MULTIPLE POSITIVE SOLUTIONS FOR THE NONLINEAR SCHRÖDINGER-POISSON SYSTEM

Weiming Liu* and Miaomiao Niu
Hubei Normal University, School of Mathematics and Statistics
Huangshi, 435002, P. R. China; whu.027@163.com
Beijing Normal University, School of Mathematical Sciences
Beijing, 100875, P. R. China; miaomiaoniu@mail.bnu.edu.cn

Abstract. We consider the following Schrödinger-Poisson system in \mathbf{R}^{3}

$$
\begin{cases}-\Delta u+u+\alpha K(|x|) \Phi(x) u=|u|^{p-2} u, & x \in \mathbf{R}^{3} \tag{0.1}\\ -\Delta \Phi=K(|x|) u^{2}, & x \in \mathbf{R}^{3}\end{cases}
$$

where $2<p<6, \alpha$ can be regarded as a parameter and $K(r)(r=|x|)$ is a positive continuous function. There are constants $a \in \mathbf{R}$ and $b \in\left(0, \frac{1}{2}\right]$, such that $K(r) \sim r^{a} e^{-b r}$, as $r \rightarrow+\infty$. Then, (0.1) possesses a non-radial positive solution with exactly maximum points for suitable range of α.

1. Introduction and main result

The following Schrödinger-Poisson system

$$
\begin{cases}-\Delta u+V(x) u+K(x) \Phi(x) u=|u|^{p-2} u, & x \in \mathbf{R}^{3} \tag{1.1}\\ -\Delta \Phi=K(x) u^{2}, & x \in \mathbf{R}^{3}\end{cases}
$$

has been studied extensively by many researchers, where $2<p<6$. This system has been first introduced in [5] as a physical model describing a charged wave interacting with its own electrostatic field in quantum mechanic. The unknowns u and Φ represent the wave functions associated to the particle and electric potential, and functions V and K are respectively an external potential and nonnegative density charge. We refer to [5] and the references therein for more physical background.

In recent years, there has been increasing interest in studying problem (1.1). In the case of $V(x) \equiv 1, K(x) \equiv \lambda>0$, the existence of radially symmetric positive solutions of system (1.1) was obtained by D'Aprile and Mugnai in [9] and Ruiz in [20] for $p \in(3,6)$. Azzollini and Pomponio in [4] established the existence of ground state solutions for $p \in(3,6)$. For $p \in(2,3), \lambda=1$, Ruiz in [20] proved that (1.1) does not admit any nontrivial solution. When $K(x) \equiv 1$ and $V(x)$ is not a constant, the authors proved that there exist radially symmetric solutions concentrate on the spheres in $[12,14]$ and a positive bound state solution concentrates on the local minimum of the potential V in [13]. By using constrained minimization on the signchanging Nehari manifold and the Brouwer degree theory, Wang and Zhou in [23]

[^0]studied the existence of sign-changing solutions for (1.1). Ruiz and Vaira in [21] constructed the multi-bump solutions whose bumps concentrated around the local minimum of the potential V. The proofs explored in [21] are based on a singular perturbation, essentially a Lyapunov-Schmidt reduction method. In [11], He and Li concerned with the problem (1.1) with critical nonlinearity. For the more general nonlinearity $f(u)$, by applying the method of penalized functions, Sun et al. in [22] proved the system (1.1) has one nontrivial solution in the case $3<p \leq 4$. For more related results, one can refer to $[3,1,5,7,10,15,24,25]$ and the references therein.

Our motivation to study (1.1) mainly comes from the results: In [18], Lin et al. proved the single Schrödinger equation

$$
-\Delta u+(1+\epsilon K(x)) u=|u|^{p-2} u, \quad x \in \mathbf{R}^{N},
$$

has multi-bump solutions with the condition:

$$
\begin{equation*}
K(x) \in C\left(\mathbf{R}^{N}, \mathbf{R}^{+}\right), \quad \lim _{|x| \rightarrow \infty} K(x)=0, \quad \lim _{|x| \rightarrow \infty} \frac{\ln (K(x))}{|x|}=0 . \tag{1.2}
\end{equation*}
$$

In [17], Li et al. consider the infinitely many positive solutions of the following Schrödinger-Poisson system

$$
\begin{cases}-\Delta u+u+K(|x|) \Phi(x) u=Q(|x|)|u|^{p-2} u, & x \in \mathbf{R}^{3} \tag{1.3}\\ -\Delta \Phi=K(|x|) u^{2}, & x \in \mathbf{R}^{3}\end{cases}
$$

where $K(|x|)$ and $Q(|x|)$ are bounded and positive functions, $2<p<6 . K(|x|)$ and $Q(|x|)$ have the following expansions:

$$
\begin{align*}
& K(r)=\frac{a}{r^{m}}+O\left(\frac{1}{r^{m+\theta}}\right), \quad\left(a>0, m>\frac{1}{2}, \theta>0\right), \quad r=|x| \rightarrow+\infty \tag{1.4}\\
& Q(r)=Q_{0}+\frac{b}{r^{n}}+O\left(\frac{1}{r^{n+\vartheta}}\right), \quad\left(Q_{0}>0, b \in \mathbf{R}, n>1, \vartheta>0\right), r=|x| \rightarrow+\infty \tag{1.5}
\end{align*}
$$

As we can see, the expansion (1.4) is a special form of (1.2). Motivated by all results mentioned above, it is very natural for us to pose an interesting question: if the condition $\lim _{|x| \rightarrow \infty} \frac{\ln (K(x))}{|x|}<0$ holds, can we obtain the multiple positive solutions for the problem (1.1)? Especially, in [19], Long and Peng studied the existence of multiple positive solutions for the single Schrödinger equation under the above codition. Now, our answer is positive. We consider the following condition (K) which satisfies $\lim _{|x| \rightarrow \infty} \frac{\ln (K(x))}{|x|}<0$.

In this paper, we studied the following Schrödinger-Poisson system

$$
\begin{cases}-\Delta u+u+\alpha K(|x|) \Phi(x) u=|u|^{p-2} u, & x \in \mathbf{R}^{3} \tag{1.6}\\ -\Delta \Phi=K(|x|) u^{2}, & x \in \mathbf{R}^{3}\end{cases}
$$

where $K(r)(r=|x|)$ is a positive continuous function, $2<p<6$. We assume that $K(r)$ satisfies the following condition:
(K) There are constants $a \in \mathbf{R}$ and $b \in\left(0, \frac{1}{2}\right]$, such that

$$
K(r) \sim r^{a} e^{-b r}
$$

as $r \rightarrow+\infty$.
We summarize our main results as follows.
Theorem 1.1. If $K(r)$ satisfies (K), for a fixed integer $m>1$, provided one of the following conditions holds:
(1) If $b>\sin \frac{\pi}{m}$, then $\alpha>\alpha_{1}$ for suitable large $\alpha_{1}>0$;
(2) If $b<\sin \frac{\pi}{m}$, then $0<\alpha<\alpha_{2}$ for suitable small $\alpha_{2}>0$, where α_{1} and α_{2} are only dependent on b and m.
Then problem (1.6) possesses a non-radial positive solution with exactly m maximum points.

In the following, we sketch the main idea in the proof of Theorem 1.1. The Sobolev space $H^{1}\left(\mathbf{R}^{3}\right)$ is endowed with the standard norm

$$
\|u\|=\sqrt{\langle u, u\rangle}, \quad u \in H^{1}\left(\mathbf{R}^{3}\right)
$$

which is induced by the inner product

$$
\left\langle v_{1}, v_{2}\right\rangle=\int_{\mathbf{R}^{3}} \nabla v_{1} \nabla v_{2}+\int_{\mathbf{R}^{3}} v_{1} v_{2} .
$$

The homogeneous Sobolev space

$$
D^{1,2}\left(\mathbf{R}^{3}\right)=\left\{u \in L^{2^{*}}\left(\mathbf{R}^{3}\right): \nabla u \in L^{2}\left(\mathbf{R}^{3}\right)\right\}
$$

with the norm

$$
\|u\|_{D^{1,2}}=\left(\int_{\mathbf{R}^{3}}|\nabla u|^{2}\right)^{\frac{1}{2}}
$$

For every $u \in H^{1}\left(\mathbf{R}^{3}\right)$, the Riesz theorem implies that there exists a unique $\Phi_{u} \in D^{1,2}\left(\mathbf{R}^{3}\right)$ such that $-\Delta \Phi_{u}=K(x) u^{2}$ and Φ_{u} can be represented by

$$
\begin{equation*}
\Phi_{u}(x)=\frac{1}{4 \pi} \int_{\mathbf{R}^{3}} \frac{K(y) u^{2}(y)}{|x-y|} d y \tag{1.7}
\end{equation*}
$$

Furthermore, one has

$$
\left\|\Phi_{u}\right\|_{D^{1,2}} \leq c\|u\|^{2}
$$

where $c>0$. Thus system (1.6) can be reduced into equation

$$
\begin{equation*}
-\Delta u+u+K(|x|) \Phi_{u} u=|u|^{p-2} u . \tag{1.8}
\end{equation*}
$$

The solution of (1.6) can be approximated by using the solution U of the following problem

$$
\left\{\begin{array}{l}
-\Delta u+u=u^{p-1}, \quad u>0 \text { in } \mathbf{R}^{3}, \tag{1.9}\\
u(0)=\max _{x \in \mathbf{R}^{3}} u(x) .
\end{array}\right.
$$

It is well-known that the unique solution U of (1.9) satisfies $U(x)=U(|x|)$ and $U^{\prime}<0$ (see [16]).

For any positive integer $m>1$, let us define

$$
\begin{equation*}
y_{j}=\left(r \cos \frac{2(j-1) \pi}{m}, r \sin \frac{2(j-1) \pi}{m}, 0\right):=\left(y_{j}^{\prime}, 0\right), \quad j=1,2, \ldots, m \tag{1.10}
\end{equation*}
$$

where $r \in\left[\frac{(1-\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}, \frac{(1+\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}\right]$ for some $\tau>0$ small enough. Define

$$
\begin{aligned}
H=\{u: u & \in H^{1}\left(\mathbf{R}^{3}\right), u \text { is even in } x_{h}, h=2,3 ; u\left(r \cos \theta, r \sin \theta, x_{3}\right) \\
& \left.=u\left(r \cos \left(\theta+\frac{2 \pi j}{m}\right), r \sin \left(\theta+\frac{2 \pi j}{m}\right), x_{3}\right), j=1,2, \ldots, m\right\}
\end{aligned}
$$

Let

$$
\begin{equation*}
U_{\mathbf{y}}(x)=\sum_{j=1}^{m} U_{y_{j}}(x) \tag{1.11}
\end{equation*}
$$

where $U_{y_{j}}(\cdot)=U\left(\cdot-y_{j}\right)$.
Theorem 1.1 is a direct consequence of the following result.
Theorem 1.2. Suppose $K(r)$ satisfies $(K), b \neq \sin \frac{\pi}{m}$ and provided one of following conditions holds:
(1) If $b>\sin \frac{\pi}{m}$, then $\alpha>\alpha_{1}$ for suitable large $\alpha_{1}>0$;
(2) If $b<\sin \frac{\pi}{m}$, then $0<\alpha<\alpha_{2}$ for suitable small $\alpha_{2}>0$, where α_{1} and α_{2} are only dependent on b and m.
Then (1.6) has a positive solution u_{m} of the form

$$
u_{m}=U_{\mathbf{y}_{m}}(x)+w_{m},
$$

where $w_{m} \in H, r_{m} \in\left[\frac{(1-\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}, \frac{(1+\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}\right], \tau>0$ small enough and as $\alpha \rightarrow+\infty\left(\right.$ or $\left.0^{+}\right)$, $\left\|w_{m}\right\|_{H^{1}} \rightarrow 0$.

Our paper is organized as follows. In section 2, we will carry out LyapunovSchmidt reduction. Then, we will study the reduced finite-dimensional problem and prove our mian result in section 3. Some technical estimates are left in the appendix.

2. Finite-dimensional reduction

We begin the Lyapunov-Schmidt for the proof of Theorem 1.2. Assume

$$
\begin{equation*}
r \in \Lambda_{m}:=\left[\frac{(1-\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}, \frac{(1+\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}\right], \tag{2.1}
\end{equation*}
$$

where $\tau>0$ small enough. Define

$$
I(u)=\frac{1}{2} \int_{\mathbf{R}^{3}}|\nabla u|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} u^{2}+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{u} u^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}|u|^{p}, \quad \forall u \in H .
$$

It is easy to check that

$$
\begin{aligned}
& \int_{\mathbf{R}^{3}} \nabla u_{1} \nabla u_{2}+\int_{\mathbf{R}^{3}} u_{1} u_{2}-(p-1) \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{p-2} u_{1} u_{2}+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} u_{1} u_{2} \\
& +2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} u_{1} d y\right) U_{\mathbf{y}} u_{2}, \quad u_{1} u_{2} \in H,
\end{aligned}
$$

is a bounded bi-linear functional in H. Hence, by Lax-Milgram Theorem there is a bounded linear operator \mathcal{L} from H to H, such that

$$
\begin{aligned}
\left\langle\mathcal{L} u_{1}, u_{2}\right\rangle= & \int_{\mathbf{R}^{3}} \nabla u_{1} \nabla u_{2}+\int_{\mathbf{R}^{3}} u_{1} u_{2}-(p-1) \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{p-2} u_{1} u_{2}+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} u_{1} u_{2} \\
& +2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} u_{1} d y\right) U_{\mathbf{y}} u_{2}, \quad u_{1} u_{2} \in H .
\end{aligned}
$$

The following result implies that \mathcal{L} is invertible in H.
Lemma 2.1. There are positive constants C, small α_{2} and α_{1} sufficiently large such that for $\alpha>\alpha_{1}$ when $b>\sin \frac{\pi}{m}$ or $0<\alpha<\alpha_{2}$ when $b<\sin \frac{\pi}{m}$,

$$
\|\mathcal{L} u\| \geq C\|u\|, \quad u \in H
$$

Proof. We only prove the lemma for the case $b>\sin \frac{\pi}{m}$. Here we prove it by a contradiction argument. Suppose to the contrary that there exist $\alpha_{k} \rightarrow+\infty$ and $u_{k} \in H$ with

$$
\left\|\mathcal{L} u_{k}\right\|=o(1)\left\|u_{k}\right\| .
$$

Then we have

$$
\begin{equation*}
\left\langle\mathcal{L} u_{k}, \varphi\right\rangle=o(1)\left\|u_{k}\right\|\|\varphi\|, \forall \varphi \in H \tag{2.2}
\end{equation*}
$$

We may assume that $\left\|u_{k}\right\|^{2}=1$.
Denote

$$
\Omega_{j}=\left\{x=\left(x^{\prime}, x_{3}\right) \in \mathbf{R}^{2} \times \mathbf{R}:\left\langle\frac{x^{\prime}}{\left|x^{\prime}\right|}, \frac{y_{j}^{\prime}}{\left|y_{j}^{\prime}\right|}\right\rangle \geq \cos \frac{\pi}{m}\right\}, \quad j=1,2, \cdots, m .
$$

By symmetry, we see from (2.2),

$$
\begin{align*}
& \int_{\Omega_{1}} \nabla u_{k} \nabla \varphi+\int_{\Omega_{1}} u_{k} \varphi-(p-1) \int_{\Omega_{1}} U_{\mathbf{y}}^{p-2} u_{k} \varphi+\alpha \int_{\Omega_{1}} K(|x|) \Phi_{U_{\mathbf{y}}} u_{k} \varphi \\
& +2 \alpha \int_{\Omega_{1}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} u_{k} d y\right) U_{\mathbf{y}} \varphi=o(1)\|\varphi\|, \quad \varphi \in H . \tag{2.3}
\end{align*}
$$

Particularly, choosing $\varphi=u_{k}$ we get

$$
\begin{align*}
& \int_{\Omega_{1}}\left|\nabla u_{k}\right|^{2}+\int_{\Omega_{1}} u_{k}^{2}-(p-1) \int_{\Omega_{1}} U_{\mathbf{y}}^{p-2} u_{k}^{2}+\alpha \int_{\Omega_{1}} K(|x|) \Phi_{U_{\mathbf{y}}} u_{k}^{2} \\
& +2 \alpha \int_{\Omega_{1}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} u_{k} d y\right) U_{\mathbf{y}} u_{k}=o(1) \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left|\nabla u_{k}\right|^{2}+\int_{\mathbf{R}^{3}} u_{k}^{2}=1 . \tag{2.5}
\end{equation*}
$$

Let $\tilde{u}_{k}(x)=u_{k}\left(x-y_{1}\right)$. It is easy to check that for any $R>0$, we can choose k large enough such that $B_{R}\left(y_{1}\right) \subset \Omega_{1}$. Consequently, (2.5) yields that

$$
\int_{B_{R}(0)}\left|\nabla \tilde{u}_{k}\right|^{2}+\int_{B_{R}(0)} \tilde{u}_{k}^{2} \leq 1 .
$$

Thus we may assume that there exists a $u \in H^{1}\left(\mathbf{R}^{3}\right)$ such that as $k \rightarrow+\infty$,

$$
\tilde{u}_{k} \rightharpoonup u, \quad \text { weakly in } H^{1}\left(\mathbf{R}^{3}\right)
$$

and

$$
\tilde{u}_{k} \rightarrow u, \text { strongly in } L_{\mathrm{loc}}^{2}\left(\mathbf{R}^{3}\right) .
$$

Noting that \tilde{u}_{k} is even in $x_{h}, h=2,3$, then u is even in $x_{h}, h=2,3$. On the other hand, from

$$
\int_{\mathbf{R}^{3}} \frac{\partial U_{y_{1}}}{\partial r} U_{y_{1}}^{p-2} u_{k}=0
$$

we obtain

$$
\int_{\mathbf{R}^{3}} \frac{\partial U}{\partial x_{1}} U^{p-2} \tilde{u}_{k}=0 .
$$

So u satisfies

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \frac{\partial U}{\partial x_{1}} U^{p-2} u=0 . \tag{2.6}
\end{equation*}
$$

Now we prove that u satisfies

$$
-\Delta u+u-(p-1) U^{p-2} u=0, \quad \text { in } \mathbf{R}^{3}
$$

Define

$$
\tilde{H}=\left\{\varphi: \varphi \in H^{1}\left(\mathbf{R}^{3}\right), \int_{\mathbf{R}^{3}} \frac{\partial U}{\partial x_{1}} U^{p-2} \varphi=0\right\} .
$$

For any $R>0$, let $\varphi \in C_{0}^{\infty}\left(B_{R}(0)\right) \cap \tilde{H}$ be any function, satisfying that φ is even in $x_{h}, h=2,3$. Then $\varphi_{1}(x)=: \varphi\left(x-y_{1}\right) \in C_{0}^{\infty}\left(B_{R}\left(y_{1}\right)\right)$. By using (2.4), we find

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \nabla u \nabla \varphi+\int_{\mathbf{R}^{3}} u \varphi-(p-1) \int_{\mathbf{R}^{3}} U^{p-2} u \varphi=0 . \tag{2.7}
\end{equation*}
$$

Furthermore, since u is even in $x_{h}, h=2,3,(2.7)$ is true for any function $\varphi \in$ $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)$, which is odd in $x_{h}, h=2,3$. Therefore, (2.7) is true for any $\varphi \in$ $C_{0}^{\infty}\left(B_{R}(0)\right) \cap \tilde{H}$. Since $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)$ is dense in $H^{1}\left(\mathbf{R}^{3}\right)$, it is easy to prove that

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \nabla u \nabla \varphi+\int_{\mathbf{R}^{3}} u \varphi-(p-1) \int_{\mathbf{R}^{3}} U^{p-2} u \varphi=0, \quad \forall \varphi \in \tilde{H} . \tag{2.8}
\end{equation*}
$$

But (2.8) is true for $\varphi=\frac{\partial U}{\partial x_{1}}$. Thus (2.8) is true for any $\varphi \in H^{1}\left(\mathbf{R}^{3}\right)$, and hence $u=c \frac{\partial U}{\partial x_{1}}$ because u is even in $x_{h}, h=2,3$. By (2.6), we find $u=0$. Consequently,

$$
\int_{B_{R}\left(y_{1}\right)} u_{k}^{2}=o(1), \quad \forall R>0 .
$$

By the Hölder inequality and Lemma A.2, we have

$$
\begin{aligned}
& \left|\alpha \int_{\Omega_{1}} K(|x|) \Phi_{U_{\mathbf{y}}} u_{k}^{2}+2 \alpha \int_{\Omega_{1}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} u_{k} d y\right) U_{\mathbf{y}} u_{k}\right| \\
& \leq \alpha r^{a} e^{-b r} C \int_{\mathbf{R}^{3}} u_{k}^{2}+\alpha \int_{\mathbf{R}^{3}} K(|x|)\left|\Phi_{U_{\mathbf{y}}}\right|^{\frac{1}{2}}\left|\Phi_{u_{k}}\right|^{\frac{1}{2}} U_{\mathbf{y}} u_{k} \\
& \leq \alpha r^{a} e^{-b r} C+\alpha r^{a} e^{-b r} r^{\frac{a}{2}} e^{-\frac{b}{2} r} C \int_{\mathbf{R}^{3}}\left|\Phi_{u_{k}}\right|^{\frac{1}{2}} U_{\mathbf{y}} u_{k} \\
& \leq \alpha r^{a} e^{-b r} C+\alpha r^{a} e^{-b r} C\left\|u_{k}\right\|^{2}\left(\int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{2}\right)^{\frac{1}{2}} \rightarrow 0 .
\end{aligned}
$$

Thus, by (2.2) and (K), we have

$$
\begin{aligned}
o(1)= & \int_{\Omega_{1}}\left|\nabla u_{k}\right|^{2}+\int_{\Omega_{1}} u_{k}^{2}-(p-1) \int_{\Omega_{1}} U_{\mathbf{y}}^{p-2} u_{k}^{2}+\alpha \int_{\Omega_{1}} K(|x|) \Phi_{U_{\mathbf{y}}} u_{k}^{2} \\
& +2 \alpha \int_{\Omega_{1}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} u_{k} d y\right) U_{\mathbf{y}} u_{k} \\
\geq & \int_{\Omega_{1}}\left|\nabla u_{k}\right|^{2}+\int_{\Omega_{1}} u_{k}^{2}+o(1)+o_{R}(1) \int_{\Omega_{1}} u_{k}^{2} \geq \frac{1}{2}>0,
\end{aligned}
$$

which is impossible for large R.
Now, we prove the following proposition.
Proposition 2.2. Under the assumptions of Lemma 2.1, there exists a C^{1} map with respect to r from Λ_{m} to $H: \varphi=\varphi(r)$, satisfying $\varphi \in H$, and

$$
\left\langle\frac{\partial J(\varphi)}{\partial \varphi}, v\right\rangle=0, \quad \forall v \in H
$$

Moreover, there is a small $\tau>0$, such that

$$
\begin{equation*}
\|\varphi\| \leq C\left(\alpha e^{-(1-\tau) 2 b r}+e^{-\min \{p-1-\sigma, 2-\sigma\} r \sin \frac{\pi}{m}}\right) . \tag{2.9}
\end{equation*}
$$

Proof. Denote

$$
J(\varphi)=I\left(U_{\mathbf{y}}+\varphi\right), \quad \varphi \in H
$$

By direct computation, we have

$$
\begin{aligned}
J(\varphi)= & I\left(U_{\mathbf{y}}+\varphi\right)=\frac{1}{2} \int_{\mathbf{R}^{3}}\left|\nabla U_{\mathbf{y}}+\nabla \varphi\right|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}}\left(U_{\mathbf{y}}+\varphi\right)^{2} \\
& +\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}+\varphi}\left(U_{\mathbf{y}}+\varphi\right)^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}+\varphi\right|^{p} \\
= & \frac{1}{2} \int_{\mathbf{R}^{3}}\left|\nabla U_{\mathbf{y}}\right|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{2}+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}}^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p} \\
& +\int_{\mathbf{R}^{3}}\left(\sum_{j=1}^{m} U_{y_{j}}^{p-1}-U_{\mathbf{y}}^{p-1}\right) \varphi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}} \varphi \\
& +\frac{1}{2} \int_{\mathbf{R}^{3}}|\nabla \varphi|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} \varphi^{2}-\frac{p-1}{2} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-2} \varphi^{2}+\frac{\alpha}{2} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} \varphi^{2} \\
& +\alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}} \varphi d y\right) U_{\mathbf{y}} \varphi \\
& +\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} U_{\mathbf{y}} \varphi+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} \varphi^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}+\varphi\right|^{p}+\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p} \\
& +\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-1} \varphi+\frac{p-1}{2} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-2} \varphi^{2} .
\end{aligned}
$$

Hence,

$$
J(\varphi)=J(0)+f(\varphi)+\frac{1}{2}\langle\mathcal{L} \varphi, \varphi\rangle+R(\varphi),
$$

where

$$
\begin{equation*}
f(\varphi)=\int_{\mathbf{R}^{3}}\left(\sum_{j=1}^{m} U_{y_{j}}^{p-1}-U_{\mathbf{y}}^{p-1}\right) \varphi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}} \varphi . \tag{2.10}
\end{equation*}
$$

\mathcal{L} is the bounded linear map from H to H in Lemma 2.1, and

$$
\begin{aligned}
R(\varphi)= & \alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} U_{\mathbf{y}} \varphi+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} \varphi^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}+\varphi\right|^{p}+\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p} \\
& +\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-1} \varphi+\frac{p-1}{2} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-2} \varphi^{2} .
\end{aligned}
$$

It is not difficult to verify that $f(\varphi)$ is a bounded linear functional in H, so there exists an $f_{m} \in H$ such that

$$
f(\varphi)=\left\langle f_{m}, \varphi\right\rangle .
$$

Thus, to find a critical point for $J(\varphi)$, we only need to solve

$$
\begin{equation*}
f_{m}+\mathcal{L} \varphi+R^{\prime}(\varphi)=0 \tag{2.11}
\end{equation*}
$$

From Lemma 2.1 we know that \mathcal{L} is invertible. Therefore, (2.11) can be rewritten as

$$
\varphi=\mathcal{A}(\varphi)=:-\mathcal{L}^{-1} f_{m}-\mathcal{L}^{-1} R^{\prime}(\varphi) .
$$

Set

$$
\mathcal{N}=\left\{\varphi: \varphi \in H,\|\varphi\| \leq \alpha e^{-\left(1-\tau-\tau_{1}\right) 2 b r}+e^{-\min \left\{p-1-\sigma-\tau_{1}, 2-\sigma-\tau_{1}\right\} r \sin \frac{\pi}{m}}\right\} .
$$

where $\tau_{1}>0$ sufficiently small. When $2<p \leq 3$, we can verify that

$$
\left\|R^{\prime}(\varphi)\right\| \leq C\|\varphi\|^{p-1}
$$

Hence Lemma 2.3 below implies

$$
\begin{align*}
\|\mathcal{A}(\varphi)\| \leq & C\left\|f_{m}\right\|+C\|\varphi\|^{p-1} \\
\leq & C \alpha e^{-(1-\tau) 2 b r}+C e^{-\min \{p-1-\sigma, 2-\sigma\} r \sin \frac{\pi}{m}}+C\left(\alpha e^{-\left(1-\tau-\tau_{1}\right) 2 b r}\right. \tag{2.12}\\
& \left.+e^{-\min \left\{p-1-\sigma-\tau_{1}, 2-\sigma-\tau_{1}\right\} r \sin \frac{\pi}{m}}\right)^{p-1} \\
\leq & \alpha e^{-\left(1-\tau-\tau_{1}\right) 2 b r}+e^{-\min \left\{p-1-\sigma-\tau_{1}, 2-\sigma-\tau_{1}\right\} r \sin \frac{\pi}{m}} .
\end{align*}
$$

Thus, \mathcal{A} maps \mathcal{N} into \mathcal{N} when $2<p \leq 3$.
Meanwhile, when $2<p \leq 3$, we see

$$
\left\|R^{\prime \prime}(\varphi)\right\| \leq C\|\varphi\|^{p-2}
$$

Thus,

$$
\begin{aligned}
& \left\|\mathcal{A}\left(\varphi_{1}\right)-\mathcal{A}\left(\varphi_{2}\right)\right\|=\left\|\mathcal{L}^{-1} R^{\prime}\left(\varphi_{1}\right)-\mathcal{L}^{-1} R^{\prime}\left(\varphi_{2}\right)\right\| \\
& \leq C\left\|R^{\prime}\left(\varphi_{1}\right)-R^{\prime}\left(\varphi_{2}\right)\right\| \leq C\left\|R^{\prime \prime}\left(\varepsilon \varphi_{1}+(1-\varepsilon) \varphi_{2}\right)\right\|\left\|\varphi_{1}-\varphi_{2}\right\| \\
& \leq C\left(\left\|\varphi_{1}\right\|^{p-2}+\left\|\varphi_{2}\right\|^{p-2}\right)\left\|\varphi_{1}-\varphi_{2}\right\| \leq \frac{1}{2}\left\|\varphi_{1}-\varphi_{2}\right\|,
\end{aligned}
$$

where $\varepsilon \in(0,1)$. Thus, we have proved that when $2<p \leq 3, \mathcal{A}$ is a contraction map.
When $p>3$, by the Hölder inequality and the Sobolev inequality, we get

$$
\begin{aligned}
&\left|\left\langle R^{\prime}(\varphi), \xi\right\rangle\right| \\
&= \left\lvert\, 2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} \varphi \xi d y\right) U_{\mathbf{y}} \varphi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} U_{\mathbf{y}} \xi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} \varphi \xi\right. \\
&-\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}+\varphi\right|^{p-1} \xi+\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-1} \xi+(p-1) \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-2} \varphi \xi \mid \\
& \leq\left|2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} \varphi \xi d y\right) U_{\mathbf{y}} \varphi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} U_{\mathbf{y}} \xi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} \varphi \xi\right| \\
&+\left|\int_{\mathbf{R}^{3}}\right| U_{\mathbf{y}}+\left.\varphi\right|^{p-1} \xi-\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-1} \xi-(p-1) \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-2} \varphi \xi \mid \\
& \leq C \alpha r^{a} e^{-b r} \int_{\mathbf{R}^{3}}\left|\Phi_{\varphi}\right|^{\frac{1}{2}}\left|\Phi_{\xi}\right|^{\frac{1}{2}} U_{\mathbf{y}}|\varphi|+C \alpha r^{a} e^{-b r}\left(\int_{\mathbf{R}^{3}}\left|\Phi_{\varphi}\right|^{6}\right)^{\frac{1}{6}}\left(\int_{\mathbf{R}^{3}}|\xi|^{\frac{12}{5}}\right)^{\frac{5}{12}}\left(\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{\frac{12}{5}}\right)^{\frac{5}{12}} \\
&+C \alpha r^{a} e^{-b r}\left(\int_{\mathbf{R}^{3}}\left|\Phi_{\varphi}\right|^{6}\right)^{\frac{1}{6}}\left(\int_{\mathbf{R}^{3}}|\xi|^{\frac{12}{5}}\right)^{\frac{5}{12}}\left(\int_{\mathbf{R}^{3}}|\varphi|^{\frac{12}{5}}\right)^{\frac{5}{12}}+C \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p-3}|\varphi|^{2}|\xi| \\
& \leq C \alpha^{\frac{b \tau-\sin \frac{\pi}{m}}{b-\sin \frac{5}{m}}}\|\varphi\|^{2}\|\xi\|+C \alpha^{\frac{b \tau-\sin \frac{\pi}{m}}{m-\sin } \frac{\frac{\pi}{m}}{m}}\left\|\Phi_{\varphi}\right\|_{D^{1,2}}\|\xi\|+C \alpha^{\frac{b-\sin \frac{\pi}{m}}{b-s}}\left\|\Phi_{\varphi}\right\|_{D^{1,2}}\|\xi\|\|\varphi\| \\
&+C\left(\int_{\mathbf{R}^{3}}\left(\left|U_{\mathbf{y}}\right|^{p-3}|\varphi|^{2}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}\|\xi\| \\
& \leq C\|\varphi\|^{2}\|\xi\|+C\|\varphi\|^{2}\|\xi\|+C\|\varphi\|^{3}\|\xi\|+C\left(\int_{\mathbf{R}^{3}}|\varphi|^{\frac{2 p}{p-1}}\right)^{\frac{p-1}{p}}\|\xi\| .
\end{aligned}
$$

Hence, we deduce that

$$
\left\|R^{\prime}(\varphi)\right\| \leq C\left(\|\varphi\|^{2}+\|\varphi\|^{3}\right)
$$

For the estimate of $\left\|R^{\prime \prime}(\varphi)\right\|$, we have

$$
\begin{aligned}
& \left|R^{\prime \prime}(\varphi)(\xi, \eta)\right| \\
& =\left\lvert\, 2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} \eta \xi d y\right) U_{\mathbf{y}} \varphi+2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} \varphi \xi d y\right) U_{\mathbf{y}} \eta\right. \\
& \quad+2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} \varphi \eta d y\right) U_{\mathbf{y}} \xi+2 \alpha \int_{\mathbf{R}^{3}} K(|x|)\left(\int_{\mathbf{R}^{3}} \frac{K(|y|)}{|x-y|} \varphi \xi d y\right) \varphi \eta \\
& \quad+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{\varphi} \xi \eta-(p-1) \int_{\mathbf{R}^{3}}\left(U_{\mathbf{y}}+\varphi\right)^{p-2} \xi \eta+(p-1) \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{p-2} \xi \eta \mid \\
& \leq C\left(\|\varphi\|+\|\varphi\|^{2}\right)\|\xi\|\|\eta\|,
\end{aligned}
$$

which implies

$$
\left\|R^{\prime \prime}(\varphi)\right\| \leq C\left(\|\varphi\|+\|\varphi\|^{2}\right) .
$$

Thus, we have

$$
\begin{align*}
\|\mathcal{A}(\varphi)\| \leq & C\left\|f_{m}\right\|+C\|\varphi\|^{2} \\
\leq & C \alpha e^{-(1-\tau) 2 b r}+C e^{-\min \{p-1-\sigma, 2-\sigma\} r \sin \frac{\pi}{m}} \\
& +C\left(\alpha e^{-\left(1-\tau-\tau_{1}\right) 2 b r}+e^{-\min \left\{p-1-\sigma-\tau_{1}, 2-\sigma-\tau_{1}\right\} r \sin \frac{\pi}{m}}\right)^{2} \tag{2.13}\\
\leq & \alpha e^{-\left(1-\tau-\tau_{1}\right) 2 b r}+e^{-\min \left\{p-1-\sigma-\tau_{1}, 2-\sigma-\tau_{1}\right\} r \sin \frac{\pi}{m}}
\end{align*}
$$

and

$$
\begin{aligned}
& \left\|\mathcal{A}\left(\varphi_{1}\right)-\mathcal{A}\left(\varphi_{2}\right)\right\|=\left\|\mathcal{L}^{-1} R^{\prime}\left(\varphi_{1}\right)-\mathcal{L}^{-1} R^{\prime}\left(\varphi_{2}\right)\right\| \\
& \leq C\left\|R^{\prime}\left(\varphi_{1}\right)-R^{\prime}\left(\varphi_{2}\right)\right\| \leq C\left\|R^{\prime \prime}\left(\varepsilon \varphi_{1}+(1-\varepsilon) \varphi_{2}\right)\right\|\left\|\varphi_{1}-\varphi_{2}\right\| \leq \frac{1}{2}\left\|\varphi_{1}-\varphi_{2}\right\|,
\end{aligned}
$$

where $\varepsilon \in(0,1)$. Hence, \mathcal{A} is also a contraction map from \mathcal{N} to \mathcal{N}.
By the contraction mapping theorem, we see that there is a unique φ such that (2.11) holds. Moreover, it follows from (2.12) and (2.13) that (2.9) holds.

Lemma 2.3. There exists a constant $C>0$, such that

$$
\left\|f_{m}\right\| \leq C\left(\alpha e^{-(1-\tau) 2 b r}+e^{-\min \{p-1-\sigma, 2-\sigma\} r \sin \frac{\pi}{m}}\right)
$$

where $\tau>0$ is an arbitrary small constant.
Proof. We recall

$$
\begin{equation*}
f(\varphi)=\int_{\mathbf{R}^{3}}\left(\sum_{j=1}^{m} U_{y_{j}}^{p-1}-U_{\mathbf{y}}^{p-1}\right) \varphi+\alpha \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}} \varphi . \tag{2.14}
\end{equation*}
$$

Since it follows from (3.18) and (3.19) in [8], by Lemma A.1, we have

$$
\begin{aligned}
&\left|\int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{p-1} \varphi-\sum_{j=1}^{m} \int_{\mathbf{R}^{3}} U_{y_{j}}^{p-1} \varphi\right| \leq \begin{cases}C \sum_{k \neq j} \int_{\mathbf{R}^{3}} U_{y_{k}}^{\frac{p-1}{2}} U_{y_{j}}^{\frac{p-1}{2}}|\varphi|, & \text { if } 2<p \leq 3, \\
C \sum_{k \neq j} \int_{\mathbf{R}^{3}} U_{y_{k}}^{p-2} U_{y_{j}}|\varphi|, & \text { if } p>3,\end{cases} \\
& \leq C e^{-\min \{p-1-\tau, 2-\tau\} r \sin \frac{\pi}{m}}\|\varphi\|,
\end{aligned}
$$

where $\tau>0$ small enough.

By the Hölder inequality, we have

$$
\begin{align*}
& \left|\int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}} \varphi\right|=\left|\sum_{j=1}^{m} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{y_{j}} \varphi\right| \\
& \leq \sum_{j=1}^{m}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) \Phi_{U_{\mathbf{y}}} U_{y_{j}}\right)^{2}\right)^{\frac{1}{2}}\left(\int_{\mathbf{R}^{3}} \varphi^{2}\right)^{\frac{1}{2}} \tag{2.15}\\
& \leq\left\|\Phi_{U_{\mathbf{y}}}\right\|_{D^{1,2}} \sum_{j=1}^{m}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}\right)^{3}\right)^{\frac{1}{3}}\|\varphi\| .
\end{align*}
$$

Let us evaluate $\left\|\Phi_{U_{\mathbf{y}}}\right\|_{D^{1,2}}$ and $\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}\right)^{3}$.

$$
\begin{align*}
\left\|\Phi_{U_{\mathbf{y}}}\right\|_{D^{1,2}}^{2}= & \int_{\mathbf{R}^{3}}\left|\nabla \Phi_{U_{\mathbf{y}}}\right|^{2}=\int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}}^{2} \\
= & \sum_{j=1}^{m} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{y_{j}}^{2}+\sum_{i \neq j} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{y_{i}} U_{y_{j}} \\
\leq & C\left\|\Phi_{U_{\mathbf{y}}}\right\|_{D^{1,2}} \sum_{j=1}^{m}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}^{2}\right)^{\frac{6}{5}}\right)^{\frac{5}{6}} \tag{2.16}\\
& +C\left\|\Phi_{U_{\mathbf{y}}}\right\|_{D^{1,2}} \sum_{i \neq j}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{i}} U_{y_{j}}\right)^{\frac{6}{5}}\right)^{\frac{5}{6}}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}\right)^{3}=\int_{\mathbf{R}^{3}}\left(K\left(\left|x+y_{j}\right|\right) U\right)^{3} \\
& =\int_{B_{(1-\kappa) r}(0)}\left(K\left(\left|x+y_{j}\right|\right) U\right)^{3}+\int_{\mathbf{R}^{3} \backslash B_{(1-\kappa) r}(0)}\left(K\left(\left|x+y_{j}\right|\right) U\right)^{3} \tag{2.17}\\
& \leq \int_{B_{(1-\kappa) r}(0)}\left|x+y_{j}\right|^{3 a} e^{-3 b\left|x+y_{j}\right|} U^{3}+\int_{\mathbf{R}^{3} \backslash B_{(1-\kappa) r}(0)} K^{3}\left(\left|x+y_{j}\right|\right) e^{-3(1-\kappa) r} \\
& =O\left(r^{3 a} e^{-3 b r}\right)+O\left(e^{-3(1-\kappa) r}\right) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}^{2}\right)^{\frac{6}{5}}=O\left(r^{\frac{6}{5} a} e^{-\frac{6}{5} b r}\right)+O\left(e^{-\frac{12}{5}(1-\kappa) r}\right) . \tag{2.18}
\end{equation*}
$$

Denote

$$
\Omega_{j}=\left\{x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbf{R}^{2} \times \mathbf{R}:\left\langle\frac{x^{\prime}}{\left|x^{\prime}\right|}, \frac{y_{j}^{\prime}}{\left|y_{j}^{\prime}\right|}\right\rangle \geq \cos \frac{\pi}{m}\right\}, j=1,2, \ldots, m .
$$

For any $x \in \Omega_{j}$, we have

$$
\left|x-y_{i}\right| \geq\left|x-y_{j}\right|, \quad \forall x \in \Omega_{j}, \quad i \neq j,
$$

then

$$
\left|x-y_{i}\right| \geq \frac{1}{2}\left|y_{i}-y_{j}\right|, \quad \forall x \in \Omega_{j}, i \neq j .
$$

So, for all arbitrary constant $\eta \in(0,1)$, we find

$$
\begin{align*}
U_{y_{i}} & \leq C e^{-\eta\left|x-y_{i}\right|} e^{-(1-\eta)\left|x-y_{i}\right|} \leq C e^{-\frac{\eta}{2}\left|y_{i}-y_{j}\right|} e^{-(1-\eta)\left|x-y_{j}\right|} \tag{2.19}\\
& \leq C e^{-\eta r \sin \frac{\pi}{m}} e^{-(1-\eta)\left|x-y_{j}\right|}, \quad \forall x \in \Omega_{j}, \quad i \neq j .
\end{align*}
$$

Using (2.19), we can obtain

$$
\begin{aligned}
& \int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{i}} U_{y_{j}}\right)^{\frac{6}{5}} \leq C m \int_{\Omega_{j}}\left(K(|x|) U_{y_{i}} U_{y_{j}}\right)^{\frac{6}{5}} \\
& \leq C m \int_{\Omega_{j}}\left(K(|x|) e^{-\eta r \sin \frac{\pi}{m}} e^{-(1-\eta)\left|x-y_{j}\right|} U_{y_{j}}\right)^{\frac{6}{5}} \\
& \leq C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} \int_{\mathbf{R}^{3}}\left(K\left(\left|x+y_{j}\right|\right) e^{-(1-\eta)|x|} U\right)^{\frac{6}{5}} \\
&=C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} \int_{B_{(1-\kappa) r}(0)}\left(K\left(\left|x+y_{j}\right|\right) e^{-(1-\eta)|x|} U\right)^{\frac{6}{5}} \\
&+C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} \int_{\mathbf{R}^{3} \backslash B_{(1-\kappa) r}(0)}\left(K\left(\left|x+y_{j}\right|\right) e^{-(1-\eta)|x|} U\right)^{\frac{6}{5}} \\
& \leq C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} \int_{B_{(1-\kappa) r}(0)}\left(\left|x+y_{j}\right|^{a} e^{-b\left|x+y_{j}\right|} e^{-(1-\eta)|x|} U\right)^{\frac{6}{5}} \\
&+C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} \int_{\mathbf{R}^{3} \backslash B_{(1-\kappa) r}(0)}\left(K\left(\left|x+y_{j}\right|\right) e^{-(2-\eta)|x|}\right)^{\frac{6}{5}} \\
& \leq C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} \int_{\mathbf{R}^{3}}\left(\left|x+y_{j}\right|^{a} e^{-b\left|x+y_{j}\right|} e^{-(1-\eta)|x|} U\right)^{\frac{6}{5}} \\
&+C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}} e^{-\frac{6}{5}(2-\eta)(1-\kappa) r} \int_{\mathbf{R}^{3}}\left(K\left(\left|x+y_{j}\right|\right)\right)^{\frac{6}{5}} \\
& \leq C m e^{-\frac{6}{5} \eta r \sin \frac{\pi}{m}}\left(r^{\frac{6}{5} a} e^{-\frac{6}{5} b r}+e^{-\frac{6}{5}(2-\eta)(1-\kappa) r}\right) .
\end{aligned}
$$

Inserting (2.16)-(2.20) into (2.15), we have

$$
\begin{aligned}
& \left|\int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}} \varphi\right| \leq\left\|\Phi_{U_{\mathbf{y}}}\right\|_{D^{1,2}} \sum_{j=1}^{m}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}\right)^{3}\right)^{\frac{1}{3}}\|\varphi\| \\
& \leq C\left(\sum_{j=1}^{m}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}^{2}\right)^{\frac{6}{5}}\right)^{\frac{5}{6}}\right. \\
& \quad+\sum_{i \neq j}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{i}} U_{y_{j}}\right)^{\frac{6}{5}}\right)^{\frac{5}{6}} \sum_{j=1}^{m}\left(\int_{\mathbf{R}^{3}}\left(K(|x|) U_{y_{j}}\right)^{3}\right)^{\frac{1}{3}}\|\varphi\| \\
& \leq C\left(r^{a} e^{-b r}+e^{-2(1-\kappa) r}+e^{-\eta r \sin \frac{\pi}{m}} r^{a} e^{-b r}\right. \\
& \left.\quad+e^{-\eta r \sin \frac{\pi}{m}} e^{-(2-\eta)(1-\kappa) r}\right)\left(r^{a} e^{-b r}+e^{-(1-\kappa) r}\right)\|\varphi\| \\
& \leq C e^{-(1-\tau) 2 b r}\|\varphi\|,
\end{aligned}
$$

where we choose $(2-\eta)(1-\kappa)>b, \tau>0$ sufficiently small. Thus, the result follows.

3. Proof of the main result

In this section we will prove Theorem 1.2.
Proof of Theorem 1.2. Let $\varphi(r)$ be the map obtained in Proposition 2.2. Define

$$
\mathcal{F}(r)=I\left(U_{\mathbf{y}}+\varphi(r)\right), \quad \forall r \in \Lambda_{m} .
$$

It is well-known that if r is a critical point of $\mathcal{F}(r)$, then $U_{\mathbf{y}}+\varphi(r)$ is a solution of (1.6) (see [6]). As a consequence, in order to complete the proof of the Theorem, we only need to prove that $\mathcal{F}(r)$ has a critical point in Λ_{m}.

Hence, by Proposition 2.2 and Lemma A.3, we have

$$
\begin{aligned}
& \mathcal{F}(r)=I\left(U_{\mathbf{y}}\right)+f(\varphi)+\frac{1}{2}\langle\mathcal{L} \varphi, \varphi\rangle+R(\varphi)=I\left(U_{\mathbf{y}}\right)+O\left(\left\|f_{m}\right\|\|\varphi\|+\|\varphi\|^{2}\right) \\
& =A+\alpha B r^{2 a} e^{-2 b r}-B^{\prime} r^{-1} e^{-2 r \sin \frac{\pi}{m}}+D \alpha r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right)+\alpha O\left(e^{-2 b(1+\tau) r}\right) \\
& \quad+O\left(e^{-(1+\tau) 2 r \sin \frac{\pi}{m}}\right)+O\left(\alpha e^{-(1-\tau) 2 b r}+e^{-\min \{p-1-\sigma, 2-\sigma\} r \sin \frac{\pi}{m}}\right)^{2} \\
& =A+\alpha B r^{2 a} e^{-2 b r}-B^{\prime} r^{-1} e^{-2 r \sin \frac{\pi}{m}}+D \alpha r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right)+\alpha O\left(e^{-2 b(1+\tau) r}\right) \\
& \quad+O\left(e^{-(1+\tau) 2 r \sin \frac{\pi}{m}}\right),
\end{aligned}
$$

where A, B, B^{\prime} and D are defined in Lemma A.3. We consider its minimum respect to r :

$$
\begin{equation*}
\min \left\{\mathcal{F}(r): r \in \Lambda_{m}\right\} \tag{3.1}
\end{equation*}
$$

Assume that (3.1) is achieved by some r_{m} in Λ_{m}, we will prove that r_{m} is an interior point of Λ_{m}. Here, we only consider the case $b>\sin \frac{\pi}{m}$, using the same method, we can obtain the result in the case $b<\sin \frac{\pi}{m}$.

Investigating the following smooth function in Λ_{m},

$$
g(r):=\alpha B r^{2 a} e^{-2 b r}-B^{\prime} r^{-1} e^{-2 r \sin \frac{\pi}{m}} .
$$

It is easy to check that $g(r)$ has a minimum point \tilde{r}_{m}, satisfying

$$
e^{-\left(2 b-2 \sin \frac{\pi}{m}\right) \tilde{r}_{m}}=\frac{1}{\alpha} \frac{B^{\prime}}{2 B} \frac{\tilde{r}_{m}^{-1-2 a}\left(1+2 \tilde{r}_{m} \sin \frac{\pi}{m}\right)}{b \tilde{r}_{m}-a}
$$

Thus

$$
\tilde{r}_{m}=\left(\frac{1}{b-\sin \frac{\pi}{m}}+o(1)\right) \ln \alpha
$$

with

$$
\begin{align*}
g\left(\tilde{r}_{m}\right) & =\alpha B \tilde{r}_{m}^{2 a} e^{-2 b \tilde{r}_{m}}-B^{\prime} \tilde{r}_{m}^{-1} e^{-2 \tilde{r}_{m} \sin \frac{\pi}{m}} \\
& =\alpha B \tilde{r}_{m}^{2 a} e^{-2 \tilde{r}_{m} \sin \frac{\pi}{m}} \frac{1}{\alpha} \frac{B^{\prime}}{2 B} \frac{\tilde{r}_{m}^{-1-2 a}\left(1+2 \tilde{r}_{m} \sin \frac{\pi}{m}\right)}{b \tilde{r}_{m}-a}-B^{\prime} \tilde{r}_{m}^{-1} e^{-2 \tilde{r}_{m} \sin \frac{\pi}{m}} \tag{3.2}\\
& =B^{\prime} \tilde{r}_{m}^{-1} e^{-2 \tilde{r}_{m} \sin \frac{\pi}{m}}\left(\frac{\sin \frac{\pi}{m}}{b}-1+o\left(\frac{1}{\tilde{r}_{m}}\right)\right)<0 .
\end{align*}
$$

By direct computation, we deduce that

$$
\begin{equation*}
\mathcal{F}\left(r_{m}\right) \leq \mathcal{F}\left(\tilde{r}_{m}\right) \leq A+g\left(\tilde{r}_{m}\right)+O\left(\alpha^{\frac{\sin \frac{\pi}{\sin }+\delta}{\sin -b}}\right)<A . \tag{3.3}
\end{equation*}
$$

On the other hand, we suppose that $r_{m}=\left(\frac{1+\tau}{b-\sin \frac{\pi}{m}}\right) \ln \alpha$, then

$$
\begin{align*}
\mathcal{F}\left(r_{m}\right)= & A+\alpha B r_{m}^{2 a} e^{-2 b r_{m}}-B^{\prime} r_{m}^{-1} e^{-2 r_{m} \sin \frac{\pi}{m}}+D \alpha r_{m}^{2 a} e^{-2 b r_{m}} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right) \tag{3.4}\\
& +\alpha O\left(e^{-b(1+\tau) r_{m}}\right)+O\left(e^{-(1+\tau) 2 r_{m} \sin \frac{\pi}{m}}\right) \\
= & A+\alpha B\left(\frac{(1+\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}\right)^{2 a} e^{-2 b\left(\frac{1+\tau}{b-\sin \frac{\pi}{m}}\right) \ln \alpha} \\
& -B^{\prime}\left(\frac{(1+\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}\right)^{-1} e^{-2\left(\frac{1+\tau}{b-\sin \frac{\pi}{m}}\right) \ln \alpha \sin \frac{\pi}{m}} \\
& +D \alpha\left(\frac{(1+\tau) \ln \alpha}{b-\sin \frac{\pi}{m}}\right)^{2 a} e^{-2 b\left(\frac{1+\tau}{b-\sin \frac{\pi}{m}}\right) \ln \alpha} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right)+O\left(\alpha^{\frac{\sin \frac{\pi}{\sin }+\delta}{\frac{\pi}{m}-b}}\right) \\
> & A .
\end{align*}
$$

This is a contradiction to (3.3).
Similarly

$$
\mathcal{F}\left(\left(\frac{1-\tau}{b-\sin \frac{\pi}{m}}\right) \ln \alpha\right)>A
$$

Hence we can check that (3.1) is achieved by some r_{m}, which is in the interior of Λ_{m}. As a result, r_{m} is a critical point of $\mathcal{F}(r)$. Therefore

$$
U_{r_{m}}+\varphi\left(r_{m}\right)
$$

is a solution of (1.6).

Appendix A. Some technical estimates

In this section, we will give the energy expansion for the approximate solutions. Recall

$$
\begin{aligned}
y_{j} & =\left(r \cos \frac{2(j-1) \pi}{m}, r \sin \frac{2(j-1) \pi}{m}, 0\right), \quad j=1, \ldots, m, \\
\Omega_{j} & =\left\{x=\left(x^{\prime}, x_{3}\right) \in \mathbf{R}^{2} \times \mathbf{R}:\left\langle\frac{x^{\prime}}{\left|x^{\prime}\right|}, \frac{y_{j}^{\prime}}{\left|y_{j}^{\prime}\right|}\right\rangle \geq \cos \frac{\pi}{m}\right\}, j=1,2, \ldots, m
\end{aligned}
$$

and

$$
I(u)=\frac{1}{2} \int_{\mathbf{R}^{3}}|\nabla u|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} u^{2}+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{u} u^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}|u|^{p},
$$

where Φ_{u} is the solution of $-\Delta \Phi_{u}=K(|x|) u^{2}$.
Recall that U is the unique solution of

$$
\left\{\begin{array}{l}
-\Delta u+u=u^{p-1}, \quad u>0 \text { in } \mathbf{R}^{3}, \\
u(0)=\max _{x \in \mathbf{R}^{3}} u(x) .
\end{array}\right.
$$

Let V be the solution of

$$
\left\{\begin{array}{l}
-\Delta v=U^{2}, \\
v \in D^{1,2}\left(\mathbf{R}^{3}\right)
\end{array} \quad \text { in } \mathbf{R}^{3},\right.
$$

Then, V is radial, and $r V(r) \rightarrow V_{0}>0$, as $r \rightarrow+\infty$.
Now, we give the following Lemma:
Lemma A.1. [2, Lemma 3.7] Given $u, u^{\prime}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ two positive continuous radial functions such that:

$$
u(x) \sim|x|^{a} e^{-b|x|}, u^{\prime}(x) \sim|x|^{a^{\prime}} e^{-b^{\prime}|x|}(x \rightarrow \infty)
$$

where $a, a^{\prime} \in \mathbf{R}, b>0, b^{\prime}>0$. Let $\xi \in \mathbf{R}^{3}$ tend to infinity. Then, the following asymptotic estimates hold:
(1) If $b<b^{\prime}$,

$$
\int_{\mathbf{R}^{3}} u_{\xi} u^{\prime} \sim|\xi|^{a} e^{-b|\xi|} .
$$

(2) If $b=b^{\prime}$, suppose, for simplicity, that $a \geq a^{\prime}$, then

$$
\int_{\mathbf{R}^{3}} u_{\xi} u^{\prime} \sim \begin{cases}|\xi|^{a+a^{\prime}+2} e^{-b|\xi|}, & a^{\prime}>-2, \\ |\xi|^{a} e^{-b|\xi|} \log |\xi|, & a^{\prime}=-2, \\ |\xi|^{a} e^{-b|\xi|}, & a^{\prime}<-2 .\end{cases}
$$

Lemma A.2. For a suitable $\sigma>0$, we have

$$
\Phi_{U_{\mathbf{y}}}(y)=r^{a} e^{-b r} \sum_{j=1}^{m} V\left(y-y_{j}\right)+O\left(\sum_{j=1}^{m} r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) .
$$

Proof. Firstly,

$$
U_{\mathbf{y}}^{2}=U_{y_{1}}^{2}+O\left(U_{y_{1}} \sum_{j=2}^{m} U_{y_{j}}+\left(\sum_{j=2}^{m} U_{y_{j}}\right)^{2}\right) .
$$

For any $x \in \Omega_{1}$, we have

$$
\left|x-y_{i}\right| \geq \frac{1}{2}\left|y_{i}-y_{1}\right|
$$

and for any $\beta>0$,

$$
\sum_{j=2}^{m} U_{y_{j}}^{\beta}(x) \leq C \sum_{j=2}^{m} e^{-\beta\left|x-y_{j}\right|} \leq C \sum_{j=2}^{m} e^{-\frac{\beta}{2}\left|y_{1}-y_{j}\right|} \leq C e^{-\beta \frac{\pi r}{m}}, \quad x \in \Omega_{1} .
$$

As a result,

$$
U_{y_{1}} \sum_{j=2}^{m} U_{y_{j}} \leq U_{y_{1}}^{\frac{3}{2}} \sum_{j=2}^{m} U_{y_{j}}^{\frac{1}{2}} \leq C e^{-\frac{1}{2}\left|x-y_{1}\right|} e^{-\frac{\pi r}{2 m}}, \quad x \in \Omega_{1},
$$

and

$$
\left(\sum_{j=2}^{m} U_{y_{j}}\right)^{2} \leq U_{y_{1}}\left(\sum_{j=2}^{m} U_{y_{j}}^{\frac{1}{2}}\right)^{2} \leq C e^{-\frac{1}{2}\left|x-y_{1}\right|} e^{-\frac{\pi r}{m}}, \quad x \in \Omega_{1} .
$$

So,

$$
U_{\mathbf{y}}^{2}=U_{y_{1}}^{2}+O\left(e^{-\frac{1}{2}\left|x-y_{1}\right|} e^{-\frac{\pi r}{2 m}}\right)
$$

By Lemma A. 1 and the above result, we are led to

$$
\begin{align*}
& \int_{\Omega_{j}} \frac{K(|y|)}{|x-y|} U_{\mathbf{y}}^{2}(y) d y=\int_{\Omega_{j}} \frac{K(|y|)}{|x-y|}\left(U_{y_{j}}^{2}+O\left(e^{-\frac{1}{2}\left|y-y_{j}\right|} e^{-\frac{\pi r}{2 m}}\right)\right) d y \\
& =\int_{\Omega_{j} \cap B_{\frac{r}{2}}(0)} \frac{K\left(\left|y+y_{j}\right|\right)}{\left|x-y-y_{j}\right|} U^{2} d y+O\left(\int_{\mathbf{R}^{3} \backslash B_{\frac{r}{2}}(0)} \frac{K\left(\left|y+y_{j}\right|\right)}{\left|x-y-y_{j}\right|} U^{2} d y\right) \\
& \quad+O\left(r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) \tag{A.1}\\
& =\int_{\Omega_{j} \cap B_{\frac{r}{2}}(0)}(1+o(1))\left|y+y_{j}\right|^{a} e^{-b\left|y+y_{j}\right|} \frac{U^{2}}{\left|x-y-y_{j}\right|} d y \\
& \quad+O\left(\int_{\mathbf{R}^{3} \backslash B_{\frac{r}{2}}(0)} \frac{K\left(\left|y+y_{j}\right|\right)}{\left|x-y-y_{j}\right|} U^{2} d y\right)+O\left(r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) \\
& =r^{a} e^{-b r} V\left(y-y_{j}\right)+O\left(r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) .
\end{align*}
$$

So

$$
\Phi_{U_{\mathbf{y}}}(y)=r^{a} e^{-b r} \sum_{j=1}^{m} V\left(y-y_{j}\right)+O\left(\sum_{j=1}^{m} r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) .
$$

Lemma A.3. We have

$$
\begin{aligned}
I\left(U_{r}\right)= & A+\alpha B r^{2 a} e^{-2 b r}-B^{\prime} r^{-1} e^{-2 r \sin \frac{\pi}{m}}+D \alpha r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right) \\
& +\alpha O\left(e^{-2 b(1+\tau) r}\right)+O\left(e^{-(1+\tau) 2 r \sin \frac{\pi}{m}}\right)
\end{aligned}
$$

where $A=m\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbf{R}^{3}} U^{p}, B=\frac{m}{4} \int_{\mathbf{R}^{3}} V U^{2}$ and $D=\frac{m}{4} \int_{\mathbf{R}^{3}} U^{2}, \tau>0$ sufficiently small.

Proof. Recall that

$$
I\left(U_{\mathbf{y}}\right)=\frac{1}{2} \int_{\mathbf{R}^{3}}\left|\nabla U_{\mathbf{y}}\right|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{2}+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}}^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p},
$$

By direct computation, we have

$$
\begin{equation*}
\frac{1}{2} \int_{\mathbf{R}^{3}}\left|\nabla U_{\mathbf{y}}\right|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{2}=\frac{m}{2} \int_{\mathbf{R}^{3}} U^{p}+\frac{m}{2} \sum_{j=2}^{m} \int_{\mathbf{R}^{3}} U_{y_{1}}^{p-1} U_{y_{j}} . \tag{A.2}
\end{equation*}
$$

We also have

$$
\left.\begin{array}{rl}
\int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p}= & m \int_{\mathbf{R}^{3}} U_{y_{1}}^{p}+m p \int_{\mathbf{R}^{3}} \sum_{k=2}^{m} U_{y_{1}}^{p-1} U_{y_{k}} \\
& +\left\{\begin{array}{ll}
O\left(\sum_{k \neq j} \int_{\mathbf{R}^{3}} U_{y_{k}}^{\frac{p}{2}} U_{y_{j}}^{p}\right.
\end{array}, \quad \text { if } 2<p \leq 3,\right. \tag{A.3}\\
O\left(\sum_{k \neq j} \int_{\mathbf{R}^{3}} U_{y_{k}}^{p-2} U_{y_{j}}^{2}\right), \quad \text { if } p>3,
\end{array}\right\}
$$

where $\tau>0$ sufficiently small.
Using Lemma A.2, we see

$$
\begin{aligned}
& \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}}^{2}=m \int_{\Omega_{1}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}}^{2} \\
& =m \int_{\Omega_{1}} K(|x|)\left(r^{a} e^{-b r} \sum_{j=1}^{m} V\left(y-y_{j}\right)\right. \\
& \left.+O\left(\sum_{j=1}^{m} r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right)\right)\left(U_{y_{1}}^{2}+O\left(e^{-\frac{1}{2}\left|x-y_{1}\right|} e^{-\frac{\pi r}{2 m}}\right)\right) \\
& =m \int_{\Omega_{1}} K(|x|) r^{a} e^{-b r} \sum_{j=1}^{m} V\left(y-y_{j}\right) U_{y_{1}}^{2} \\
& +m \int_{\Omega_{1}} K(|x|) r^{a} e^{-b r} \sum_{j=1}^{m} V\left(y-y_{j}\right) O\left(e^{-\frac{1}{2}\left|x-y_{1}\right|} e^{-\frac{\pi r}{2 m}}\right) \\
& +m \int_{\Omega_{1}} K(|x|) O\left(\sum_{j=1}^{m} r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) U_{y_{1}}^{2} \\
& +m \int_{\Omega_{1}} K(|x|) O\left(\sum_{j=1}^{m} r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) O\left(e^{-\frac{1}{2}\left|x-y_{1}\right|} e^{-\frac{\pi r}{2 m}}\right) \\
& =m \int_{\Omega_{1}} K(|x|) r^{a} e^{-b r} \sum_{j=1}^{m} V\left(y-y_{j}\right) U_{y_{1}}^{2} \\
& +m \int_{\Omega_{1}} K(|x|) O\left(\sum_{j=1}^{m} r^{a} e^{-(b+\sigma) r} \frac{1}{1+\left|y-y_{j}\right|}\right) U_{y_{1}}^{2} \\
& +O\left(k r^{a} e^{-b(1+\delta) r} \int_{\mathbf{R}^{3}} K(|x|) \sum_{j=1}^{m} \frac{1}{1+\left|y-y_{j}\right|} e^{-\frac{1}{2}\left|x-y_{1}\right|}\right) \\
& =m r^{2 a} e^{-2 b r} \int_{\mathbf{R}^{3}} V U^{2}+m r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right) \int_{\mathbf{R}^{3}} U^{2} \\
& +m O\left(r^{2 a} e^{-2 b(1+\delta) r} \sum_{j=2}^{m} \frac{1}{\left|y_{1}-y_{j}\right|}\right)+m O\left(r^{2 a} e^{-2 b(1+\delta) r}\right),
\end{aligned}
$$

where $\delta>0$ is a suitable constant.
Above all, we deduce

$$
\begin{aligned}
I\left(U_{\mathbf{y}}\right)= & \frac{1}{2} \int_{\mathbf{R}^{3}}\left|\nabla U_{\mathbf{y}}\right|^{2}+\frac{1}{2} \int_{\mathbf{R}^{3}} U_{\mathbf{y}}^{2}+\frac{\alpha}{4} \int_{\mathbf{R}^{3}} K(|x|) \Phi_{U_{\mathbf{y}}} U_{\mathbf{y}}^{2}-\frac{1}{p} \int_{\mathbf{R}^{3}}\left|U_{\mathbf{y}}\right|^{p} \\
= & \frac{m}{2} \int_{\mathbf{R}^{3}} U^{p}+\frac{m}{2} \sum_{j=2}^{m} \int_{\mathbf{R}^{3}} U_{y_{1}}^{p-1} U_{y_{j}}-\frac{1}{p} m \int_{\mathbf{R}^{3}} U^{p}-m \int_{\mathbf{R}^{3}} U_{y_{1}}^{p-1} \sum_{j=2}^{m} U_{y_{j}} \\
& +m O\left(e^{-(1+\tau)\left|y_{2}-y_{1}\right|}\right) \\
& +\frac{\alpha}{4} m r^{2 a} e^{-2 b r} \int_{\mathbf{R}^{3}} V U^{2}+\frac{\alpha}{4} m r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right) \int_{\mathbf{R}^{3}} U^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +m \alpha O\left(r^{2 a} e^{-2 b(1+\delta) r} \sum_{j=2}^{m} \frac{1}{\left|y_{1}-y_{j}\right|}\right)+m \alpha O\left(r^{2 a} e^{-2 b(1+\delta) r}\right) \\
= & m\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbf{R}^{3}} U^{p}-\frac{m}{2} \int_{\mathbf{R}^{3}}\left(U_{y_{1}}^{p-1} U_{y_{2}}+U_{y_{1}}^{p-1} U_{y_{m}}\right) \\
& +\frac{\alpha}{4} m r^{2 a} e^{-2 b r} \int_{\mathbf{R}^{3}} V U^{2} \\
& +\frac{\alpha}{4} m r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right) \int_{\mathbf{R}^{3}} U^{2}+m O\left(e^{-(1+\tau)\left|y_{2}-y_{1}\right|}\right) \\
& +O\left(r^{2 a} e^{-2 b(1+\delta) r} \sum_{j=2}^{m} \frac{1}{\left|y_{1}-y_{j}\right|}\right)+m \alpha O\left(r^{2 a} e^{-2 b(1+\delta) r}\right) \\
= & m\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbf{R}^{3}} U^{p}+\frac{\alpha}{4} m r^{2 a} e^{-2 b r} \int_{\mathbf{R}^{3}} V U^{2} \\
& +\frac{\alpha}{4} m r^{2 a} e^{-2 b r} \sum_{j=2}^{m} V\left(y_{j}-y_{1}\right) \int_{\mathbf{R}^{3}} U^{2} \\
& -B^{\prime} r^{-1} e^{-2 r \sin \frac{\pi}{m}}+\alpha O\left(e^{-2 b(1+\tau) r}\right)+O\left(e^{-(1+\tau) 2 r \sin \frac{\pi}{m}}\right),
\end{aligned}
$$

where $\tau>0$ sufficiengly small.

References

[1] Alves, C. O., and M. A. Souto: Existence of least energy nodal solution for a SchrödingerPoisson system in bounded domains. - Z. Angew. Math. Phys. 65, 2014, 1153-1166.
[2] Ambrosetti, A., E. Colorado, and D. Ruiz: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. - Calc. Var. Partial Differential Equations 30, 2007, 85-112.
[3] Ambrosetti, A., and D. Ruiz: Multiple bound states for the Schrödinger-Poisson problem. - Comm. Contemp. Math. 10, 2008, 392-404.
[4] Azzollini, A., and A. Pomponio: Ground state solutions for the nonlinear SchrödingerMaxwell equations. - J. Math. Anal. Appl. 345, 2008, 90-108.
[5] Benci, V., and D. Fortunato: An eigenvalue problem for the Schrödinger-Maxwell equations. - Topol. Methods Nonlinear Anal. 11, 1998, 283-293.
[6] Cao, D., and Z. Tang: Existence and Uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields. - J. Differential Equations 222, 2006, 381424.
[7] Chen, S., and C. Wang: Existence of multiple nontrivial solutions for a Schrödinger-Poisson system. - J. Math. Anal. Appl. 411, 2014, 787-793.
[8] Dancer, E. N., and S. Yan: On positive multipeak solutions of a nonlinear elliptic problem. - J. Lond. Math. Soc. 62, 2000, 213-227.
[9] D'Aprile, T., and D. MugnaI: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. - Proc. Roy. Soc. Edinburgh Sect. A 134, 2004, 893-906.
[10] He, X., and W. Zou: Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. - J. Math. Phys. 53, 2012, 023702, 1-20.
[11] He, Y., and G. LI: Standing waves for a class of Schrödinger-Poisson equations in \mathbf{R}^{3} involving critical sobolev exponents. - Ann. Acad. Sci. Fenn. Math. 40, 2015, 729-766.
[12] Ianni, I.: Solutions of the Schrödinger-Poisson problem concentrating on spheres. Part II: Existence. - Math. Models Meth. Appl. Sci. 19, 2009, 877-910.
[13] Ianni, I., and G. Vaira: On concentration of positive bound states for the SchrödingerPoisson problem with potentials. - Adv. Nonlinear Stud. 8, 2008, 573-595.
[14] Ianni, I., and G. Vaira: Solutions of the Schrödinger-Poisson problem concentrating on spheres. Part I: Necessary conditions. - Math. Models Meth. Appl. Sci. 19, 2009, 707-720.
[15] Kim, S., and J. Seok: On nodal solutions of the nonlinear Schrödinger-Poisson equations. Comm. Contemp. Math. 14, 2012, 1-16.
[16] Kwong, M. K.: Uniqueness of the positive solution of $\Delta u-u+u^{p}=0$ in \mathbf{R}^{n}. - Arch. Ration. Mech. Anal. 105, 1989, 243-266.
[17] Li, G., S. Peng, and S. Yan: Infinitely many positive solutions for the nonlinear SchrödingerPoisson system. - Commun. Contemp. Math. 6, 2010, 1069-1092.
[18] Lin, L., Z. LiU, and S. Chen: Multi-bump solutions for a semilinear Schrödinger equation. Indiana Univ. Math. J. 58, 2009, 1659-1689.
[19] Long, W., and S. Peng: Multiple positive solutions for a type of nonlinear Schrödinger equations. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16, 2016, 603-623.
[20] Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. - J. Funct. Anal. 237, 2006, 655-674.
[21] Ruiz, D., and G. Vaira: Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of potential. - Rev. Mat. Iberoam. 27, 2011, 253-271.
[22] Sun, J., T. Wu, and Y. Wu: On the Schrödinger-Poisson system with steep potential well and indefinite potential. - arXiv: 1412.5463 v 1 .
[23] Wang, Z., and H. Zhou: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \mathbf{R}^{3}. - Calc. Var. Partial Differential Equations 52, 2015, 927-943.
[24] Zhang, J.: The existence and concentration of positive solutions for a nonlinear SchrödingerPoisson system with critical growth. - J. Math. Phys. 55, 2014, 031507, 1-15.
[25] Zhao, L., H. Liu, and F. Zhao: Existence and concentration of solutions for the SchrödingerPoisson equations with steep well potential. - J. Differential Equations 255, 2013, 1-23.

Received 29 January 2016 • Accepted 5 August 2016

[^0]: https://doi.org/10.5186/aasfm. 2017.4218
 2010 Mathematics Subject Classification: Primary 35J10, 35J20, 35J60.
 Key words: Schrödinger-Poisson system, non-radial positive solutions, variational methods, Lyapunov-Schmidt reduction.

 Acknowledgements: The authors thank the referee and the editor for helpful discussions and suggestions. This project is supported by the National Natural Science Foundation of China (Grant No. 11601139).

 * Corresponding author.

