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Abstract. We compute a first- and second-variation formula for the area of H-rectifiable sets

in the Heisenberg group along a contact flow. In particular, the formula holds for sets with locally

finite H-perimeter, with no further regularity.

1. Introduction

In this paper, we compute the first- and second-variation formula for H-perimeter
of sets in the sub-Riemannian Heisenberg group H

n, with minimal regularity as-
sumptions. Let A ⊂ H

n be a bounded open set in the n-th Heisenberg group and
let E ⊂ H

n be a set with finite H-perimeter in A. This perimeter is defined starting
from a scalar product 〈·, ·〉H on the horizontal bundle H of Hn. We denote by µE
the H-perimeter measure of E, by P (E,A) = µE(A) the H-perimeter of E in A, and
by νE ∈ H the measure theoretic horizontal inner normal of E. Let Ψs : A → H

n,
s ∈ [−δ, δ], be the flow of a contact vector field V , defined for some δ = δ(A, V ) > 0.

The main result of the paper is the following

Theorem 1.1. There exists a positive constant C = C(A, V ) independent of E
such that, letting Es = Ψs(E) and As = Ψs(A), we have

(1.1)
∣

∣

∣
P (Es, As)−P (E,A)−s

ˆ

A

FV (νE) dµE−
s2

2

ˆ

A

SV (νE) dµE

∣

∣

∣
≤ CP (E,A)s3,

for any s ∈ [−δ, δ].

The functions FV ,SV : H → R are the first- and second-variation kernels. The
first-variation kernel is

FV (νE) = divV + QV (νE),

where QV is the following quadratic form on H

QV (νE) = 〈[V, νE], νE〉H .

The bracket [V, νE ] is computed pointwise freezing νE at one point and extending the
vector in a left-invariant way. Notice that [V, νE] is a horizontal vector field because
V is contact. The divergence appearing in FV is the divergence associated with the
Haar measure of Hn, that is the Lebesgue measure. The kernel FV is well defined
µE-a.e. for any set with locally finite H-perimeter.

https://doi.org/10.5186/aasfm.2017.4220
2010 Mathematics Subject Classification: Primary 49Q05, 53C17.
Key words: Heisenberg group, variation formulas, contact vector fields.



240 Mattia Fogagnolo, Roberto Monti and Davide Vittone

The second-variation kernel is

SV (νE) = div(JV V ) + FV (νE)
2 − 2QV (νE)

2 + RV (νE),

where JV is the Jacobian matrix (differential) of V and RV : H → R is the quadratic
form

RV (νE) = 〈[V, [V, νE ]], νE〉H + ‖L ∗

V (νE)‖
2
H .

The mapping LV : H → H is the Lie derivative LV (X) = [V,X ], that is R-linear,
and L ∗

V : H → H is the adjoint mapping, 〈LVX, Y 〉H = 〈X,L ∗

V Y 〉H for all X, Y ∈
H . Also SV is well defined for sets with locally finite H-perimeter.

In Section 5, we give explicit formulas for FV and SV in terms of the generating
function of the contact vector field V . The first variation kernel is

FV (νE) = −4(n+ 1)Tψ −∇2
Hψ(νE, JνE)

where ∇2
Hψ is the horizontal Hessian of the generating function ψ, J : H → H is

the standard complex structure (see Section 5.1), and T is the Reeb vector field (see
Section 2). For SV in terms of ψ see Proposition 5.2.

Formula (1.1) is interesting because it holds for the most general class of sets.
It is nontrivial since it also applies to Euclidean unrectifiable hypersurfaces with
fractional dimension, see [6]. In fact, we deduce the formula from an analogous
variation formula for H-rectifiable sets, see Theorem 4.4. Variation formulas for
smooth sets were already obtained, e.g., in [3, Section 8], [9, Section 4], [5]. We think
that Theorem 1.1 could be useful in the study of regularity of H-minimal surfaces and
of stability of critical sets for H-perimeter, in the study of the isoperimetric problem
in H

n and of other problems under low regularity assumptions, as the Bernstein
problem (see [2]). In fact, if E locally minimizes H-perimeter in an open set A, then
for any contact vector field V with compact support in A we have

(1.2)

ˆ

A

FV (νE) dµE = 0 and

ˆ

A

SV (νE) dµE ≥ 0.

The first order necessary condition was used in [11] to study the harmonic approxima-
tion of H-perimeter minimizing boundaries, and here we are giving a detailed proof
of the tools used in that paper. The regularity problem for H-perimeter minimizing
sets is still completely open.

Formula (1.1) has, however, some drawbacks. First, in contrast with the usual
Riemannian second-variation formula and its relation with the Ricci curvature and
the second fundamental form, it is not easy to catch any clear geometric meaning
of the kernels FV and SV . Secondly, restricting variations to contact vector fields
seems to cause a loss of information. This is already evident in the use of the first
order necessary condition in (1.2) made in [11] and the reason is that a contact vector
field depends on the first derivatives of the generating function.

The choice of contact vector fields is motivated by the following consideration.
The flow associated with a contact vector field is Lipschitz continuous; hence, images
of H-rectifiable sets are H-rectifiable. On the contrary, the flow associated with a
generic vector field might transform an object with finite Hausdorff measure into one
with infinite measure.

The proof of Theorem 1.1 is divided into several steps. First, we prove it for
smooth sets. Here, the key point is to get a constant C in the right hand side of (1.1)
independent of the set. Then, we extend the formula to H-regular hypersurfaces and
finally to H-rectifiable sets.
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The computations of Section 3 make transparent the role of contact flows and
have a general character, independent of the specific structure of Hn. The approxi-
mation techniques of Section 4 also have a general character. The extension of the
results fromH-rectifiable sets to sets with finiteH-perimeter is based on the structure
theorem for the reduced boundary proved in [4].

2. Preliminary definitions

As customary, we denote points p ∈ H
n by

R
2n+1 ∋ (x1, . . . , xn, y1, . . . , yn, t) = (z1, . . . , zn, t) ∈ C

n ×R,

where zj = xj + iyj and j = 1, . . . , n. The Lie algebra of left-invariant vector fields
in H

n is spanned by the vector fields

(2.3) Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, and T =

∂

∂t
,

for j = 1, . . . , n. In the sequel, we shall frequently use the alternative notation
Xj = Yj−n for j = n + 1, . . . , 2n. We denote by H the horizontal bundle of THn.
Namely, for any p = (z, t) ∈ H

n we let

Hp = span
{

X1(p), . . . , X2n(p)
}

.

We fix on H the scalar product 〈·, ·〉H that makes X1, . . . , X2n orthonormal.
A horizontal section ϕ ∈ C1

c (A,H), where A ⊂ H
n is an open set, is a vector

field of the form

ϕ =

2n
∑

j=1

ϕjXj ,

where ϕj ∈ C1
c (A). We identify ϕ with its horizontal coordinates (ϕ1, . . . , ϕ2n) ∈ R

2n.
With abuse of notation, for horizontal vectors ϕ and ν we let 〈ϕ, ν〉H = 〈ϕ, ν〉 and
‖ν‖H = |ν|, where 〈·, ·〉 and | · | are the standard scalar product and norm in R

2n.
The H-perimeter of a L 2n+1-measurable set E ⊂ H

n in an open set A ⊂ H
n is

P (E,A) = sup

{
ˆ

E

divϕdL 2n+1 : ϕ ∈ C1
c (A,H), ‖ϕ‖∞ ≤ 1

}

.

If P (E,A) <∞ we say that E has finite H-perimeter in A. If P (E,A′) <∞ for any
open set A′ ⊂⊂ A, we say that E has locally finite H-perimeter in A. In this case,
the open sets mapping A 7→ P (E,A) extends to a Radon measure µE on A that is
called H-perimeter measure induced by E. Moreover, there exists a µE-measurable
function νE : A→ H such that |νE| = 1 µE-a.e. and the Gauss–Green integration by
parts formula

ˆ

A

〈ϕ, νE〉 dµE = −

ˆ

E

divϕdL 2n+1

holds for any ϕ ∈ C1
c (A,H). The vector νE is called horizontal inner normal of E in

A.
Let ̺(p, q) = ‖q−1 ∗ p‖∞ be the box-distance between the points p, q ∈ H

n,
where ‖(z, t)‖∞ = max{|z|, |t|1/2} is the box norm and ∗ is the Heisenberg product
associated with the basis of left-invariant vector fields (2.3).

For any set M ⊂ H
n, s ≥ 0 and δ > 0 we define

S s
δ (M) = inf

{

ωs
∑

j∈N

(diamBj)
s : M ⊂

⋃

j∈N

Bj , Bj ⊂ H
n̺-balls with diamBj < δ

}

,
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where ωs > 0 is a suitable normalization constant. The s-dimensional spherical
Hausdorff measure of M is

S s(M) = lim
δ→0

S s
δ (M).

The relevant ̺-Hausdorff dimension for us is s = 2n + 1. For this reason, we use
the short notation S = S 2n+1. By the representation theorem in [4], for any set
E ⊂ H

n with locally finite H-perimeter we have

(2.4) µE = S ∂∗E,

where denotes restriction, and ∂∗E is the reduced boundary of E, i.e., the set of
points p ∈ H

n such that: i) µE(B(p, r)) > 0 for all r > 0; ii) there holds |νE(p)| = 1,
and iii)

lim
r→0

ˆ

B(p,r)

νE dµE = νE(p).

In particular, the representation formula (2.4) holds when E is a set such that M =
∂E = ∂∗E is an H-regular surface (see Section 4). For sets with smooth boundary
a representation formula for µE will be presented and used later in Section 3, see
(3.30) and (3.31).

3. Variation formula in the smooth case

In this section, we compute the second order Taylor formula with Lagrange re-
mainder for the variation of H-perimeter of smooth hypersurfaces along a contact
flow. The term “smooth” will always mean C∞-smooth and vector fields will always
be smooth vector fields in H

n. By 〈·, ·〉 we denote the standard scalar product of
vectors in R

2n+1.

3.1. Preliminary computations along flows. Let {Ψs}s∈R be the flow of
diffeomorphisms in H

n generated by a vector field V . Given a smooth hypersurface
M ⊂ H

n, we denote by Ns the Euclidean normal to Ψs(M). We fix a base point
p ∈ M and we let ps = Ψs(p). Reference to the base point will often be omitted. In
our computations, there will appear the function

(3.5) ϑ(s) = 〈JVNs, Ns〉, s ∈ R,

where the vectors are evaluated at ps and JV is the Jacobian matrix of the vector field
V generating the flow Ψs. However, our final formulas are independent of ϑ and, in
particular, they do not depend on the Euclidean normal but only on the horizontal
normal. This is of crucial importance for the extension of the formulas to sets with
finite H-perimeter of Section 4.

For any vector field W and for any fixed base point, we define the function
s 7→ FW (s)

(3.6) FW (s) = 〈W,Ns〉(ps), s ∈ R.

The definition depends on the starting hypersurface M that we are considering.

Lemma 3.1. The function s 7→ FW (s) satisfies the differential equation

(3.7) F ′

W (s) = F[V,W ](s) + ϑ(s)FW (s), s ∈ R.

Proof. Fix an orthonormal frame of vector fields V1, . . . , V2n that are tangent to
M . Thus, JΨs

V1, . . . , JΨs
V2n are tangent to Ψs(M), and so

〈JΨs
Vi, Ns〉 = 0, i = 1, . . . , n.
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Differentiating the above identity with respect to s yields

(3.8) 〈JV JΨs
Vi, Ns〉+ 〈JΨs

Vi, N
′

s〉 = 0, i = 1 . . . , 2n,

where N ′

s is the derivative of s 7→ Ns(ps) with respect to s. On the other hand,
differentiating the identity |Ns|

2 = 1, we get 〈N ′

s, Ns〉 = 0, that is, N ′

s is tangent to
Ψs(M). Using the fact that JΨs

|s=0 is the identity, we deduce that the derivative of
Ns at s = 0 is

N ′

0 =

2n
∑

i=1

〈Vi, N
′

0〉Vi = −

2n
∑

i=1

〈JV Vi, N〉Vi = −

2n
∑

i=1

〈Vi, J
∗

VN〉Vi

= 〈J∗

VN,N〉N − J∗

VN,

(3.9)

where the second identity is justified by (3.8) computed at s = 0. An analogous
argument shows that (3.9) holds for all s ∈ R, that is

(3.10) N ′

s = 〈J∗

VNs, Ns〉Ns − J∗

VNs.

The derivative of FW is

F ′

W (s) = 〈JWV,Ns〉+ 〈W,N ′

s〉,

that, by (3.10) and by the definition of adjoint map, becomes

F ′

W (s) = 〈JWV − JVW,Ns〉+ 〈JVNs, Ns〉〈W,Ns〉

= 〈[V,W ], Ns〉+ 〈JVNs, Ns〉〈W,Ns〉 = F[V,W ](s) + ϑ(s)FW (s).

This ends the proof. �

Now consider the function s 7→ Ks defined in the following way

(3.11) Ks =

(

2n
∑

j=1

FXj
(s)2

)1/2

.

The function Ks is the integral kernel for the H-area of the hypersurface Ψs(M),
introduced in (3.30) below. The derivative of Ks is related to the function s 7→ Gs

(3.12) Gs =
1

Ks

2n
∑

j=1

FXj
(s)F[V,Xj ](s),

that is defined when Ks 6= 0. On the other hand, the derivative of Gs is related to
the function s 7→ Hs

(3.13) Hs =
1

Ks

2n
∑

j=1

F[V,Xj](s)
2 + FXj

(s)F[V,[V,Xj]](s).

Finally, the derivative of Hs is related to the function s 7→ Ls

Ls =
1

Ks

2n
∑

j=1

3F[V,Xj ](s)F[V,[V,Xj]](s) + FXj
(s)F[V,[V,[V,Xj]]](s).(3.14)

The functions Gs, Hs, and Ls appear in the first, second, and third derivatives of
H-perimeter.
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Lemma 3.2. As long as Ks 6= 0, the functions Ks, Gs, and Hs satisfy the

following differential equations

K ′

s = ϑ(s)Ks +Gs,(3.15)

G′

s = ϑ(s)Gs −
G2
s

Ks
+Hs,(3.16)

H ′

s = ϑ(s)Hs −
GsHs

Ks
+ Ls,(3.17)

where Ls is as in (3.14). Moreover, we have

(

Gs

Ks

)′

=
Hs

Ks

− 2
G2
s

K2
s

,(3.18)

(

Gs

Ks

)′′

= −4
Gs

Ks

(

Gs

Ks

)′

+
Ls
Ks

− 2
GsHs

K2
s

,(3.19)

(

Hs

Ks

)′

=
Ls
Ks

− 2
GsHs

K2
s

.(3.20)

Proof. We have

K ′

s =
1

Ks

2n
∑

j=1

FXj
F ′

Xj
,

and, by (3.7) and the definition (3.12) of Gs, this formula gives identity (3.15).
Differentiating (3.12) we obtain

G′

s = −
K ′

s

K2
s

2n
∑

j=1

FXj
F[V,Xj ] +

1

Ks

2n
∑

j=1

(F[V,Xj ]

+ ϑFXj
)F[V,Xj ] + FXj

(F[V,[V,Xj]] + ϑF[V,Xj ]).

Inserting K ′

s into this formula, we obtain

G′

s = −
Gs

Ks

(ϑ(s)Ks +Gs) + 2ϑ(s)Gs +Hs = ϑ(s)Gs −
G2
s

Ks

+Hs.

This is formula (3.16). Differentiating (3.13), using (3.7) and (3.15), we find

H ′

s = −
K ′

s

Ks
Hs +

1

Ks

2n
∑

j=1

2F[V,Xj](F[V,[V,Xj]] + ϑF[V,Xj ])

+ (F[V,Xj ] + ϑFXj
)F[V,[V,Xj]] + FXj

(F[V,[V,[V,Xj]]] + ϑF[V,[V,Xj ]])

= −
ϑ(s)Ks +Gs

Ks
Hs + 2ϑ(s)Hs + Ls

= ϑ(s)Hs −
GsHs

Ks
+ Ls.

This is formula (3.17).
The formulas (3.18), (3.19), and (3.20) follow from (3.15), (3.16), and (3.17). In

fact, we have
(

Gs

Ks

)′

=
1

Ks

(

ϑ(s)Gs −
G2
s

Ks

+Hs

)

−
Gs

Ks

ϑ(s)Ks +Gs

Ks

=
Hs

Ks

− 2
G2
s

K2
s

,
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and
(

Gs

Ks

)′′

= −4
Gs

Ks

(

Gs

Ks

)′

+
H ′

s

Ks
−
Hs

Ks

K ′

s

Ks

= −4
Gs

Ks

(

Gs

Ks

)′

+
H ′

s − ϑHs

Ks
−
HsGs

K2
s

= −4
Gs

Ks

(

Gs

Ks

)′

+
Ls −GsHs/Ks

Ks

−
HsGs

K2
s

= −4
Gs

Ks

(

Gs

Ks

)′

+
Ls
Ks

− 2
GsHs

K2
s

.

The computations for (Hs/Ks)
′ are analogous and are omitted. �

The (Euclidean) tangential Jacobian determinant of a smooth mapping Ψ: Hn →
H
n restricted to a hypersurface M ⊂ H

n is the mapping JΨ: M → R

(3.21) JΨ(p) =
√

det(JΨ|∗M ◦ JΨ|M)(p), p ∈M,

where JΨ|M at p ∈ M is the restriction of the Jacobian matrix JΨ to TpM and ∗

denotes the adjoint mapping.
The (Euclidean) tangential divergence of a vector field V on a hypersurface M is

(3.22) divMV = divV − 〈JVN,N〉,

where N is the Euclidean normal to M and JV is the Jacobian matrix of V .

Lemma 3.3. Let M ⊂ H
n be a smooth hypersurface and {Ψs}s∈R be the flow

of diffeomorphisms generated by a vector field V . For any s ∈ R we have

(3.23) (JΨs)
′ = JΨs divΨs(M)V (ps).

The proof of (3.23) is well known (see e.g. [13]) and it is omitted. In the next
step, we compute the derivatives of the product KsJΨs.

Lemma 3.4. Let M ⊂ H
n be a smooth hypersurface and {Ψs}s∈R be the flow

of diffemorphisms generated by a vector field V . For any s ∈ R such that Ks 6= 0 we

have

(KsJΨs)
′ = KsJΨs

(

divV (ps) +
Gs

Ks

)

,(3.24)

(KsJΨs)
′′ = KsJΨs

[

(

divV (ps) +
Gs

Ks

)2

+ div(JV V )(ps)− 2
G2
s

K2
s

+
Hs

Ks

]

,(3.25)

(KsJΨs)
′′′ = KsJΨs(As +Bs),(3.26)

where

As =

(

divV (ps) +
Gs

Ks

)

[

(

divV (ps) +
Gs

Ks

)2

+ div(JV V )(ps)− 2
G2
s

K2
s

+
Hs

Ks

]

,

Bs = 2

(

divV (ps) +
Gs

Ks

)(

div(JV V )(ps) +

(

Gs

Ks

)′)

+ div(JJV V V )(ps)

− 4
Gs

Ks

(

Gs

Ks

)′

+

(

Hs

Ks

)′

.
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Proof. From (3.15), (3.23), and from the definition (3.22) of tangential diver-
gence, we obtain

(KsJΨs)
′ = K ′

sJΨs +Ks(JΨs)
′

= (ϑ(s)Ks +Gs)JΨs +KsJΨSdivΨs(S)V (ps)

= KsJΨs

(

ϑ(s) +
Gs

Ks
+ divΨs(S)V (ps)

)

= KsJΨs

(

Gs

Ks

+ divV (ps)

)

.

In order to compute the second derivative, first observe that

∂

∂s
divV (ps) = div

(

∂

∂s
(V ◦Ψs)

)

= div(JV V )(ps).

Thus, we obtain

(KsJΨs)
′′ = (KsJΨs)

′

(

divV (ps) +
Gs

Ks

)

+KsJΨs

(

divV (ps) +
Gs

Ks

)

′

= KsJΨs

[

(

divV (ps) +
Gs

Ks

)2

+ div(JV V )(ps) +

(

Gs

Ks

)′
]

.

The formula for the third derivative is obtained in a similar way and we omit the
computations. �

Remark 3.5. The function ϑ introduced in (3.5) appears in the formulas (3.15)–
(3.17). However, in (3.18)–(3.20) the function does not appear and thus the deriva-
tives of KsJΨs in (3.24)–(3.26) are independent of ϑ.

3.2. Contact flows. Let A ⊂ H
n be an open set. A C∞-diffeomorphism

Ψ: A→ Ψ(A) ⊂ H
n is a contact diffeomorphism if for any p ∈ A the differential JΨ

satisfies

JΨ(Hp) = HΨ(p),

where H is the horizontal bundle of Hn. Contact diffeomorphisms play a central role
in geometric, conformal, and metric analysis in the Heisenberg group. From our point
of view, they are important for the following reason. If Ψ is a contact diffeomorphism
and E ⊂ H

n is a (bounded) set with finite H-perimeter then also Ψ(E) is a set with
finite H-perimeter. If Ψ is not contact then this property may fail even for a linear
mapping Ψ.

A vector field V in H
n is a contact vector field if it generates a flow of contact

diffeomorphisms. The following proposition is well-known and lists some characteri-
zations of contact vector fields. We refer the reader to [7, Section 5] for a derivation
of formula (3.27) below.

Proposition 3.6. Let V be a smooth vector field in H
n. The following state-

ments are equivalent:

i) V is a contact vector field.

ii) For any p ∈ H
n and for any j = 1, . . . , n we have

[V,Xj ](p) ∈ Hp and [V, Yj](p) ∈ Hp.
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iii) There exists a function ψ ∈ C∞(Hn) such that V = Vψ with

(3.27) Vψ = −4ψT +

n
∑

j=1

(Yjψ)Xj − (Xjψ)Yj.

Let M ⊂ H
n be a smooth hypersurface, let Ns be the Euclidean normal to

Ψs(M), and let FW (s) = 〈W,Ns〉(ps) be the function in (3.6), for some base point
p ∈ M . The functions Gs, Hs, and Ls in (3.12)–(3.14) depend on M . However, we
have the following result.

Lemma 3.7. Let Ψs be the flow of a contact vector fields V in H
n. For any

compact set Q ⊂ H
n there exists a constant C = C(Q, V ) > 0 independent of the

initial surface M such that

(3.28) |Gs|+ |Hs|+ |Ls| ≤ CKs,

and

(3.29)

∣

∣

∣

∣

(

Gs

Ks

)′
∣

∣

∣

∣

+

∣

∣

∣

∣

(

Gs

Ks

)′′
∣

∣

∣

∣

+

∣

∣

∣

∣

(

Hs

Ks

)′
∣

∣

∣

∣

≤ C,

provided Ks 6= 0 and ps ∈ Q.

Proof. By the characterization ii) of Proposition 3.6, the vector fields [V,Xj ],
[V, [V,Xj]], and [V [V, [V,Xj ]]] are horizontal. The expressions (3.12)–(3.14) forGs, Hs,
and Ls are thus homogeneous of degree 1 in Xj, j = 1, . . . , 2n. By a continuity ar-
gument, it follows that there exists a constant C > 0 depending on V and Q but
independent of M such that |Gs|+ |Hs|+ |Ls| ≤ CKs for all ps ∈ Q.

The estimates (3.29) follow from (3.28) and from the formulas (3.18)–(3.20). �

From Lemma 3.7, we deduce the following corollary.

Lemma 3.8. Let Ψs be the flow of a smooth contact vector fields V in H
n. For

any compact set Q ⊂ H
n there exists a constant C = C(Q, V ) > 0 independent of

the initial surface M such that

|(KsJΨs)
′|+ |(KsJΨs)

′′|+ (KsJΨs)
′′′| ≤ CKs,

provided Ks 6= 0 and ps ∈ Q.

In fact, also JΨs is locally bounded independently of the initial surface M .

3.3. Variation formulas in the smooth case. Let UH be the unit horizontal
bundle of Hn. Namely, ν ∈ UH if ν ∈ H and for any p ∈ Hp we have

ν(p) =
2n
∑

j=1

νjXj(p) with
2n
∑

j=1

ν2j = 1.

We identify ν(p) with its horizontal coordinates (ν1, . . . , ν2n) ∈ R
2n.

For a smooth hypersurface M ⊂ H
n, we define its horizontal normal at p ∈ M

as the vector νM ∈ UHp that, in horizontal coordinates, is defined as

νM =
1

K

(

〈X1, N〉, . . . , 〈X2n, N〉
)

, at the point p,

where N is the Euclidean normal and K =
(

∑2n
j=1〈Xj, N〉2

)1/2

. The definition of

νM depends on a choice of sign for N and it is possible when K 6= 0. The H-area of
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M in an open set A ⊂ H
n is

(3.30) AH(M,A) =

ˆ

M∩A

K dH 2n,

where H 2n is the standard 2n-dimensional Hausdorff measure in H
n = R

2n+1. The
H-area measure of M is the measure

(3.31) µM = KH 2n M.

When M = ∂E is the boundary of a smooth set E we have µE = µM .
For any contact vector field V , we define quadratic forms QV ,RV : UH → R

in the following way. Fix a point p ∈ H
n and a vector ν ∈ UHp. Take a smooth

hypersurface M ⊂ H
n such that p ∈ M is noncharacteristic (i.e., TpM 6= Hp) and

νM(p) = ν. Let Ψs be the contact flow generated by V , with base point p. We define

(3.32) QV (ν) =
Gs

Ks

∣

∣

∣

∣

s=0

, RV (ν) =
Hs

Ks

∣

∣

∣

∣

s=0

,

whereGs, Ks, andHs are defined in (3.11)–(3.13) starting from the functions FW (s) =
〈W,Ns〉 where Ns is the Euclidean normal to the hypersurface Ψs(M) at the point
ps = Ψs(p). The quantities in (3.32) do not depend on the choice of M , see
Lemma 3.9.

Recalling that the bracket [V, ν] is computed pointwise by extending ν = ν(p) in
a left-invariant way, we have the following

Lemma 3.9. For any contact vector field V and any ν ∈ UH , we have:

i) QV (ν) = 〈[V, ν], ν〉H ;

ii) RV (ν) = 〈[V, [V, ν]], ν〉H + ‖L ∗

V (ν)‖
2
H .

Proof. The relation between the Euclidean normal N to the hypersurface M and
the horizontal normal ν ∈ UH is

(3.33) νj =
〈Xj, N〉

K
, j = 1, . . . , 2n.

By the formula (3.12) and by standard linear algebra, we have

QV (ν) =
1

K2

2n
∑

j=1

〈Xj , N〉〈[V,Xj], N〉 = 〈[V, ν], ν〉H .

By (3.13) and (3.33), the quadratic form RV : UHp → R in (3.32) is RV =
R1
V + R2

V , with

R1
V (ν) =

1

K2

2n
∑

j=1

〈[V, [V,Xj]], N〉〈Xj, N〉 = 〈[V, [V, ν]], ν〉H ,

and

R2
V (ν) =

1

K2

2n
∑

j=1

〈[V,Xj ], N〉2 =
2n
∑

j=1

〈[V,Xj], ν〉
2
H =

2n
∑

j=1

〈Xj,L
∗

V (ν)〉
2
H = ‖L ∗

V (ν)‖
2
H .

�

Motivated by the formulas in (3.24) and (3.25), let us introduce the short notation

FV (p, ν) = divV + QV (ν)(3.34)

SV (p, ν) = div(JV V ) + (FV (ν))
2 − 2QV (ν)

2 + RV (ν),(3.35)
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where functions are evaluated at a noncharacteristic point p ∈ M and ν = νM(p)
is the horizontal normal of M at p. We call FV the first-variation kernel and SV

the second-variation kernel along V . We omit dependence on p and we let FV (ν) =
FV (p, ν) and SV (p, ν) = SV (ν). We shall compute explicit formulas for the kernels
FV and SV in Section 5.

In the next theorem, we compute the second variation formula for the H-area
of smooth hypersurfaces. A sketch of the proof of the formula up to the first order
appeared in the lecture notes [10].

Theorem 3.10. Let A ⊂ H
n be a bounded open set and let M ⊂ H

n be

a smooth hypersurface with finite H-area in A. Let Ψ: [−δ, δ] × A → H
n, δ =

δ(A, V ) > 0, be the flow of a contact vector field V . Then there exists a positive

constant C = C(A, V ) independent of M such that
∣

∣

∣

∣

AH(Ms, As)− AH(M,A)− s

ˆ

A

FV (νM) dµM −
s2

2

ˆ

A

SV (νM) dµM

∣

∣

∣

∣

≤ CAH(M,A)s3,

(3.36)

for any s ∈ [−δ, δ], where Ms = Ψs(M) and As = Ψs(A).

Proof. Let N,Ns be the Euclidean unit normals to M ∩A and Ms ∩As, respec-
tively. We choose a coherent orientation. Let Ks be the H-area kernel of Ms intro-
duced in (3.11). By the definition of a contact diffeomorphism, we have K0(p) 6= 0 if
and only if Ks(ps) 6= 0. The set where K0 = 0 is contained in a smooth hypersurface
of M and is H 2n-negligible.

By the change of variable formula for surface integrals, we have

AH(Ms, As) =

ˆ

Ms∩As

(

2n
∑

i=1

〈Xj , Ns〉
2

)1/2

dH 2n =

ˆ

M∩A

KsJΨs dH
2n = P (s),

where JΨs is the tangential Jacobian matrix defined in (3.21). The function P (s)
defined in the last line has the following Taylor expansion

(3.37) P (s) = P (0) + sP ′(0) +
s2

2
P ′′(0) +

s3

6
P ′′′(s̄),

for some s̄ ∈ [0, s].
The exchange of integral and derivative in s,

d

ds

ˆ

M∩A

KsJΨs dH
2n =

ˆ

M∩A

(KsJΨs)
′ dH 2n,

is justified by (3.24). In fact, the right hand side in (3.24) is bounded by the estimates
of Lemma 3.8. The same holds for the second and third derivatives in s. Then, we
have

P (0) =

ˆ

m∩A

K0 dH
2n = AH(M,A),

and, by (3.32)–(3.35),

P ′(0) =

ˆ

M∩A

(

KsJΨs)
′
∣

∣

s=0
dH 2n =

ˆ

M∩A

(

divV + QV (νM)
)

K0 dH
2n

=

ˆ

A

FV (νM) dµM ,

P ′′(0) =

ˆ

M∩A

(

KsJΨs)
′′
∣

∣

s=0
dH 2n =

ˆ

A

SV (νM) dµM .
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The third derivative satisfies the bound
∣

∣

∣

∣

ˆ

M∩A

(KsJΨs)
′′′ dH 2n

∣

∣

∣

∣

≤ C1

ˆ

M∩A

Ks dH
2n

≤ C2

ˆ

M∩A

K0 dH
2n = C2AH(M,A).

The estimate Ks ≤ C3K0 follows from K ′

s ≤ C4Ks, that is a consequence of (3.15).
The constants C1, C2, C3, C4 are independent of M .

Now formula (3.36) follows from (3.37). �

4. Variation formulas for H-rectifiable sets

In this section we extend Theorem 3.10 to H-rectifiable sets, and in particular
to sets with finite H-perimeter. In a first step, we extend the theorem to H-regular
hypersurfaces, and in a second step to H-rectifiable sets.

4.1. Variation of the area of H-regular surfaces. A function g : A →
R, A ⊂ H

n open set, is of class C1
H(A) if g is continuous and the derivatives

X1g, . . . , X2ng in the sense of distributions are (represented by) continuous func-
tions in A. The horizontal gradient of g ∈ C1

H(A) is the vector valued mapping
∇Hg ∈ C(A;R2n), ∇Hg =

(

X1g, . . . , X2ng
)

.
A set M ⊂ H

n is an H-regular hypersurface if for all p ∈M there exists an open
neighbourhood A of p and a function g ∈ C1

H(A) such that M ∩A =
{

q ∈ A : g(q) =

0
}

and |∇Hg(p)| 6= 0.
The main result of this section is the following

Theorem 4.1. Let A ⊂ H
n be a bounded open set and E ⊂ H

n a set with finite

H-perimeter in A such that ∂E∩A is anH-regular hypersurface. Let Ψ: [−δ, δ]×A→
H
n, δ = δ(A, V ) > 0, be the flow generated by a contact vector field V . There exists

a positive constant C = C(A, V ) independent of E such that, letting Es = Ψs(E)
and As = Ψs(A), we have

(4.38)

∣

∣

∣

∣

P (Es, As)−P (E,A)− s

ˆ

A

FV (νE) dµE −
s2

2

ˆ

A

SV (νE) dµE

∣

∣

∣

∣

≤ CP (E,A)s3,

for any s ∈ [−δ, δ].

The starting point of the proof is the following technical lemma, that is an easy
adaptation of Lemma 4.4 in [14].

Lemma 4.2. Let M be an H-regular hypersurface such that M = {p ∈ U : g(p)
= 0} with U ⊂ H

n open and bounded set and g ∈ C1
H(U) such that ∇Hg 6= 0 on

M . Then, for any p ∈ M there exist an open neighbourhood A ⊂ U and a function

f ∈ C1
H(A) such that M = {q ∈ A : f(q) = 0}, ∇Hf 6= 0 on A, and f ∈ C∞(A \M).

Proof of Theorem 4.1. We can assume that M = ∂E ∩ A is given by the zero
set of a function f ∈ C1

H(A)∩C
∞(A \M) as in Lemma 4.2; we can also assume that

f < 0 on E. Let Ψs be the flow generated by a contact vector field V . For s ∈ [−δ, δ],
we define

As = Ψs(A), fs = f ◦Ψs, Ms = {q ∈ As : fs(q) = 0} = Ψs(M).

Using the property of a contact flow it is easy to check that each Ms is an H-regular
hypersurface with defining function fs ∈ C1

H(As) ∩ C
∞(As \Ms).
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For any r ∈ R we define the sets

Er = {p ∈ A : f(p) < r}, E = E0,

Er
s = {q ∈ As : fs(q) < r} = Ψs(E

r), Es = E0
s = Ψs(E

0).

We have ∂E ∩ A = M and ∂Es ∩ As = Ms. Since ∇Hf 6= 0 on A, ∂Er ∩ A and
∂Er

s ∩As are smooth hypersurfaces.
Let s ∈ [−δ, δ] be fixed. By Theorem 3.10 and by the standard representation of

H-perimeter for smooth surfaces, we have
∣

∣

∣

∣

P (Er
s , As)− P (Er, A)− s

ˆ

A

FV (νEr) dµEr −
s2

2

ˆ

A

SV (νEr) dµEr

∣

∣

∣

∣

≤ CP (Er, A)s3,

(4.39)

where C is a constant independent of r and s. It is easy to see that as r → 0 we have

(4.40) χEr → χE in L1(A).

We claim that we also have

(4.41) lim
r→0

P (Er, A) = P (E,A), lim
r→0

P (Er
s , As) = P (Es, As).

We prove the claim in the left hand side of (4.41). Since |∇Hf | 6= 0 in A, we can
assume, up to a rotation and a localization argument, that X1(f) ≥ ε0 > 0 on A. By
the implicit function theorem of [4], there exist an open set I ⊂ R

2n and continuous
functions Φr : I → H

n such that

(4.42) P (Er, A) =

ˆ

I

|∇Hf |

X1f
(Φr(x)) dL 2n(x).

We may assume that I does not depend on r, via choosing a cylindrical structure of
A along X1. As r → 0, the function Φr(x) converge to Φ(x) uniformly in x (see the
proof of [14, Proposition 4.5]) and, by the (uniform) continuity of ∇Hf and X1f , we
conclude that

lim
r→0

|∇Hf |

X1f
(Φr(x)) =

|∇Hf |

X1f
(Φ0(x)),

uniformly in x ∈ I. Exchanging integral and limit in (4.42), this proves our claim.
From (4.40) and (4.41), we deduce by Lemma 2.5 in [14] that for r → 0 we have

the weak∗ convergence of measures

νErµEr ⇀ νEµE.

Thus, by Reshetnyak continuity theorem, see e.g. [1, Theorem 2.39], we deduce that

lim
r→0

ˆ

A

FV (νEr) dµEr =

ˆ

A

FV (νE) dµE and

lim
r→0

ˆ

A

SV (νEr) dµEr =

ˆ

A

SV (νE) dµE.

(4.43)

Now, using (4.43) and (4.41), and passing to the limit in the formula (4.39), we
obtain (4.38). �

4.2. Variation formulas for H-rectifiable sets. In this section, we prove the
variation formula for H-rectifiable sets. In this formula, the H-perimeter measure
µE associated with a set E of locally finite perimeter is replaced by the spherical
Hausdorff measure S = S 2n+1 .

We introduce the notion of H-rectifiable set for the dimension 2n+1. The notion
of rectifiability for a generic dimension is studied in [8].
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Definition 4.3. A Borel set R ⊂ H
n is H-rectifiable if there exists a sequence

of H-regular hypersurfaces {Mj}j∈N with S (Mj) <∞ such that

S

(

R \
⋃

j∈N

Mj

)

= 0.

The importance of the notion ofH-rectifiability is due to the fact that the reduced
boundary of sets with locally finite H-perimeter is rectifiable in the sense of Defini-
tion 4.3, see [4]. So Theorem 1.1 for sets with finite H-perimeter in the Introduction
follows directly from Theorem 4.4 below for H-rectifiable sets.

We define a mapping νR : R → R
2n letting νR(p) = νMj

(p) where j ∈ N is the
unique integer such that p ∈ Mj \ ∪i<jMi and letting νR = 0 if there is no such j.
The function νR is Borel measurable and it is well-defined up to a sign. Namely, if
{M1

j }j∈N and {M2
j }j∈N are two sequences of H-regular hypersurfaces such that

S

(

R \
⋃

j∈N

M1
j

)

= 0, S

(

R \
⋃

j∈N

M2
j

)

= 0,

then for S -a.e. p ∈ R we have ν1R(p) = ν2R(p) or ν1R(p) = −ν2R(p), where ν1R and ν2R
are defined as above by means of {M1

j }j∈N and {M2
j }j∈N, respectively. The proof of

these claims can be found in [12, Appendix B].
We call νR the horizontal normal of the H-rectifiable set R. The fact that νR is

unique only up to the sign does not affect our results, because the first- and second-
variation kernels are symmetric, in the sense that

FV (ν) = FV (−ν) and SV (ν) = SV (−ν)

for any ν ∈ UH .

Theorem 4.4. Let A ⊂ H
n be a bounded open set and R ⊂ A an H-rectifiable

set with S (R) < ∞ and with horizontal normal νR. Let Ψ: [−δ, δ] × A → H
n,

δ = δ(A, V ) > 0, be the flow generated by a contact vector field V . Then there exists

a positive constant C = C(A, V ) such that

∣

∣

∣

∣

S (Ψs(R))− S (R)− s

ˆ

R

FV (νR) dS −
s2

2

ˆ

R

SV (νR) dS

∣

∣

∣

∣

≤ CS (R)s3,(4.44)

for all s ∈ [−δ, δ].

Proof. When R = ∂E∩A is anH-regular hypersurface bounding a set E, formula
(4.44) is formula (4.38) with νR = νE and µE = S ∂R, which holds because of (2.4).

Step 1. We prove formula (4.44) in the case that R = Σ ⊂ M is a Borel subset
of an H-regular hypersurface M .

Since S M is a Radon measure, there exists a sequence of open sets Aj ⊂ H
n

such that Σ ⊂ Aj and

lim
j→∞

S (M ∩ Aj) = S (Σ).

For the same reason, for any fixed s ∈ [−δ, δ], there exists a sequence Bj of open sets
such that Ψs(Σ) ⊂ Bj and

lim
j→∞

S (Ψs(M) ∩Bj) = S (Ψs(Σ)).
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Letting, Uj = Aj ∩ Ψ−1
s (Bj), we have Σ ⊂ Uj ⊂ Aj and Ψs(Σ) ⊂ Ψs(Uj) ⊂ Bj , and

thus

(4.45) lim
j→∞

S (M ∩ Uj) = S (Σ), lim
j→∞

S (Ψs(M ∩ Uj)) = S (Ψs(Σ)).

The sets Σj =M ∩Uj are H-regular hypersurfaces and thus formula (4.44) holds for
them with νΣj

= νM on Σj . By dominated convergence, we have

lim
j→∞

ˆ

Σj

FV (νM) dS =

ˆ

Σ

FV (νM) dS ,

lim
j→∞

ˆ

Σj

SV (νM) dS =

ˆ

Σ

SV (νM) dS .

(4.46)

From (4.45) and (4.46), we deduce (4.44).

Step 2. We prove formula (4.44) for a general H-rectifiable set R such that
S (R) <∞. Then we have

R = N ∪

∞
⋃

j=1

Σj ⊂ A,

with S (N) = 0 and for pairwise disjoint Borel sets Σj ⊂Mj with Mj H-regular and
S (Σj) <∞. By Step 1, we have for any j ∈ N
∣

∣

∣

∣

∣

S (Ψs(Σj))− S (Σj)− s

ˆ

Σj

FV (νR) dS −
s2

2

ˆ

Σj

SV (νR) dS

∣

∣

∣

∣

∣

≤ CS (Σj)s
3,

for all s ∈ [−δ, δ]. It is well-known that the contact flow Ψs : H
n → H

n is locally
Lipschitz continuous; therefore, one has S (Ψs(N)) = 0, and formula (4.44) follows
by summation on j. �

5. Variation kernels and generating function

Let V = Vψ be a contact vector field of the form (3.27) for some ψ ∈ C∞(Hn). We
compute the first- and second-variation kernels in terms of the generating function
ψ.

5.1. Formula for FV . By the formula (3.27) for a contact vector field, we have

(5.47) V = −4ψT − J∇Hψ,

where J : H → H is the standard complex structure on H , i.e., the linear mapping
such that JXj = Yj and JYj = −Xj, and

(5.48) ∇Hψ =
2n
∑

j=1

(Xjψ)Xj

is the horizontal gradient of ψ. The horizontal Hessian of ψ is the bilinear form
∇2
Hψ : H ×H → R such that

∇2
Hψ(Xj, Xi) = XjXiψ, i, j = 1, . . . , 2n.

We can think of the horizontal Hessian also as the linear mapping ∇2
Hψ : H → H

such that ∇2
Hψ(Xj, Xi) = 〈∇2

Hψ(Xj), Xi〉H , i.e.,

∇2
Hψ(Xj) =

2n
∑

i=1

(XjXiψ)Xi, j = 1, . . . , 2n.
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Proposition 5.1. For any contact vector field V and ν ∈ UH , the first-variation

kernel is

FV (ν) = −4(n+ 1)Tψ −∇2
Hψ(ν, Jν).

Proof. The first-variation kernel is FV (ν) = divV + QV (ν), see (3.34). In order
to compute the divergence divV , we first observe that

(5.49) div(J∇Hψ) =

n
∑

j=1

YjXjψ −XjYjψ = 4nTψ.

Then we have

divV = div(−4ψT − J∇Hψ) = −4Tψ − div(J∇Hψ) = −4(n + 1)Tψ.

We compute the quadratic form QV . From the commutation relations [Xi, Yj] =
−4δijT and [Xj, T ] = [Yj, T ] = 0 for i, j = 1, . . . , n, and from (5.47) we have, for any
j = 1, . . . , 2n,

[V,Xj ] = [−4ψT − J∇Hψ,Xj]

= 4(Xjψ)T −
2n
∑

j=1

(Xiψ)[JXi, Xj]− (XjXiψ)JXi = XjJ∇Hψ,
(5.50)

where the vector field Xj acts on the horizontal coordinates of J∇Hψ. By formula i)
of Lemma 3.9 for QV , by (5.50), by the isometric property of J , and by J2 = −Id,
we have

QV (ν) = 〈[V, ν], ν〉H =
2n
∑

j=1

νj〈[V,Xj], ν〉H =
2n
∑

j=1

νj〈XjJ∇Hψ, ν〉H

= −

2n
∑

j=1

νj〈Xj∇Hψ, Jν〉H = −∇2
Hψ(ν, Jν).

The claim follows. �

5.2. Formula for SV . The formula for SV (ν) in terms of V is in (3.35). We
need to compute the quadratic form RV and the divergence div(JV V ).

We define the bilinear form ∇2
JHψ : H ×H → R such that

∇2
JHψ(Xj , Xi) = (JXj)(JXi)ψ, j = 1, . . . , 2n,

that also induces a linear mapping ∇2
JHψ : H → H . We denote by ∇2

Hψ∇
2
JHψ the

bilinear form associated with the composition of the linear operators ∇2
Hψ and ∇2

JHψ,
while (∇2

Hψ)
∗ is the adjoint of ∇2

Hψ.

Proposition 5.2. For any contact vector field V and for any ν ∈ UH we have

div(JV V ) = 8(n+ 1)T 2ψ2 + 4n〈∇Hψ, J∇HTψ〉H − trace
(

∇2
Hψ∇

2
JHψ

)

and

RV (ν) = −(V∇2
Hψ)(ν, Jν)−∇2

Hψ∇
2
JHψ(ν, ν) + ‖(∇2

Hψ)
∗(Jν)‖2H .
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Proof. By formula ii) in Lemma 3.9, we have RV (ν) = 〈[V, [V, ν]], ν〉H+‖L ∗

V (ν)‖
2
H .

By formulas (5.50) and (5.48), one gets

[V, [V, ν]] =

2n
∑

j=1

νj[V,XjJ∇Hψ] =

2n
∑

i,j=1

νj[V, (XjXiψ)JXi]

=

2n
∑

i,j=1

νj
{

(V XjXiψ)JXi + (XjXiψ)(JXi)J∇Hψ
}

,

and the scalar product with ν is

〈[V, [V, ν]], ν〉H =
2n
∑

i,j=1

νj
{

− (V XjXiψ)〈Xi, Jν〉H + (XjXiψ)〈(JXi)J∇Hψ, ν〉H
}

= −(V∇2
Hψ)(ν, Jν)−

2n
∑

i,j,k=1

νjνk(XjXiψ)(JXi)(JXk)ψ

= −(V∇2
Hψ)(ν, Jν)− (∇2

Hψ∇
2
JHψ)(ν, ν).

Moreover, by (5.50) we have

‖L ∗

V (ν)‖
2
H =

2n
∑

j=1

〈Xj,L
∗

V (ν)〉
2
H =

2n
∑

j=1

〈LV (Xj), ν〉
2
H =

2n
∑

j=1

〈[V,Xj], ν〉
2
H

=

2n
∑

j=1

〈XjJ∇Hψ, ν〉
2
H =

2n
∑

j=1

〈∇2
Hψ(Xj), Jν〉

2
H = ‖(∇2

Hψ)
∗(Jν)‖2H .

Now we compute the divergence div(JV V ). Using the relations Xj(JXi) =
−2δijT , we obtain

JVXj = −2(Xjψ)T − J(Xj∇Hψ), j = 1, . . . , 2n,

JV T = −4(Tψ)T − J(T∇Hψ),

and thus the vector field JV V is

JV V = 4ψ{4(Tψ)T + J(T∇Hψ)}+

2n
∑

j=1

(Xjψ){2(JXjψ)T + (JXj)J∇Hψ}

= 8(Tψ2)T + 4ψJ(∇HTψ)) + J

(

2n
∑

j=1

(Xjψ)(JXj)∇Hψ

)

.

We used the identity 〈∇Hψ, J∇Hψ〉H = 0. Since (JXj)Xi = Xi(JXj)+ [JXj , Xi], we
have

2n
∑

j=1

(Xjψ)(JXj)∇Hψ = 4(Tψ)∇Hψ +
2n
∑

j=1

(Xjψ)∇H(JXj)ψ

and, since T commutes with ∇H , we finally obtain the following formula for JV V

JV V = 8Tψ2T + 4T (ψJ∇Hψ) +

2n
∑

j=1

(Xjψ)J∇H(JXj)ψ.
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Using T 〈∇Hψ, J∇Hψ〉H = 0 and formula (5.49), one gets

div(JV V ) = 8T 2ψ2 + 4Tdiv(ψJ∇Hψ) +

2n
∑

j=1

div
(

(Xjψ)J∇H(JXj)ψ
)

= 8(n+ 1)T 2ψ2 + 4n〈∇Hψ, J∇HTψ〉H −

2n
∑

i,j=1

XjXiψ(JXi)(JXj)ψ,

and the claim follows. �
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