆ

R3

K(|x|)Φϕϕ
2 −

1

p

ˆ

R3

|Uy + ϕ|p +
1

p

ˆ

R3

|Uy|
p

+

ˆ

R3

|Uy|
p−1ϕ+

p− 1

2

ˆ

R3

|Uy|
p−2ϕ2.

Hence,

J(ϕ) = J(0) + f(ϕ) +
1

2
〈Lϕ, ϕ〉+R(ϕ),

where

(2.10) f(ϕ) =

ˆ

R3

(

m
∑

j=1

Up−1
yj

− Up−1
y

)

ϕ+ α

ˆ

R3

K(|x|)ΦUy
Uyϕ.

L is the bounded linear map from H to H in Lemma 2.1, and

R(ϕ) = α

ˆ

R3

K(|x|)ΦϕUyϕ +
α

4

ˆ

R3

K(|x|)Φϕϕ
2 −

1

p

ˆ

R3

|Uy + ϕ|p +
1

p

ˆ

R3

|Uy|
p

+

ˆ

R3

|Uy|
p−1ϕ+

p− 1

2

ˆ

R3

|Uy|
p−2ϕ2.

It is not difficult to verify that f(ϕ) is a bounded linear functional in H , so there
exists an fm ∈ H such that

f(ϕ) = 〈fm, ϕ〉.

Thus, to find a critical point for J(ϕ), we only need to solve

(2.11) fm + Lϕ+R′(ϕ) = 0.

From Lemma 2.1 we know that L is invertible. Therefore, (2.11) can be rewritten as

ϕ = A(ϕ) =: −L−1fm − L−1R′(ϕ).

Set

N =
{

ϕ : ϕ ∈ H, ‖ϕ‖ ≤ αe−(1−τ−τ1)2br + e−min{p−1−σ−τ1,2−σ−τ1}r sin
π
m

}

.

where τ1 > 0 sufficiently small. When 2 < p ≤ 3, we can verify that

‖R′(ϕ)‖ ≤ C‖ϕ‖p−1.
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Hence Lemma 2.3 below implies

‖A(ϕ)‖ ≤ C‖fm‖+ C‖ϕ‖p−1

≤ Cαe−(1−τ)2br + Ce−min{p−1−σ,2−σ}r sin π
m + C

(

αe−(1−τ−τ1)2br

+ e−min{p−1−σ−τ1,2−σ−τ1}r sin
π
m

)p−1

≤ αe−(1−τ−τ1)2br + e−min{p−1−σ−τ1,2−σ−τ1}r sin
π
m .

(2.12)

Thus, A maps N into N when 2 < p ≤ 3.
Meanwhile, when 2 < p ≤ 3, we see

‖R′′(ϕ)‖ ≤ C‖ϕ‖p−2.

Thus,

‖A(ϕ1)−A(ϕ2)‖ = ‖L−1R′(ϕ1)− L−1R′(ϕ2)‖

≤ C‖R′(ϕ1)−R′(ϕ2)‖ ≤ C‖R′′(εϕ1 + (1− ε)ϕ2)‖‖ϕ1 − ϕ2‖

≤ C(‖ϕ1‖
p−2 + ‖ϕ2‖

p−2)‖ϕ1 − ϕ2‖ ≤
1

2
‖ϕ1 − ϕ2‖,

where ε ∈ (0, 1). Thus, we have proved that when 2 < p ≤ 3, A is a contraction map.
When p > 3, by the Hölder inequality and the Sobolev inequality, we get

|〈R′(ϕ), ξ〉|

=
∣

∣

∣
2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
ϕξ dy

)

Uyϕ+ α

ˆ

R3

K(|x|)ΦϕUyξ + α

ˆ

R3

K(|x|)Φϕϕξ

−

ˆ

R3

|Uy + ϕ|p−1ξ +

ˆ

R3

|Uy|
p−1ξ + (p− 1)

ˆ

R3

|Uy|
p−2ϕξ

∣

∣

∣

≤
∣

∣

∣
2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
ϕξ dy

)

Uyϕ+ α

ˆ

R3

K(|x|)ΦϕUyξ + α

ˆ

R3

K(|x|)Φϕϕξ
∣

∣

∣

+
∣

∣

∣

ˆ

R3

|Uy + ϕ|p−1ξ −

ˆ

R3

|Uy|
p−1ξ − (p− 1)

ˆ

R3

|Uy|
p−2ϕξ

∣

∣

∣

≤ Cαrae−br

ˆ

R3

|Φϕ|
1
2 |Φξ|

1
2Uy|ϕ|+ Cαrae−br

(
ˆ

R3

|Φϕ|
6

)
1
6
(
ˆ

R3

|ξ|
12
5

)
5
12
(
ˆ

R3

|Uy|
12
5

)
5
12

+ Cαrae−br

(
ˆ

R3

|Φϕ|
6

)
1
6
(
ˆ

R3

|ξ|
12
5

)
5
12
(
ˆ

R3

|ϕ|
12
5

)
5
12

+ C

ˆ

R3

|Uy|
p−3|ϕ|2|ξ|

≤ Cα
bτ−sin π

m
b−sin π

m ‖ϕ‖2‖ξ‖+ Cα
bτ−sin π

m
b−sin π

m ‖Φϕ‖D1,2‖ξ‖+ Cα
bτ−sin π

m
b−sin π

m ‖Φϕ‖D1,2‖ξ‖‖ϕ‖

+ C

(
ˆ

R3

(

|Uy|
p−3|ϕ|2

)
p

p−1

)
p−1
p

‖ξ‖

≤ C‖ϕ‖2‖ξ‖+ C‖ϕ‖2‖ξ‖+ C‖ϕ‖3‖ξ‖+ C

(
ˆ

R3

|ϕ|
2p
p−1

)
p−1
p

‖ξ‖.

Hence, we deduce that

‖R′(ϕ)‖ ≤ C(‖ϕ‖2 + ‖ϕ‖3).
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For the estimate of ‖R
′′

(ϕ)‖, we have

|R
′′

(ϕ)(ξ, η)|

=
∣

∣

∣
2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
ηξ dy

)

Uyϕ+ 2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
ϕξ dy

)

Uyη

+ 2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
ϕη dy

)

Uyξ + 2α

ˆ

R3

K(|x|)

(
ˆ

R3

K(|y|)

|x− y|
ϕξ dy

)

ϕη

+ α

ˆ

R3

K(|x|)Φϕξη − (p− 1)

ˆ

R3

(Uy + ϕ)p−2ξη + (p− 1)

ˆ

R3

Up−2
y ξη

∣

∣

∣

≤ C(‖ϕ‖+ ‖ϕ‖2)‖ξ‖‖η‖,

which implies

‖R′′(ϕ)‖ ≤ C(‖ϕ‖+ ‖ϕ‖2).

Thus, we have

‖A(ϕ)‖ ≤ C‖fm‖+ C‖ϕ‖2

≤ Cαe−(1−τ)2br + Ce−min{p−1−σ,2−σ}r sin π
m

+ C
(

αe−(1−τ−τ1)2br + e−min{p−1−σ−τ1,2−σ−τ1}r sin
π
m

)2

≤ αe−(1−τ−τ1)2br + e−min{p−1−σ−τ1,2−σ−τ1}r sin
π
m

(2.13)

and

‖A(ϕ1)−A(ϕ2)‖ = ‖L−1R′(ϕ1)−L−1R′(ϕ2)‖

≤ C‖R′(ϕ1)− R′(ϕ2)‖ ≤ C‖R′′(εϕ1 + (1− ε)ϕ2)‖‖ϕ1 − ϕ2‖ ≤
1

2
‖ϕ1 − ϕ2‖,

where ε ∈ (0, 1). Hence, A is also a contraction map from N to N .
By the contraction mapping theorem, we see that there is a unique ϕ such that

(2.11) holds. Moreover, it follows from (2.12) and (2.13) that (2.9) holds. �

Lemma 2.3. There exists a constant C > 0, such that

‖fm‖ ≤ C(αe−(1−τ)2br + e−min{p−1−σ,2−σ}r sin π
m ),

where τ > 0 is an arbitrary small constant.

Proof. We recall

(2.14) f(ϕ) =

ˆ

R3

(

m
∑

j=1

Up−1
yj

− Up−1
y

)

ϕ+ α

ˆ

R3

K(|x|)ΦUy
Uyϕ.

Since it follows from (3.18) and (3.19) in [8], by Lemma A.1, we have

∣

∣

∣

ˆ

R3

Up−1
y

ϕ−
m
∑

j=1

ˆ

R3

Up−1
yj

ϕ
∣

∣

∣
≤



















C
∑

k 6=j

ˆ

R3

U
p−1
2

yk U
p−1
2

yj |ϕ|, if 2 < p ≤ 3,

C
∑

k 6=j

ˆ

R3

Up−2
yk

Uyj |ϕ|, if p > 3,

≤ Ce−min{p−1−τ,2−τ}r sin π
m‖ϕ‖,

where τ > 0 small enough.
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By the Hölder inequality, we have

(2.15)

∣

∣

∣

ˆ

R3

K(|x|)ΦUy
Uyϕ

∣

∣

∣
=
∣

∣

∣

m
∑

j=1

ˆ

R3

K(|x|)ΦUy
Uyjϕ

∣

∣

∣

≤
m
∑

j=1

(
ˆ

R3

(

K(|x|)ΦUy
Uyj

)2
) 1

2
(
ˆ

R3

ϕ2

) 1
2

≤ ‖ΦUy
‖D1,2

m
∑

j=1

(
ˆ

R3

(

K(|x|)Uyj

)3
)

1
3

‖ϕ‖.

Let us evaluate ‖ΦUy
‖D1,2 and

´

R3

(

K(|x|)Uyj

)3
.

‖ΦUy
‖2D1,2 =

ˆ

R3

|∇ΦUy
|2 =

ˆ

R3

K(|x|)ΦUy
U2
y

=
m
∑

j=1

ˆ

R3

K(|x|)ΦUy
U2
yj
+
∑

i 6=j

ˆ

R3

K(|x|)ΦUy
UyiUyj

≤ C‖ΦUy
‖D1,2

m
∑

j=1

(
ˆ

R3

(

K(|x|)U2
yj

)
6
5

)
5
6

+ C‖ΦUy
‖D1,2

∑

i 6=j

(
ˆ

R3

(

K(|x|)UyiUyj

)
6
5

)
5
6

(2.16)

and
ˆ

R3

(

K(|x|)Uyj

)3
=

ˆ

R3

(

K(|x+ yj |)U
)3

=

ˆ

B(1−κ)r(0)

(

K(|x+ yj |)U
)3
+

ˆ

R3\B(1−κ)r(0)

(

K(|x+ yj|)U
)3

≤

ˆ

B(1−κ)r(0)

|x+ yj|
3ae−3b|x+yj |U3 +

ˆ

R3\B(1−κ)r(0)

K3(|x+ yj|)e
−3(1−κ)r

= O(r3ae−3br) +O(e−3(1−κ)r).

(2.17)

Similarly,

(2.18)

ˆ

R3

(

K(|x|)U2
yj

)
6
5= O(r

6
5
ae−

6
5
br) +O(e−

12
5
(1−κ)r).

Denote

Ωj =

{

x = (x′, x′′) ∈ R
2 ×R :

〈

x′

|x′|
,
y′j

|y′j|

〉

≥ cos
π

m

}

, j = 1, 2, . . . , m.

For any x ∈ Ωj , we have

|x− yi| ≥ |x− yj|, ∀x ∈ Ωj , i 6= j,

then
|x− yi| ≥

1
2
|yi − yj|, ∀x ∈ Ωj , i 6= j.

So, for all arbitrary constant η ∈ (0, 1), we find

Uyi ≤ Ce−η|x−yi|e−(1−η)|x−yi| ≤ Ce−
η
2
|yi−yj |e−(1−η)|x−yj |

≤ Ce−ηr sin π
m e−(1−η)|x−yj |, ∀x ∈ Ωj , i 6= j.

(2.19)
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Using (2.19), we can obtain
ˆ

R3

(

K(|x|)UyiUyj

)
6
5≤ Cm

ˆ

Ωj

(

K(|x|)UyiUyj

)
6
5

≤ Cm

ˆ

Ωj

(

K(|x|)e−ηr sin π
m e−(1−η)|x−yj |Uyj

)
6
5

≤ Cme−
6
5
ηr sin π

m

ˆ

R3

(

K(|x+ yj|)e
−(1−η)|x|U

)
6
5

= Cme−
6
5
ηr sin π

m

ˆ

B(1−κ)r(0)

(

K(|x+ yj |)e
−(1−η)|x|U

)
6
5

+ Cme−
6
5
ηr sin π

m

ˆ

R3\B(1−κ)r(0)

(

K(|x+ yj|)e
−(1−η)|x|U

) 6
5

≤ Cme−
6
5
ηr sin π

m

ˆ

B(1−κ)r(0)

(

|x+ yj|
ae−b|x+yj |e−(1−η)|x|U

)
6
5

+ Cme−
6
5
ηr sin π

m

ˆ

R3\B(1−κ)r(0)

(

K(|x+ yj|)e
−(2−η)|x|

)
6
5

≤ Cme−
6
5
ηr sin π

m

ˆ

R3

(

|x+ yj|
ae−b|x+yj |e−(1−η)|x|U

)
6
5

+ Cme−
6
5
ηr sin π

m e−
6
5
(2−η)(1−κ)r

ˆ

R3

(

K(|x+ yj|)
)

6
5

≤ Cme−
6
5
ηr sin π

m (r
6
5
ae−

6
5
br + e−

6
5
(2−η)(1−κ)r).

(2.20)

Inserting (2.16)–(2.20) into (2.15), we have

∣

∣

∣

ˆ

R3

K(|x|)ΦUy
Uyϕ

∣

∣

∣
≤ ‖ΦUy

‖D1,2

m
∑

j=1

(
ˆ

R3

(

K(|x|)Uyj

)3
)

1
3

‖ϕ‖

≤ C

(

m
∑

j=1

(
ˆ

R3

(

K(|x|)U2
yj

)
6
5

)
5
6

+
∑

i 6=j

(
ˆ

R3

(

K(|x|)UyiUyj

)
6
5

)
5
6

m
∑

j=1

(
ˆ

R3

(

K(|x|)Uyj

)3
)

1
3

‖ϕ‖

≤ C
(

rae−br + e−2(1−κ)r + e−ηr sin π
m rae−br

+ e−ηr sin π
m e−(2−η)(1−κ)r

)

(rae−br + e−(1−κ)r)‖ϕ‖

≤ Ce−(1−τ)2br‖ϕ‖,

(2.21)

where we choose (2 − η)(1 − κ) > b, τ > 0 sufficiently small. Thus, the result
follows. �

3. Proof of the main result

In this section we will prove Theorem 1.2.

Proof of Theorem 1.2. Let ϕ(r) be the map obtained in Proposition 2.2. Define

F(r) = I(Uy + ϕ(r)), ∀r ∈ Λm.



296 Weiming Liu and Miaomiao Niu

It is well-known that if r is a critical point of F(r), then Uy + ϕ(r) is a solution of
(1.6) (see [6]). As a consequence, in order to complete the proof of the Theorem, we
only need to prove that F(r) has a critical point in Λm.

Hence, by Proposition 2.2 and Lemma A.3, we have

F(r) = I(Uy) + f(ϕ) +
1

2
〈Lϕ, ϕ〉+R(ϕ) = I(Uy) +O(‖fm‖‖ϕ‖+ ‖ϕ‖2)

= A+ αBr2ae−2br − B′r−1e−2r sin π
m +Dαr2ae−2br

m
∑

j=2

V (yj − y1) + αO
(

e−2b(1+τ)r
)

+O
(

e−(1+τ)2r sin π
m

)

+O
(

αe−(1−τ)2br + e−min{p−1−σ,2−σ}r sin π
m

)2

= A+ αBr2ae−2br − B′r−1e−2r sin π
m +Dαr2ae−2br

m
∑

j=2

V (yj − y1) + αO
(

e−2b(1+τ)r
)

+O
(

e−(1+τ)2r sin π
m

)

,

where A,B,B′ and D are defined in Lemma A.3. We consider its minimum respect
to r:

(3.1) min{F(r) : r ∈ Λm}.

Assume that (3.1) is achieved by some rm in Λm, we will prove that rm is an interior
point of Λm. Here, we only consider the case b > sin π

m
, using the same method, we

can obtain the result in the case b < sin π
m

.
Investigating the following smooth function in Λm,

g(r) := αBr2ae−2br − B′r−1e−2r sin π
m .

It is easy to check that g(r) has a minimum point r̃m, satisfying

e−(2b−2 sin π
m
)r̃m =

1

α

B′

2B

r̃−1−2a
m (1 + 2r̃m sin π

m
)

br̃m − a
.

Thus

r̃m =

(

1

b− sin π
m

+ o(1)

)

lnα,

with

g(r̃m) = αBr̃2am e−2br̃m − B′r̃−1
m e−2r̃m sin π

m

= αBr̃2am e−2r̃m sin π
m
1

α

B′

2B

r̃−1−2a
m (1 + 2r̃m sin π

m
)

br̃m − a
− B′r̃−1

m e−2r̃m sin π
m

= B′r̃−1
m e−2r̃m sin π

m

(

sin π
m

b
− 1 + o

(

1

r̃m

))

< 0.

(3.2)

By direct computation, we deduce that

(3.3) F(rm) ≤ F(r̃m) ≤ A+ g(r̃m) +O

(

α
sin π

m+δ

sin π
m−b

)

< A.
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On the other hand, we suppose that rm =
(

1+τ
b−sin π

m

)

lnα, then

F(rm) = A+ αBr2am e−2brm −B′r−1
m e−2rm sin π

m +Dαr2am e−2brm

m
∑

j=2

V (yj − y1)

+ αO
(

e−b(1+τ)rm
)

+O
(

e−(1+τ)2rm sin π
m

)

,

= A+ αB
((1 + τ) lnα

b− sin π
m

)2a

e
−2b

(

1+τ
b−sin π

m

)

lnα

− B′

(

(1 + τ) lnα

b− sin π
m

)−1

e
−2

(

1+τ
b−sin π

m

)

lnα sin π
m

+Dα

(

(1 + τ) lnα

b− sin π
m

)2a

e
−2b

(

1+τ
b−sin π

m

)

lnα
m
∑

j=2

V (yj − y1) +O

(

α
sin π

m+δ

sin π
m−b

)

> A.

(3.4)

This is a contradiction to (3.3).
Similarly

F(
( 1− τ

b− sin π
m

)

lnα) > A.

Hence we can check that (3.1) is achieved by some rm, which is in the interior of Λm.
As a result, rm is a critical point of F(r). Therefore

Urm + ϕ(rm)

is a solution of (1.6). �

Appendix A. Some technical estimates

In this section, we will give the energy expansion for the approximate solutions.
Recall

yj =

(

r cos
2(j − 1)π

m
, r sin

2(j − 1)π

m
, 0

)

, j = 1, . . . , m,

Ωj =

{

x = (x′, x3) ∈ R
2 ×R :

〈

x′

|x′|
,
y′j

|y′j|

〉

≥ cos
π

m

}

, j = 1, 2, . . . , m

and

I(u) =
1

2

ˆ

R3

|∇u|2 +
1

2

ˆ

R3

u2 +
α

4

ˆ

R3

K(|x|)Φuu
2 −

1

p

ˆ

R3

|u|p,

where Φu is the solution of −∆Φu = K(|x|)u2.

Recall that U is the unique solution of
{

−∆u+ u = up−1, u > 0 in R
3,

u(0) = max
x∈R3

u(x).

Let V be the solution of
{

−∆v = U2, in R
3,

v ∈ D1,2(R3).
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Then, V is radial, and rV (r) → V0 > 0, as r → +∞.
Now, we give the following Lemma:

Lemma A.1. [2, Lemma 3.7] Given u, u′ : R3 → R two positive continuous

radial functions such that:

u(x) ∼ |x|ae−b|x|, u′(x) ∼ |x|a
′

e−b′|x| (x → ∞)

where a, a′ ∈ R, b > 0, b′ > 0. Let ξ ∈ R
3 tend to infinity. Then, the following

asymptotic estimates hold:

(1) If b < b′,
ˆ

R3

uξu
′ ∼ |ξ|ae−b|ξ|.

(2) If b = b′, suppose, for simplicity, that a ≥ a′, then

ˆ

R3

uξu
′ ∼











|ξ|a+a′+2e−b|ξ|, a′ > −2,

|ξ|ae−b|ξ| log |ξ|, a′ = −2,

|ξ|ae−b|ξ|, a′ < −2.

Lemma A.2. For a suitable σ > 0, we have

ΦUy
(y) = rae−br

m
∑

j=1

V (y − yj) +O

(

m
∑

j=1

rae−(b+σ)r 1

1 + |y − yj|

)

.

Proof. Firstly,

U2
y = U2

y1
+O



Uy1

m
∑

j=2

Uyj +

(

m
∑

j=2

Uyj

)2


 .

For any x ∈ Ω1, we have

|x− yi| ≥
1

2
|yi − y1|

and for any β > 0,

m
∑

j=2

Uβ
yj
(x) ≤ C

m
∑

j=2

e−β|x−yj | ≤ C

m
∑

j=2

e−
β
2
|y1−yj | ≤ Ce−β πr

m , x ∈ Ω1.

As a result,

Uy1

m
∑

j=2

Uyj ≤ U
3
2
y1

m
∑

j=2

U
1
2
yj ≤ Ce−

1
2
|x−y1|e−

πr
2m , x ∈ Ω1,

and
(

m
∑

j=2

Uyj

)2

≤ Uy1

(

m
∑

j=2

U
1
2
yj

)2

≤ Ce−
1
2
|x−y1|e−

πr
m , x ∈ Ω1.

So,

U2
y = U2

y1
+O

(

e−
1
2
|x−y1|e−

πr
2m

)

.
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By Lemma A.1 and the above result, we are led to
ˆ

Ωj

K(|y|)

|x− y|
U2
y(y) dy =

ˆ

Ωj

K(|y|)

|x− y|

(

U2
yj
+O

(

e−
1
2
|y−yj |e−

πr
2m

))

dy

=

ˆ

Ωj

⋂
B r

2
(0)

K(|y + yj|)

|x− y − yj|
U2dy +O

(

ˆ

R3\B r
2
(0)

K(|y + yj|)

|x− y − yj|
U2 dy

)

+O

(

rae−(b+σ)r 1

1 + |y − yj|

)

=

ˆ

Ωj

⋂
B r

2
(0)

(1 + o(1))|y + yj|
ae−b|y+yj |

U2

|x− y − yj|
dy

+O

(

ˆ

R3\B r
2
(0)

K(|y + yj|)

|x− y − yj|
U2 dy

)

+O

(

rae−(b+σ)r 1

1 + |y − yj|

)

= rae−brV (y − yj) +O

(

rae−(b+σ)r 1

1 + |y − yj|

)

.

(A.1)

So

ΦUy
(y) = rae−br

m
∑

j=1

V (y − yj) +O

(

m
∑

j=1

rae−(b+σ)r 1

1 + |y − yj|

)

. �

Lemma A.3. We have

I(Ur) = A+ αBr2ae−2br − B′r−1e−2r sin π
m +Dαr2ae−2br

m
∑

j=2

V (yj − y1)

+ αO
(

e−2b(1+τ)r
)

+O
(

e−(1+τ)2r sin π
m

)

,

where A = m
(

1
2
− 1

p

)

´

R3 U
p, B = m

4

´

R3 V U2 and D = m
4

´

R3 U
2, τ > 0 sufficiently

small.

Proof. Recall that

I(Uy) =
1

2

ˆ

R3

|∇Uy|
2 +

1

2

ˆ

R3

U2
y +

α

4

ˆ

R3

K(|x|)ΦUy
U2
y −

1

p

ˆ

R3

|Uy|
p,

By direct computation, we have

(A.2)
1

2

ˆ

R3

|∇Uy|
2 +

1

2

ˆ

R3

U2
y =

m

2

ˆ

R3

Up +
m

2

m
∑

j=2

ˆ

R3

Up−1
y1

Uyj .

We also have
ˆ

R3

|Uy|
p = m

ˆ

R3

Up
y1
+mp

ˆ

R3

m
∑

k=2

Up−1
y1

Uyk

+



















O
(

∑

k 6=j

ˆ

R3

U
p
2
ykU

p
2
yj

)

, if 2 < p ≤ 3,

O
(

∑

k 6=j

ˆ

R3

Up−2
yk

U2
yj

)

, if p > 3,

= m

ˆ

R3

Up +mp

ˆ

R3

|Uy1|
p−1

m
∑

j=2

Uyj +mO
(

e−(1+τ)|y2−y1|
)

,

(A.3)
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where τ > 0 sufficiently small.
Using Lemma A.2, we see

ˆ

R3

K(|x|)ΦUy
U2
y = m

ˆ

Ω1

K(|x|)ΦUy
U2
y

= m

ˆ

Ω1

K(|x|)

(

rae−br

m
∑

j=1

V (y − yj)

+O

(

m
∑

j=1

rae−(b+σ)r 1

1 + |y − yj|

))

(

U2
y1
+O

(

e−
1
2
|x−y1|e−

πr
2m

))

= m

ˆ

Ω1

K(|x|)rae−br

m
∑

j=1

V (y − yj)U
2
y1

+m

ˆ

Ω1

K(|x|)rae−br

m
∑

j=1

V (y − yj)O
(

e−
1
2
|x−y1|e−

πr
2m

)

+m

ˆ

Ω1

K(|x|)O

(

m
∑

j=1

rae−(b+σ)r 1

1 + |y − yj|

)

U2
y1

+m

ˆ

Ω1

K(|x|)O

(

m
∑

j=1

rae−(b+σ)r 1

1 + |y − yj|

)

O
(

e−
1
2
|x−y1|e−

πr
2m

)

= m

ˆ

Ω1

K(|x|)rae−br

m
∑

j=1

V (y − yj)U
2
y1

+m

ˆ

Ω1

K(|x|)O

(

m
∑

j=1

rae−(b+σ)r 1

1 + |y − yj|

)

U2
y1

+O

(

krae−b(1+δ)r

ˆ

R3

K(|x|)
m
∑

j=1

1

1 + |y − yj|
e−

1
2
|x−y1|

)

= mr2ae−2br

ˆ

R3

V U2 +mr2ae−2br

m
∑

j=2

V (yj − y1)

ˆ

R3

U2

+mO

(

r2ae−2b(1+δ)r
m
∑

j=2

1

|y1 − yj|

)

+mO
(

r2ae−2b(1+δ)r
)

,

(A.4)

where δ > 0 is a suitable constant.
Above all, we deduce

I (Uy) =
1

2

ˆ

R3

|∇Uy|
2 +

1

2

ˆ

R3

U2
y +

α

4

ˆ

R3

K(|x|)ΦUy
U2
y −

1

p

ˆ

R3

|Uy|
p

=
m

2

ˆ

R3

Up +
m

2

m
∑

j=2

ˆ

R3

Up−1
y1

Uyj −
1

p
m

ˆ

R3

Up −m

ˆ

R3

Up−1
y1

m
∑

j=2

Uyj

+mO
(

e−(1+τ)|y2−y1|
)

+
α

4
mr2ae−2br

ˆ

R3

V U2 +
α

4
mr2ae−2br

m
∑

j=2

V (yj − y1)

ˆ

R3

U2
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+mαO

(

r2ae−2b(1+δ)r

m
∑

j=2

1

|y1 − yj|

)

+mαO
(

r2ae−2b(1+δ)r
)

= m

(

1

2
−

1

p

)
ˆ

R3

Up −
m

2

ˆ

R3

(

Up−1
y1

Uy2 + Up−1
y1

Uym

)

(A.5)

+
α

4
mr2ae−2br

ˆ

R3

V U2

+
α

4
mr2ae−2br

m
∑

j=2

V (yj − y1)

ˆ

R3

U2 +mO
(

e−(1+τ)|y2−y1|
)

+O

(

r2ae−2b(1+δ)r

m
∑

j=2

1

|y1 − yj|

)

+mαO
(

r2ae−2b(1+δ)r
)

= m

(

1

2
−

1

p

)
ˆ

R3

Up +
α

4
mr2ae−2br

ˆ

R3

V U2

+
α

4
mr2ae−2br

m
∑

j=2

V (yj − y1)

ˆ

R3

U2

−B′r−1e−2r sin π
m + αO

(

e−2b(1+τ)r
)

+O
(

e−(1+τ)2r sin π
m

)

,

where τ > 0 sufficiengly small. �

References

[1] Alves, C.O., and M.A. Souto: Existence of least energy nodal solution for a Schrödinger–
Poisson system in bounded domains. - Z. Angew. Math. Phys. 65, 2014, 1153–1166.

[2] Ambrosetti, A., E. Colorado, and D. Ruiz: Multi-bump solitons to linearly coupled
systems of nonlinear Schrödinger equations. - Calc. Var. Partial Differential Equations 30,
2007, 85–112.

[3] Ambrosetti, A., and D. Ruiz: Multiple bound states for the Schrödinger–Poisson problem.
- Comm. Contemp. Math. 10, 2008, 392–404.

[4] Azzollini, A., and A. Pomponio: Ground state solutions for the nonlinear Schrödinger-
Maxwell equations. - J. Math. Anal. Appl. 345, 2008, 90–108.

[5] Benci, V., and D. Fortunato: An eigenvalue problem for the Schrödinger–Maxwell equa-
tions. - Topol. Methods Nonlinear Anal. 11, 1998, 283–293.

[6] Cao, D., and Z. Tang: Existence and Uniqueness of multi-bump bound states of nonlinear
Schrödinger equations with electromagnetic fields. - J. Differential Equations 222, 2006, 381–
424.

[7] Chen, S., and C. Wang: Existence of multiple nontrivial solutions for a Schrödinger–Poisson
system. - J. Math. Anal. Appl. 411, 2014, 787–793.

[8] Dancer, E.N., and S. Yan: On positive multipeak solutions of a nonlinear elliptic problem.
- J. Lond. Math. Soc. 62, 2000, 213–227.

[9] D’Aprile, T., and D. Mugnai: Solitary waves for nonlinear Klein–Gordon–Maxwell and
Schrödinger–Maxwell equations. - Proc. Roy. Soc. Edinburgh Sect. A 134, 2004, 893–906.

[10] He, X., and W. Zou: Existence and concentration of ground states for Schrödinger–Poisson
equations with critical growth. - J. Math. Phys. 53, 2012, 023702, 1–20.

[11] He, Y., and G. Li: Standing waves for a class of Schrödinger–Poisson equations in R
3 involving

critical sobolev exponents. - Ann. Acad. Sci. Fenn. Math. 40, 2015, 729–766.



302 Weiming Liu and Miaomiao Niu

[12] Ianni, I.: Solutions of the Schrödinger–Poisson problem concentrating on spheres. Part II:
Existence. - Math. Models Meth. Appl. Sci. 19, 2009, 877–910.

[13] Ianni, I., and G. Vaira: On concentration of positive bound states for the Schrödinger–
Poisson problem with potentials. - Adv. Nonlinear Stud. 8, 2008, 573–595.

[14] Ianni, I., and G. Vaira: Solutions of the Schrödinger–Poisson problem concentrating on
spheres. Part I: Necessary conditions. - Math. Models Meth. Appl. Sci. 19, 2009, 707–720.

[15] Kim, S., and J. Seok: On nodal solutions of the nonlinear Schrödinger–Poisson equations. -
Comm. Contemp. Math. 14, 2012, 1–16.

[16] Kwong, M.K.: Uniqueness of the positive solution of ∆u−u+up = 0 in R
n. - Arch. Ration.

Mech. Anal. 105, 1989, 243–266.

[17] Li, G., S. Peng, and S. Yan: Infinitely many positive solutions for the nonlinear Schrödinger–
Poisson system. - Commun. Contemp. Math. 6, 2010, 1069–1092.

[18] Lin, L., Z. Liu, and S. Chen: Multi-bump solutions for a semilinear Schrödinger equation. -
Indiana Univ. Math. J. 58, 2009, 1659–1689.

[19] Long, W., and S. Peng: Multiple positive solutions for a type of nonlinear Schrödinger
equations. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16, 2016, 603–623.

[20] Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. - J.
Funct. Anal. 237, 2006, 655–674.

[21] Ruiz, D., and G. Vaira: Cluster solutions for the Schrödinger–Poisson-Slater problem around
a local minimum of potential. - Rev. Mat. Iberoam. 27, 2011, 253–271.

[22] Sun, J., T. Wu, and Y. Wu: On the Schrödinger–Poisson system with steep potential well
and indefinite potential. - arXiv:1412.5463v1.

[23] Wang, Z., and H. Zhou: Sign-changing solutions for the nonlinear Schrödinger–Poisson sys-
tem in R

3. - Calc. Var. Partial Differential Equations 52, 2015, 927–943.

[24] Zhang, J.: The existence and concentration of positive solutions for a nonlinear Schrödinger–
Poisson system with critical growth. - J. Math. Phys. 55, 2014, 031507, 1–15.

[25] Zhao, L., H. Liu, and F. Zhao: Existence and concentration of solutions for the Schrödinger–
Poisson equations with steep well potential. - J. Differential Equations 255, 2013, 1–23.

Received 29 January 2016 • Accepted 5 August 2016


