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Abstract. Sitting at the top level of the Askey-scheme, Wilson polynomials are regarded as

the most general hypergeometric orthogonal polynomials. Instead of a differential equation, they

satisfy a second order Sturm–Liouville type difference equation in terms of the Wilson divided-

difference operator. This suggests that in order to better understand the distinctive properties of

Wilson polynomials and related topics, one should use a function theory that is more natural with

respect to the Wilson operator. Inspired by the recent work of Halburd and Korhonen, we establish

a full-fledged Nevanlinna theory of the Wilson operator for meromorphic functions of finite order.

In particular, we prove a Wilson analogue of the lemma on logarithmic derivatives, which helps

us to derive Wilson operator versions of Nevanlinna’s Second Fundamental Theorem, some defect

relations and Picard’s Theorem. These allow us to gain new insights on the distributions of zeros and

poles of functions related to the Wilson operator, which is different from the classical viewpoint.

We have also obtained a relevant five-value theorem and Clunie type theorem as applications of

our theory, as well as a pointwise estimate of the logarithmic Wilson difference, which yields new

estimates to the growth of meromorphic solutions to some Wilson difference equations and Wilson

interpolation equations.

1. Introduction

The Wilson divided-difference operator DW was first considered by Wilson to
study Wilson polynomials Wn(x; a, b, c, d) [2, p. 34], defined by

Wn(x; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n

:= 4F3

(
−n, n+ a + b+ c+ d− 1, a+ i

√
x, a− i

√
x

a + b, a+ c, a+ d
; 1

)
,

which are hypergeometric orthogonal polynomials located at the top level of the
Askey scheme [22]. They are the most general hypergeometric orthogonal polyno-
mials that contain all the known classical hypergeometric orthogonal polynomials
[1] as special cases. The Wilson operator acts on Wilson polynomials in a similar

https://doi.org/10.5186/aasfm.2017.4211
2010 Mathematics Subject Classification: Primary 30D35; Secondary 30D30, 33C45, 39A05.
Key words: Wilson divided-difference operator, complex function theory, Poisson–Jensen for-

mula, Nevanlinna theory.
Both authors were partially supported by GRF no. 16306315 from Hong Kong Research Grant

Council. The second author was also partially supported by GRF no. 600609.



176 Kam Hang Cheng and Yik-Man Chiang

manner as the usual differential operator acts on monomials, except with a shift in
the parameters a, b, c and d:

(DWWn)(x; a, b, c, d) = CnWn−1

(
x; a +

1

2
, b+

1

2
, c+

1

2
, d+

1

2

)
,

where Cn = −n(n+a+b+c+d−1). Instead of a differential equation, it is known that
Wilson polynomials satisfy a second order Sturm–Liouville type difference equation
in terms of the Wilson operator (see §6).

Wilson polynomials are intimately related to other classical orthogonal polyno-
mials on which active research have been done. Wilson identified himself in [34] that
an orthogonality relation for the 6-j symbols in the coupling of angular momenta in
quantum mechanics follow from that of Wilson polynomials as a special case. Koorn-
winder [23] discovered that Wilson polynomials and Jacobi polynomials are mapped
to each other via the Jacobi–Fourier transform, and studied Wilson polynomials
from a group theoretic viewpoint [24]. Groenevelt [12] used Wilson functions, which
is a family of transcendental solutions of the aforementioned second-order Sturm–
Liouville Wilson difference equation linearly independent to Wilson polynomials, as
the kernel of a new integral transform called the Wilson function transform. Wilson
polynomials have also been extended to a multiple-parameter version [4] using essen-
tially the same tool of Jacobi transform that was used in [12]. Wilson polynomials
also have applications in various aspects from theoretical physics to birth and death
processes, see for examples [5], [19], [21], [28] and [29].

It is clear that in a majority of the research works cited, the subject of investi-
gation was either Wilson polynomials or Wilson functions. In this paper we would
therefore like to look into the Wilson operator in a broader function theoretic con-
text, and establish some results about its interaction with meromorphic functions. It
turns out that Halburd and Korhonen have recently established a Nevanlinna theory
in [15] with respect to the ordinary difference operator (∆f)(x) = f(x + η) − f(x)
for each fixed non-zero η. In particular, a new difference type little Picard theo-
rem has been proved. See also [16]. This suggests that the function theory with
respect to ∆ is somewhat different from the classical function theory with respect
to d

dx
, despite all the functions considered in both cases are meromorphic. Indeed,

Nörlund spent a large part of his 1926 memoir [31], which has not been mentioned
by most of the recent researchers on orthogonal polynomials, on investigating how to
expand entire functions into a Stirling interpolation series. Stirling series converge
faster than Newton series, and the interpolating polynomials in Stirling series are
obtained by slightly modifying the Wilson polynomials. Thus it is natural to de-
velop a function theory using Wilson polynomials {Wn} (or simply {τn(·; a)} where

τn(x; a) :=
∏n−1

k=0 [(a+ ki)2 − x]) as a basis, instead of the usual {(x− a)n}. In fact,
following the classical idea as in [31], one can show that every entire function f
satisfying the growth condition

lim sup
r→∞

lnM(r, f)√
r

< 2 ln 2

admits, for each a ∈ C, a Wilson series expansion
∞∑

k=0

akτk(x; a)

which converges uniformly to f on any compact subset of C. As a result of this
series expansion, the appropriate way of counting zeros (and poles) with respect to
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DW is different compared to that with respect to d
dx

. This is reflected in the way we
define the Wilson counting functions in §5 (see Definition 5.1). The second author
and Feng have also established a full-fledged Nevanlinna theory with respect to the
Askey–Wilson divided-difference operator Dq earlier in [11]. Parallel to what has been
obtained in the MPhil thesis of the first author in 2013, we demonstrate in this paper
that the Wilson operator DW has its own version of Nevanlinna theory, and establish
a number of key results in this version, including defect relations and a Wilson version
of little Picard theorem. A Wilson exceptional value of a meromorphic function is a
value in Ĉ whose preimage lies on a certain special sequence (see Definition 5.5). A
transcendental meromorphic function f /∈ kerDW of finite order can possess at most
two Wilson exceptional values, because such values a have defect ΘW(a, f) = 1 (see
Remark 5.7) while our defect relations (Corollary 3.3) assert that

∑

a∈Ĉ

ΘW(a, f) ≤ 2.

As an example (Example 5.9 (i)), the entire function

f(x) :=
∞∏

k=0

[
1− x

(b+ ki)2

]

has simple zeros only at the points

xk = (b+ ki)2 for k = 0, 1, 2, . . . ,

so by Definition 5.5, 0 is a Wilson exceptional value of f and ΘW(0, f) = 1, which
means that the value 0 is missed with respect to the Wilson operator. Note that the
value ∞ is also missed in the classical sense as f is entire, and so we clearly have
ΘW(∞, f) = 1 as well. As another example (Example 5.9 (ii)), the entire function

ϕ(x) = 2F1

(
a+ i

√
x, 1

2
+ i

√
x

a + 1
2

; −1

)
2F1

(
a− i

√
x, 1

2
− i

√
x

a− 1
2

; −1

)

which is a special case of the generating function ϕ(x; t) of Wilson polynomials, has
double zeros only at the points

xk = −(a− 1 + 2k)2 for k = 1, 2, 3, . . . ,

so 0 is a “2i-shift” Wilson exceptional value of ϕ, and ΘW,2i(0, ϕ) = 1. Since ϕ is
entire, we similarly have ΘW(∞, f) = 1. The corresponding residue calculus with
respect to DW and the relation between this operator and interpolation theory will
be discussed in a subsequent paper.

This paper is organized as follows. In §2, we will first give the definition and
some basic properties of DW. In the subsequent sections, we will then follow the
classical approach on the Nevanlinna theory of the differential operator. We will
state in §3 our main results, which include a Wilson operator version of Nevanlinna’s
Second Fundamental Theorem and some corollaries about defect relations. Before
proving all these in §5, we will introduce a Wilson operator analogue of the lemma
on logarithmic derivative in §4. Some results from Halburd and Korhonen [15] and
from the second author and Feng’s work on the Nevanlinna theories of the ordinary
difference operator [9] and of the Askey–Wilson operator [11] will be useful to our
proofs. In §7, we will give a pointwise estimate for the logarithmic Wilson difference,
as opposed to the overall estimate given in §4. These estimates will be applied to give
estimates on the growth of meromorphic solutions to some specific types of Wilson
difference equations and interpolation equations in §6 and §7.
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In this paper, we adopt the following notations:

(i) N denotes the set of all natural numbers excluding 0, and N0 := N ∪ {0}.
(ii) For every positive real number r and every complex number a, D(a; r) denotes

the open disk of radius r centered at a in the complex plane.
(iii) For every positive real number r, ln r denotes the natural logarithm of r, while

ln+ r denotes the non-negative number max {ln r, 0}.
(iv) A complex function always means a function in one complex variable, and

a meromorphic function always means a meromorphic function from C to
Ĉ := C ∪ {∞}, unless otherwise specified.

(v) A summation notation of the form
∑

|aν |<r denotes a sum running over all the

ν’s such that the term aν of the sequence {aν}ν has modulus smaller than r.
(vi) For any two functions f, g : [0,∞) → R, we write

• g(r) = O(f(r)) as r → ∞ if and only if there exist C > 0 and M > 0
such that |g(r)| ≤ C|f(r)| whenever r > M ;

• g(r) = o(f(r)) as r → ∞ if and only if for every C > 0, there exists
M > 0 such that |g(r)| ≤ C|f(r)| whenever r > M ;

• f(r) ∼ g(r) as r → ∞ if and only if for every ε > 0, there exists M > 0

such that
∣∣∣f(r)g(r)

− 1
∣∣∣ < ε whenever r > M .

2. The Wilson operator

In this section, we give the definition of the Wilson operator and a few of its
properties.

Definition 2.1. Let
√· be a branch of the complex square-root with the imagi-

nary axis as the branch cut. For each x ∈ C we denote

x+ :=

(√
x+

i

2

)2

and x− :=

(√
x− i

2

)2

.

We also adopt the notations x±(0) := x, x±(m) := (x±(m−1))± and x±(−m) := x∓(m) for
every positive integer m. Then we define the Wilson operator DW, which acts on all
complex functions, as follows:

(2.1) (DWf)(x) :=
f(x+)− f(x−)

x+ − x− =
f((

√
x+ i

2
)2)− f((

√
x− i

2
)2)

2i
√
x

.

To simplify notations, we also define the Wilson averaging operator AW by

(2.2) (AWf)(x) :=
f(x+) + f(x−)

2
=

f((
√
x+ i

2
)2) + f((

√
x− i

2
)2)

2
.

Although there are two choices of
√
x for each x 6= 0, DW and AW are independent

of the choice of
√· and are thus always well-defined. Moreover, the value of DWf at

0 should be defined as

(DWf)(0) := lim
x→0

(DWf)(x) = f ′
(
−1

4

)
,

in case f is differentiable at −1
4
. We sometimes write z :=

√
x.

We consider branches of square-root with the imaginary axis as the branch cut
because of the shift of i

2
in the definition of DW. One can consider Wilson operators

of other shifts c
2

where c ∈ C \ {0}, and accordingly choose branches with the line
joining c and 0 as the branch cut, without affecting the later results.
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DW is a linear operator, whose kernel contains precisely all those functions of
the form g ◦ √· such that g is even, meromorphic and periodic with period i, where√· denotes a particular branch of the square-root function. Equivalently, this means
that

kerDW =

{
g ◦

√
· : g ∈ M(C), g

(
ni
2
+ z
)
= g

(
ni
2
− z
)

for all z ∈ C and n ∈ Z,
and

√· is a branch of the square-root function

}
.

Examples of elements in this kernel include the functions cosh(2π
√
x) and ℘(ωi

√
x),

where ℘ is the Weierstrass’ P-function and ω is one of its periods. It also worths
noting that the evenness and meromorphicity of g ensures that g ◦ √· is also mero-
morphic.

The Wilson operator clearly has the following product rule and quotient rule.

Proposition 2.2. (Wilson product and quotient rules) For every pair of complex
functions f0 and f1, we have

(DW(f0f1))(x) = (AWf0)(x)(DWf1)(x) + (AWf1)(x)(DWf0)(x).

If we assume, in addition, that f0 6≡ 0, then we also have
(
DW

(
f1
f0

))
(x) =

(AWf0)(x)(DWf1)(x)− (AWf1)(x)(DWf0)(x)

f0(x+)f0(x−)
.

We can easily check from the definition of the Wilson operator DW that it sends
polynomials to polynomials. In fact, we have the following.

Proposition 2.3. Let f be a complex function. Then

(i) if f is entire, then DWf and AWf are also entire;
(ii) if f is meromorphic, then DWf is also meromorphic; and
(iii) if f is rational, then DWf is also rational.

Proof. We first prove (i). If f is entire, then it has a Maclaurin series expansion

f(x) =

∞∑

k=0

akx
k satisfying lim sup

k→∞
|ak|

1
k = 0. Now

(DWf)(x) =
f(x+)− f(x−)

2iz
=

1

2iz

[ ∞∑

k=0

ak

(
z +

i

2

)2k

−
∞∑

k=0

ak

(
z − i

2

)2k
]

=
1

2iz

∞∑

k=1

[
2ak

k−1∑

l=0

(
2k

2l + 1

)
z2l+1

(
i

2

)2k−2l−1
]

=

∞∑

l=0

[ ∞∑

k=l+1

(
2k

2l + 1

)
(−1)k−l−1ak
22k−2l−1

]
xl =

∞∑

l=0

blx
l

is a Maclaurin series expansion where bl :=

∞∑

k=l+1

(
2k

2l + 1

)
(−1)k−l−1ak
22k−2l−1

satisfies

|bl|
1
l ≤ 4 ·

( ∞∑

k=l+1

(
2k

2l + 1

) |ak|
4k

) 1
l

≤ 4 ·
( ∞∑

k=l+1

|ak|
) 1

l

,

so lim supl→∞ |bl|
1
l = 0. This means that the Maclaurin series expansion of DWf has

infinite radius of convergence, so DWf is entire. By a similar computation, one can
easily show that AWf is also entire.
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Next we prove (ii). If f is meromorphic, then we can write f = f1
f0

, where f0 and

f1 are entire functions without common zeros and f0 6≡ 0. According to the proven
statement (i) and the quotient rule in Proposition 2.2, it suffices to check that the
product f0(x

+)f0(x
−) is entire whenever f0(x) is entire.

Now if f0 is entire, then it has a Maclaurin series expansion f0(x) =
∑∞

k=0 ckx
k

satisfying lim supk→∞ |ck|
1
k = 0. So we have

f0(x
+)f0(x

−) =

∞∑

k=0

∞∑

j=0

ckcj

(
z +

i

2

)2k (
z − i

2

)2j

.

To put this series into a Maclaurin series in x, it suffices to show that each symmetric
term (z + i

2
)2k(z − i

2
)2j + (z + i

2
)2j(z − i

2
)2k is a polynomial in x. Without loss of

generality, we may assume that j ≥ k and write n := j − k ≥ 0. Then binomial
expansion gives

(
z +

i

2

)2k (
z − i

2

)2j

+

(
z +

i

2

)2j (
z − i

2

)2k

=

(
z +

i

2

)2k (
z − i

2

)2k
[(

z +
i

2

)2n

+

(
z − i

2

)2n
]

= 2

(
x+

1

4

)2k n∑

l=0

(−1)n−l

22n−2l

(
2n

2l

)
xl,

which is a polynomial in x. The Maclaurin series of f0(x
+)f0(x

−) thus obtained has
infinite radius of convergence by a similar argument as that in (i).

Finally, to prove (iii), it just suffices to repeat the proof of (ii) verbatim, with the
holomorphic functions f0 and f1 replaced by polynomials, and the infinite Maclaurin
series expansion of f0 replaced by a finite sum. �

3. Main results

We first recall some basic notions in the classical Nevanlinna theory, which can
be found in many texts, for instance [7], [8], [17] and [36]. Given a meromorphic
function f 6≡ 0 with sequence of poles {bµ}µ repeated according to multiplicity,
the proximity function m(r, f), the integrated counting function N(r, f) and the
Nevanlinna characteristic function T (r, f) for f are defined, for every r > 0, as

m(r, f) :=
1

2π

ˆ 2π

0

ln+
∣∣f(reiθ)

∣∣ dθ,

N(r, f) :=

ˆ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) ln r,

T (r, f) := m(r, f) +N(r, f),

respectively, where n(r, f) :=
∑

|bµ|≤r 1 for every r ≥ 0. Nevanlinna’s First Fun-
damental Theorem then states that for every meromorphic function f and every
complex number a, we have

m

(
r,

1

f − a

)
+N

(
r,

1

f − a

)
≡ T

(
r,

1

f − a

)
= T (r, f) +O(1)(3.1)

as r → ∞.
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The order of a meromorphic function f is defined by

σ := lim sup
r→∞

ln+ T (r, f)

ln r
,

which is either a non-negative real number or +∞. The following is a fundamental
inequality leading to our main result.

Theorem 3.1. (The Fundamental inequality) Let f be a meromorphic function
of finite order σ such that f /∈ kerDW, q be a positive integer, and y1, y2, . . . , yq be q
complex numbers. Then for every ε > 0, we have

m(r, f) +

q∑

n=1

m

(
r,

1

f − yn

)
≤ 2T (r, f)−NW(r) +O(rσ−

1
2
+ε) +O(1)(3.2)

as r → ∞, where the Wilson ramification term NW(r) is defined as

NW(r) := N

(
r,

1

DWf

)
+ 2N(r, f)−N(r,DWf).(3.3)

To better interpret the Wilson ramification term NW(r) in Theorem 3.1, we

need to introduce new counting functions nW(r, f), NW(r, f), ñW(r, f) and ÑW(r, f),
which are more suitable for the Wilson operator. While the precise definitions of these
Wilson counting functions shall be given in §5 (Definition 5.1), our main result in this
paper is the following Wilson operator version of Nevanlinna’s Second Fundamental
Theorem, which is stated in terms of these new counting functions.

Theorem 3.2. (NSFT for the Wilson operator) Let f be a meromorphic function
of finite order σ such that f /∈ kerDW, q be a positive integer, and y1, y2, . . . , yq be q
complex numbers. Then for every ε > 0, we have

(q − 1)T (r, f) ≤ ÑW(r, f) +

q∑

n=1

ÑW

(
r,

1

f − yn

)
+O(rσ−

1
2
+ε) +O(ln r)(3.4)

as r → ∞.

Note that while the classical version of Nevanlinna’s Second Fundamental Theo-
rem imposes no restriction on the order of the meromorphic function f , our Wilson
version works essentially just for meromorphic functions whose order is finite. In
Halburd and Korhonen’s ordinary difference operator version [15], the meromorphic
function is also required to have finite order; and in the second author and Feng’s
Askey–Wilson operator version [11], the meromorphic function is required to have
finite logarithmic order.

After we have introduced in §5 (Definition 5.4) the Wilson analogues ϑW(a, f)
and ΘW(a, f) of the ramification index ϑ(a, f) of f at a and the quantity Θ(a, f) in
the classical Nevanlinna theory, the following corollary is an immediate consequence
of Theorem 3.2. This is also analogous to Halburd and Korhonen’s defect relation
[15, Corollary 2.6] with respect to the ordinary difference operator.

Corollary 3.3. (Wilson deficient values) Let f be a transcendental meromorphic
function of finite order such that f /∈ kerDW. Then ΘW(a, f) = 0 except for at most

countably many a ∈ Ĉ, and
∑

a∈Ĉ

[δ(a, f) + ϑW(a, f)] ≤
∑

a∈Ĉ

ΘW(a, f) ≤ 2.
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A Wilson generalization of Picard’s Theorem can be obtained from the defect
relation given in Corollary 3.3. It gives a sufficient condition for a transcendental
meromorphic function of finite order to become a function in kerDW.

Theorem 3.4. (Picard’s Theorem for the Wilson operator) Let f be a mero-
morphic function of finite order. If f has three distinct Wilson exceptional values,
then either f ∈ kerDW or f is rational.

The notion of Wilson exceptional values will be defined precisely in §5 (Defini-
tion 5.5).

4. Lemma on logarithmic Wilson difference

The classical Nevanlinna theory starts from the Poisson–Jensen formula, which
states a relationship between the modulus of a function and the distribution of its
poles and zeros. From this formula, we can obtain the lemma on logarithmic deriva-
tive, which is about the growth of m

(
r, f ′

f

)
, i.e. the effect of the differential operator

on the proximity function.
Now we aim to analyze the effect of the Wilson operator on the proximity func-

tion, so we start from the Poisson–Jensen Formula and develop a Wilson operator
analogue of the lemma on logarithmic derivative. The following is our desired result,
which will be a crucial step to the proof of our main results mentioned in §3. This
estimate can be compared with that for the usual difference operator ∆ and mero-
morphic functions of finite order obtained by the second author and Feng [9] and
independently by Halburd and Korhonen [14], as well as that for the Askey–Wilson
operator Dq and meromorphic functions of finite logarithmic order also obtained by
the second author and Feng [11].

Theorem 4.1. (Lemma on logarithmic Wilson difference) If f 6≡ 0 is a mero-
morphic function of finite order σ, then for every ε > 0,

m

(
r,
DWf

f

)
= O(rσ−

1
2
+ε)

as r → ∞.

For the simple example f(x) := ex we have σ = 1 and m
(
r, DWf

f

)
∼ 2

π

√
r as

r → ∞, which shows that the number 1
2

on the right-hand side of Theorem 4.1 is the
best possible.

We need the following lemmas in the course of the proof of Theorem 4.1.

Lemma 4.2. Suppose that R > 1
4

and 0 ≤ r < (
√
R− 1

2
)2. Then the followings

hold for every z ∈ ∂D(0;
√
r):

(i) For every φ ∈ [0, 2π],

R

[
Reiφ(2iz − 1

2
)

(Reiφ − z2)(Reiφ − (z + i
2
)2)

]
≤ R(2

√
r + 1

2
)

(R− r)(R− (
√
r + 1

2
)2)

.

(ii) For every w ∈ D(0; r),

∣∣∣∣ln
∣∣∣∣
R2 − w(z + i

2
)2

R2 − wz2

∣∣∣∣
∣∣∣∣ ≤

2
√
r + 1

2

R − (
√
r + 1

2
)2
.



Nevanlinna theory of the Wilson divided-difference operator 183

(iii) For each 0 < α ≤ 1, there exists a constant Cα > 0 such that
∣∣∣∣ln
∣∣∣∣
(z + i

2
)2 − w

z2 − w

∣∣∣∣
∣∣∣∣ ≤ Cα

(√
r +

1

4

)α [
1

|z2 − w|α +
1

|(z + i
2
)2 − w|α

]

for every w ∈ D(0; r), and in particular we can take C1 = 1.

Proof. Part (i) is easy. Parts (ii) and (iii) are consequences of [9, Lemma 3.2],
which says that for every 0 < α ≤ 1, there exists Cα > 0 such that

∣∣∣∣ln
∣∣∣∣
z1
z2

∣∣∣∣
∣∣∣∣ ≤ Cα

(∣∣∣∣
z1 − z2

z2

∣∣∣∣
α

+

∣∣∣∣
z2 − z1

z1

∣∣∣∣
α)

(4.1)

for every z1, z2 ∈ C, and in particular we can take C1 = 1. �

Lemma 4.3. Let 0 < α < 1 be fixed. Then the following inequalities hold:

(i) For every r > 0 and w ∈ C,

1

2π

ˆ 2π

0

dθ

|rei2θ − w|α ≤ 1

(1− α)rα
.

(ii) For every ε > 0, there exists M > 0 depending only on ε, such that for every
w ∈ C,

1

2π

ˆ 2π

0

dθ

|(√reiθ + i
2
)2 − w|α ≤ 1 + ε

(1− α)rα

whenever r > M .

Proof. The proof of (i) is similar to [18, p. 62], [20, p. 66] or [9, Lemma 3.3]. To
prove (ii), we write w = ρeiη, where ρ ≥ 0 and 0 ≤ η < 2π. Then

1

2π

ˆ 2π

0

dθ

|(√reiθ + i
2
)2 − w|α =

1

2πrα

ˆ 2π

0

dθ∣∣∣(ei2θ + i√
r
eiθ − 1

4
)e−iη − ρ

r

∣∣∣
α

≤ 1

2πrα

ˆ 2π

0

dθ

| sin(2θ − η) + 1√
r
cos(θ − η) + 1

4r
sin η|α

=
1

2πrα

ˆ 7π
4

−π
4

dθ

| sin 2θ + 1√
r
cos(θ − η

2
) + 1

4r
sin η|α ,

where in the last step we have changed the interval of integration from [0, 2π] to
I := [−π

4
, 7π

4
] so as to cope with the locations of zeros of the denominator of the

integrand. We note that when r is sufficiently large, the denominator of the last
integrand has exactly four zeros in I, which we call θj(r) ∈ Ij for j ∈ {1, 2, 3, 4},
where

I1 := (−π
4
, π
4
), I2 := (π

4
, 3π

4
), I3 := (3π

4
, 5π

4
), I4 := (5π

4
, 7π

4
).

Now given any ε > 0, we claim that there exists M > 0 depending only on ε,
such that whenever r > M , we have

∣∣∣∣sin 2θ +
1√
r
cos
(
θ − η

2

)
+

1

4r
sin η

∣∣∣∣ ≥
| sin 2[θ − θj(r)]|

(1 + ε)
1
α

(4.2)

for every j ∈ {1, 2, 3, 4} and θ ∈ I, with each of the four equalities holding only at the
point θ = θj(r). Since both sin 2θ + 1√

r
cos θ + 1

4r
sin η and sin 2[θ − θj(r)] converge

pointwise to the function sin 2θ as r → ∞, to show (4.2) it suffices to consider their
behaviour around the only (moving) zero θ = θj(r).
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Since θj(r) is the zero of sin 2θ+ 1√
r
cos(θ− η

2
)+ 1

4r
sin η such that limr→∞ θj(r) = 0,

we can easily obtain θj(r) = O
(

1√
r

)
as r → ∞. Thus around θ = θj(r), we have the

Taylor expansions

sin 2θ +
1√
r
cos
(
θ − η

2

)
+

1

4r
sin η =

(
2 +

sin η

2√
r

+ · · ·
)
[θ − θj(r)] + · · ·

and

sin 2[θ − θj(r)] = 2[θ − θj(r)] + · · · ,
from which we see that (4.2) holds for every θ ∈ I whenever r is larger than a positive
number Mj which depends only on ε. The proof of the claim is finished by taking
M := max {M1,M2,M3,M4}.

Now (4.2) implies that whenever r > M , we have

ˆ 7π
4

−π
4

dθ

| sin 2θ + 1√
r
cos(θ − η

2
) + 1

4r
sin η|α ≤

4∑

j=1

ˆ

Ij

1 + ε

| sin 2[θ − θj(r)]|α
dθ

= 8(1 + ε)

ˆ π
4

0

dθ

sinα 2θ
,

and so

1

2π

ˆ 2π

0

dθ

|(√reiθ + i
2
)2 − w|α ≤ 1

2πrα

[
8(1 + ε)

ˆ π
4

0

dθ

sinα 2θ

]

≤ 4(1 + ε)

πrα

ˆ π
4

0

dθ

(4θ
π
)α

=
1 + ε

(1− α)rα
. �

Proof of Theorem 4.1. Given any meromorphic function f , DWf is meromorphic
by Proposition 2.3 (ii), so it makes sense to look for m

(
r, DWf

f

)
. Now the Poisson–

Jensen formula asserts that for every x ∈ D(0;R) which is neither a zero nor a pole
of f , we have

ln |f(x)| = 1

2π

ˆ 2π

0

ln
∣∣f(Reiφ)

∣∣R
(
Reiφ + x

Reiφ − x

)
dφ

−
∑

|aν |<R

ln

∣∣∣∣
R2 − aνx

R(x− aν)

∣∣∣∣+
∑

|bµ|<R

ln

∣∣∣∣
R2 − bµx

R(x− bµ)

∣∣∣∣,
(4.3)

where {aν}ν and {bµ}µ are respectively the sequences of zeros and poles of f , repeated
according to their multiplicities. Substituting x+ = (z + i

2
)2 and x = z2 into (4.3)

and subtracting, we obtain

ln

∣∣∣∣
f(x+)

f(x)

∣∣∣∣ =
1

2π

ˆ 2π

0

ln
∣∣f(Reiφ)

∣∣R
[

Reiφ(2iz − 1
2
)

(Reiφ − z2)(Reiφ − (z + i
2
)2)

]
dφ

−
∑

|aν |<R

ln

∣∣∣∣
R2 − aν(z +

i
2
)2

R2 − aνz2

∣∣∣∣ +
∑

|bµ|<R

ln

∣∣∣∣∣
R2 − bµ(z +

i
2
)2

R2 − bµz2

∣∣∣∣∣

+
∑

|aν |<R

ln

∣∣∣∣
(z + i

2
)2 − aν

z2 − aν

∣∣∣∣−
∑

|bµ|<R

ln

∣∣∣∣
(z + i

2
)2 − bµ

z2 − bµ

∣∣∣∣,

(4.4)

which holds if neither x nor x+ is a zero or a pole of f , and if both x and x+ are in
D(0;R), i.e. if R > 1

4
and 0 ≤ r < (

√
R− 1

2
)2, where r = |x|.
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Next we estimate each term on the right-hand side of (4.4) using Lemma 4.2.
For any given 0 < α < 1, the inequality

∣∣∣∣ln
∣∣∣∣
f(x+)

f(x)

∣∣∣∣
∣∣∣∣ ≤

R(2
√
r + 1

2
)

(R− r)(R− (
√
r + 1

2
)2)

[
m(R, f) +m

(
R,

1

f

)]

+
2
√
r + 1

2

R− (
√
r + 1

2
)2

[
n(R, f) + n

(
R,

1

f

)]

+ Cα

(√
r +

1

4

)α ∑

|aν |<R

[
1

|z2 − aν |α
+

1

|(z + i
2
)2 − aν |α

]

+ Cα

(√
r +

1

4

)α ∑

|bµ|<R

[
1

|z2 − bµ|α
+

1

|(z + i
2
)2 − bµ|α

]

(4.5)

holds for some constant Cα > 0. Noting that

|ln |w|| = ln+ |w|+ ln+

∣∣∣∣
1

w

∣∣∣∣

for every non-zero complex number w, and integrating both sides of (4.5) along the
circle {z ∈ C : |z| = √

r}, we get

2m

(
r,
f(x+)

f(x)

)
+ 2m

(
r,

f(x)

f(x+)

)

≤ R(2
√
r + 1

2
)

(R− r)(R− (
√
r + 1

2
)2)

[
m(R, f) +m

(
R,

1

f

)]

+
2
√
r + 1

2

R− (
√
r + 1

2
)2

[
n(R, f) + n

(
R,

1

f

)]

+ Cα

(√
r +

1

4

)α∑

|aν |<R

[
1

2π

ˆ 2π

0

dθ

|rei2θ − aν |α
+

1

2π

ˆ 2π

0

dθ

|(√reiθ + i
2
)2 − aν |α

]

+ Cα

(√
r +

1

4

)α∑

|bµ|<R

[
1

2π

ˆ 2π

0

dθ

|rei2θ − bµ|α
+

1

2π

ˆ 2π

0

dθ

|(√reiθ + i
2
)2 − bµ|α

]
.

(4.6)

Note that on the left-hand side we have equivalently integrated along the circle
{x ∈ C : |x| = r} for two complete revolutions. We emphasize here that the argument
r in the proximity functions in (4.6) refers to the modulus of x, or of z2.

We next give upper bounds to the integrals on the right-hand side of (4.6).
Applying Lemma 4.3 (i) and Lemma 4.3 (ii) with ε = 1, we see that there exists
M > 0 such that

2m

(
r,
f(x+)

f(x)

)
+ 2m

(
r,

f(x)

f(x+)

)

≤ R(2
√
r + 1

2
)

(R− r)(R− (
√
r + 1

2
)2)

[
m(R, f) +m

(
R,

1

f

)]

+
2
√
r + 1

2

R− (
√
r + 1

2
)2

[
n(R, f) + n

(
R,

1

f

)]
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+ Cα

(√
r +

1

4

)α


 ∑

|aν |<R

1 + 2

(1− α)rα
+
∑

|bµ|<R

1 + 2

(1− α)rα


(4.7)

=
R(2

√
r + 1

2
)

(R − r)(R− (
√
r + 1

2
)2)

[
m(R, f) +m

(
R,

1

f

)]

+

[
2
√
r + 1

2

R− (
√
r + 1

2
)2

+
3Cα

(√
r + 1

4

)α

(1− α)rα

] [
n(R, f) + n

(
R,

1

f

)]

whenever r > M and r < (
√
R − 1

2
)2. Note that there is no exceptional set for r

in (4.7), as Lemma 4.3 holds for every w ∈ C without exception. Now the number
R > (

√
r + 1

2
)2 was arbitrary in the beginning, so taking R = 2r in (4.7) we get

m

(
r,
f(x+)

f(x)

)
+m

(
r,

f(x)

f(x+)

)

≤ O

(
1√
r

)[
m(2r, f) +m

(
2r,

1

f

)]

+

[
O

(
1√
r

)
+O

(
1

r
α
2

)] [
n(2r, f) + n

(
2r,

1

f

)]

≤ O

(
1√
r

)
T (2r, f) +O

(
1

r
α
2

)
T (4r, f) ≤ O

(
1

r
α
2

)
T (4r, f)

(4.8)

as r → ∞, where the second inequality in (4.8) follows from that

m(R, f) +m

(
R,

1

f

)
≤ 2T (R, f) + ln+ 1

|f(0)|(4.9)

and that

n(R, f) + n

(
R,

1

f

)
≤ 2R

2R− R
N(2R, f) ≤ 2T (2R, f).

Following essentially the same argument, it can also be shown that

m

(
r,
f(x−)

f(x)

)
+m

(
r,

f(x)

f(x−)

)
= O

(
1

r
α
2

)
T (4r, f)(4.10)

as r → ∞.
Now if f 6≡ 0 is a meromorphic function of finite order σ, then for every small

0 < ε < 1, we have

(4.11) T (4r, f) = O(rσ+
ε
2 )

as r → ∞. Choosing α = 1− ε, (4.8), (4.10) and (4.11) imply that

m

(
r,
DWf

f

)
≤ m

(
r,
f(x+)

f(x)

)
+m

(
r,
f(x−)

f(x)

)
+ 2m

(
r,

1

iz

)

≤ m

(
r,
f(x+)

f(x)

)
+m

(
r,

f(x)

f(x+)

)
+m

(
r,
f(x−)

f(x)

)

+m

(
r,

f(x)

f(x−)

)
+ ln+ 1

r

= O

(
1

r
1−ε
2

)
T (4r, f) = O(rσ−

1
2
+ε)

(4.12)
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as r → ∞, where in the first step we have used the inequalities

ln+ pq ≤ ln+ p + ln+ q and ln+ p+ q

2
≤ ln+ p+ ln+ q,

which hold for every pair of positive real numbers p and q. Of course (4.12) holds for
ε ≥ 1 as well. This finishes the proof of Theorem 4.1. �

Note added in proof. After this paper has been completed, we learnt of Korho-
nen’s paper [25] suggested by the anonymous referee, in which there is an analogue of
the lemma on logarithmic derivative for meromorphic functions composed with poly-
nomials. While the setting is more general in that analogue, our Theorem 4.1 yields a
sharp estimate of O(rσ−

1
2
+ε) without exceptional set, compared with O(rσ−

1
4
+ε) with

some exceptional set which would have been given by that analogue. The difference
between them mainly comes from our more detailed analysis gearing toward the Wil-
son operator in Lemma 4.3 (ii). [25, Lemma 2.3] was used to obtain the mentioned
analogue, but since it only accounts for the case 0 < α < 1

2
of our Lemma 4.3 (ii),

it does not yield our Theorem 4.1. The sharpness of the estimate O(rσ−
1
2
+ε) in our

Theorem 4.1 is illustrated by the simple example following it, and the estimate also
agrees with that for N(r, f(x+)) in Lemma 5.2 in the next section.

5. Proofs of main results

5.1. Proof of Theorem 3.1. We first prove the fundamental inequality (Theo-
rem 3.1) by making use of the lemma on logarithmic Wilson difference (Theorem 4.1).
The proof is quite standard and is based on Halburd and Korhonen’s modification
[15] of Nevanlinna’s original argument.

Proof of Theorem 3.1. First let P (f) be the polynomial

P (f) :=

q∏

n=1

(f − yn).

We have degf P = q > 0. Since f /∈ kerDW, we have P (f) 6≡ 0, and so there exist
complex numbers a1, a2, . . . , aq such that

DWf

P (f)
=

q∑

n=1

an
DWf

f − yn
.

Thus for every ε > 0, we have

m

(
r,
DWf

P (f)

)
≤

q∑

n=1

m

(
r,

DWf

f − yn

)
+O(1) = O(rσ−

1
2
+ε) +O(1)

as r → ∞ by Theorem 4.1, which implies that

m

(
r,

1

P (f)

)
= m

(
r,
DWf

P (f)

1

DWf

)
≤ m

(
r,

1

DWf

)
+O(rσ−

1
2
+ε) +O(1)(5.1)

as r → ∞, since f /∈ kerDW. Besides this inequality (5.1), we also have the trivial
equality

N

(
r,

1

P (f)

)
=

q∑

n=1

N

(
r,

1

f − yn

)
(5.2)
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and Mohon’ko’s equality [30] [26, Theorem 2.2.5] [9, Lemma 3.5]

T (r, P (f)) = qT (r, f) +O(1)(5.3)

as r → ∞.
Since 1

P (f)
is clearly meromorphic and DWf is meromorphic by Proposition 2.3,

we can apply Nevanlinna’s First Fundamental Theorem (3.1) and the above three
results (5.1), (5.2) and (5.3) to get, for every ε > 0,

T (r,DWf) = m

(
r,

1

DWf

)
+N

(
r,

1

DWf

)
+O(1)

≥ m

(
r,

1

P (f)

)
+N

(
r,

1

DWf

)
+O(rσ−

1
2
+ε) +O(1)

= T (r, P (f))−N

(
r,

1

P (f)

)
+N

(
r,

1

DWf

)
+O(rσ−

1
2
+ε) +O(1)

= qT (r, f)−
q∑

n=1

N

(
r,

1

f − yn

)
+N

(
r,

1

DWf

)
+O(rσ−

1
2
+ε) +O(1)

=

q∑

n=1

m

(
r,

1

f − yn

)
+N

(
r,

1

DWf

)
+O(rσ−

1
2
+ε) +O(1)

as r → ∞. This implies that

m(r, f) +

q∑

n=1

m

(
r,

1

f − yn

)

≤ T (r,DWf)−N

(
r,

1

DWf

)
+m(r, f) +O(rσ−

1
2
+ε) +O(1)

= m(r,DWf) +N(r,DWf)−N

(
r,

1

DWf

)
+m(r, f) +O(rσ−

1
2
+ε) +O(1)

≤ 2m(r, f) +N(r,DWf)−N

(
r,

1

DWf

)
+ O(rσ−

1
2
+ε) +O(1)

≤ 2T (r, f)−NW(r) +O(rσ−
1
2
+ε) +O(1)

as r → ∞, where the second last inequality follows from Theorem 4.1 again. �

5.2. Wilson counting functions and two lemmas. Now we introduce the
following new counting functions which are more suitable for DW.

Definition 5.1. Let f be a meromorphic function such that f /∈ kerDW. We
define the following Wilson counting functions for f : For each r ≥ 0, we define

(i) nW(r, f) :=
∑

x∈Sr
order of zero of DW( 1

f
) at x+, and

(ii) ñW(r, f) :=
∑

x∈Sr
max

{
0, order of pole of f at x− order of zero of

DW( 1
f
) at x+

}
,

where Sr :=
{
x ∈ D(0; r) : 1

f
(x) = 0

}
; and for each r > 0, we define

(iii) NW(r, f) :=

ˆ r

0

nW(t, f)− nW(0, f)

t
dt+ nW(0, f) ln r, and

(iv) ÑW(r, f) :=

ˆ r

0

ñW(t, f)− ñW(0, f)

t
dt+ ñW(0, f) ln r.
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Here ñW(r, f) and ÑW(r, f) are respectively the Wilson analogues of the distinct
pole counting functions n(r, f) and N(r, f). Note that we have defined ñW(r, f) in a
different way from Halburd and Korhonen’s difference operator analogue in [15], so
that this quantity is always non-negative as one should expect, even when there are
poles x and x++ of f with the same order and the same initial Laurent coefficients.
This rationale has also been adopted in defining the Askey–Wilson analogue of the
same quantity in [11]. Also note that if we have used x− instead of x+ in defining
both nW(r, f) and of ñW(r, f), then it just amounts to the choice of the other branch
of the square-root function with the same branch cut in the beginning.

Next we state the following useful lemma.

Lemma 5.2. Let f be a meromorphic function of finite order σ. Then for every
ε > 0, we have

N
(
r, f(x+)

)
= N(r, f) +O(rσ−

1
2
+ε) +O(ln r)

as r → ∞.

Proof. It is easy to see that for every x ∈ C with |x| > 1
4
, we have x+− = x−+ = x.

So by the definition of the integrated counting function, we have

N(r, f(x+)) =

ˆ r

0

n(t, f(x+))− n(0, f(x+))

t
dt+ n(0, f(x+)) ln r

=

ˆ r

1

n(t, f(x+))− n(1, f(x+))

t
dt+O(ln r)

=
∑

1≤|b−µ |<r

ln
r

|b−µ |
+O(ln r)

as r → ∞, where {bµ}µ is the sequence of poles of f . This gives, as r → ∞,

|N(r, f(x+))−N(r, f)| =

∣∣∣∣∣∣

∑

1≤|bµ|<r

ln
r

|bµ|
−

∑

1≤|b−µ |<r

ln
r

|b−µ |
+O(ln r)

∣∣∣∣∣∣

≤
∑

1≤|bµ|<r

1≤|b−µ |<r

∣∣∣∣ln
∣∣∣∣
bµ
b−µ

∣∣∣∣
∣∣∣∣+

∑

|bµ|≥r

1≤|b−µ |<r

ln
r

|b−µ |
+

∑

1≤|bµ|<r

|b−µ |≥r

ln
r

|bµ|
+O(ln r).

(5.4)

Next, by applying (4.1) with α = 1, we see that if 1 ≤ |bµ| < r and 1 ≤ |b−µ | < r,
then

∣∣∣∣ln
∣∣∣∣
bµ
b−µ

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
bµ − b−µ

bµ

∣∣∣∣+
∣∣∣∣
bµ − b−µ

b−µ

∣∣∣∣ =
∣∣∣∣∣

i√
bµ

+
1

4bµ

∣∣∣∣∣+
∣∣∣∣∣

i√
b−µ

+
1

4b−µ

∣∣∣∣∣

≤ 1√
|bµ|

+
1

4|bµ|
+

1√
|b−µ |

+
1

4|b−µ |
≤ 5

4


 1√

|bµ|
+

1√
|b−µ |


 .

(5.5)

Moreover, if |bµ| ≥ r and 1 ≤ |b−µ | < r, then we have

ln
r

|b−µ |
≤ ln

|bµ|
|b−µ |

= ln

∣∣∣∣∣1 +
i

2
√
b−µ

∣∣∣∣∣

2

≤ ln


1 +

1

2
√

|b−µ |




2

<
1√
|b−µ |

.(5.6)
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Similarly, if 1 ≤ |bµ| < r and |b−µ | ≥ r, then we have

ln
r

|bµ|
<

1√
|bµ|

.(5.7)

Thus by putting (5.5), (5.6) and (5.7) into (5.4), we obtain

|N(r, f(x+))−N(r, f)|

≤ 5

4

∑

1≤|bµ|<r

1≤|b−µ |<r


 1√

|bµ|
+

1√
|b−µ |


 +

∑

|bµ|≥r

1≤|b−µ |<r

1√
|b−µ |

+
∑

1≤|bµ|<r

|b−µ |≥r

1√
|bµ|

+O(ln r)

≤ 5

4


 ∑

1≤|bµ|<r

1√
|bµ|

+
∑

1≤|b−µ |<r

1√
|b−µ |


+O(ln r)

(5.8)

as r → ∞. Now in the second summand on the right-hand side of (5.8), we have

1√
|b−µ |

=
1√
|bµ|

√∣∣∣∣
bµ
b−µ

∣∣∣∣ =
1√
|bµ|

∣∣∣∣∣1 +
i

2
√

b−µ

∣∣∣∣∣ ≤
3

2
√

|bµ|

since 1 ≤ |b−µ | < r, thus

|N(r, f(x+))−N(r, f)| ≤ 25

8

∑

1≤|bµ|<r+
√
r+ 1

4

1√
|bµ|

+O(ln r)(5.9)

as r → ∞.
Finally, to estimate the series on the right-hand side of (5.9), we consider the

following two cases separately:

(i) If σ < 1
2
, then the exponent of convergence of the sequence {bµ}µ is also less

than 1
2
, so

∑

1≤|bµ|<r+
√
r+ 1

4

1√
|bµ|

= O(1)

as r → ∞.
(ii) In case σ ≥ 1

2
, Hölder’s inequality implies that for every ε > 0,

∑

1≤|bµ|<r+
√
r+ 1

4

1√
|bµ|

≤


 ∑

1≤|bµ|<r+
√
r+ 1

4

(
1√
|bµ|

)2σ+2ε



1
2σ+2ε


 ∑

1≤|bµ|<r+
√
r+ 1

4

(1)
2σ+2ε

2σ−1+2ε




2σ−1+2ε
2σ+2ε

=


 ∑

1≤|bµ|<r+
√
r+ 1

4

1

|bµ|σ+ε




1
2σ+2ε


 ∑

1≤|bµ|<r+
√
r+ 1

4

1




2σ−1+2ε
2σ+2ε
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≤ O(1) ·
[
n

(
r +

√
r +

1

4
, f

)] 2σ−1+2ε
2σ+2ε

≤ O(1) · O
((

r +
√
r +

1

4

)(σ+ε)( 2σ−1+2ε
2σ+2ε )

)
= O(rσ−

1
2
+ε)

as r → ∞.

Therefore in both cases, (5.9) gives

|N(r, f(x+))−N(r, f)| = O(rσ−
1
2
+ε) +O(ln r)

as r → ∞. �

Note that the very first sentence in the proof of Lemma 5.2 depends on the fact
that we have chosen the branch cut of the square-root function to be the imaginary
axis in defining x+.

Using the Wilson counting function NW(r, f) we have defined, we can interpret
the Wilson ramification term NW(r) as in the first part of the following lemma.

Lemma 5.3. Let f be a meromorphic function of finite order σ such that f /∈
kerDW. Then the following inequalities hold:

(i) For every r > 0, we have

N(r, f)−NW(r, f) ≤ ÑW(r, f).

(ii) For every ε > 0, we have

NW(r, f) +
∑

a∈C
NW

(
r,

1

f − a

)
≤ NW(r) +O(rσ−

1
2
+ε) +O(ln r)

as r → ∞, where NW(r) is the Wilson ramification term defined in (3.3).

Proof. The first inequality follows immediately from the definitions of the count-
ing functions given in Definition 5.1. To prove the second inequality, we recall that
nW(r, f) counts all those zeros of (DW( 1

f
))(x+) in D(0; r) which satisfy 1

f
(x) = 0,

while for each a ∈ C, nW(r, 1
f−a

) counts all those zeros of (DWf)(x+) in D(0; r)

which satisfy f(x) = a. So we have

nW(r, f) +
∑

a∈C
nW

(
r,

1

f − a

)

≤ n

(
r,

1

(DW( 1
f
))(x+)

)
+ n

(
r,

1

(DWf)(x+)

)

≤ n(r, f) + n(r, f(x++)) + n

(
r,

1

(DWf)(x+)

)
− n(r, (DWf)(x+))

as
(
DW

(
1

f

))
(x+) =

−(DWf)(x+)

f(x)f(x++)
and (DWf)(x+) =

f(x++)− f(x)

x++ − x
.
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Therefore for every ε > 0,

NW(r, f) +
∑

a∈C
NW

(
r,

1

f − a

)

≤ N(r, f) +N(r, f(x++)) +N

(
r,

1

(DWf)(x+)

)
−N(r, (DWf)(x+))

= 2N(r, f) +N

(
r,

1

DWf

)
−N(r,DWf) +O(rσ−

1
2
+ε) +O(ln r)

= NW(r) +O(rσ−
1
2
+ε) +O(ln r)

as r → ∞, where the second step follows from Lemma 5.2, as the order σ of f is
greater than or equal to the order of 1

DWf
. �

5.3. Proof of Theorem 3.2. Proof. From Lemma 5.3 (i), we see that

N(r, 1
f−yn

) − ÑW(r, 1
f−yn

) ≤ NW(r, 1
f−yn

) for each 1 ≤ n ≤ q and that N(r, f) −
ÑW(r, f) ≤ NW(r, f), so together with Lemma 5.3 (ii) we get, for every ε > 0,

[N(r, f)− ÑW(r, f)] +

q∑

n=1

[
N

(
r,

1

f − yn

)
− ÑW

(
r,

1

f − yn

)]

≤ NW(r, f) +

q∑

n=1

NW

(
r,

1

f − yn

)
≤ NW(r, f) +

∑

a∈C
NW

(
r,

1

f − a

)

≤ NW(r) +O(rσ−
1
2
+ε) +O(ln r)

(5.10)

as r → ∞. Now, applying Nevanlinna’s First Fundamental Theorem (3.1) and this
inequality (5.10) to the result (3.2) from Theorem 3.1, we have

(q − 1)T (r, f) ≤ N(r, f) +

q∑

n=1

N

(
r,

1

f − yn

)
−NW(r) +O(rσ−

1
2
+ε) +O(ln r)

≤ ÑW(r, f) +

q∑

n=1

ÑW

(
r,

1

f − yn

)
+O(rσ−

1
2
+ε) +O(ln r)

as r → ∞. �

5.4. Defect relations under the Wilson operator, proofs of Corollary 3.3

and Theorem 3.4. We can apply Theorem 3.2 to give a Wilson analogue of Nevan-
linna’s Theorem on deficient values. We first recall that given a meromorphic function
f , the Nevanlinna defect δ(a, f) of f at a ∈ Ĉ is defined as

δ(a, f) := lim inf
r→∞

m(r, a)

T (r, f)
= 1− lim sup

r→∞

N(r, a)

T (r, f)
,

where we have used the short-hand notations

m(r, a) := m

(
r,

1

f − a

)
and N(r, a) := N

(
r,

1

f − a

)

for every a ∈ C, and

m(r,∞) := m(r, f) and N(r,∞) := N(r, f),

and where the equality after the definition follows from Nevanlinna’s First Funda-
mental Theorem (3.1). Now we make the following natural definitions, which are the
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Wilson analogues of the ramification index ϑ(a, f) of f at a and the quantity Θ(a, f)
in the classical Nevanlinna theory.

Definition 5.4. Let f be a meromorphic function such that f /∈ kerDW and let
a ∈ Ĉ. The Wilson ramification index ϑW(a, f) of f at a is defined as

ϑW(a, f) := lim inf
r→∞

NW(r, a)

T (r, f)
,

and the quantity ΘW(a, f) of f at a is defined as

ΘW(a, f) := 1− lim sup
r→∞

ÑW(r, a)

T (r, f)
.

It is easy to see that we always have 0 ≤ ΘW(a, f) ≤ 1. Now we prove Corol-
lary 3.3.

Proof of Corollary 3.3. The first inequality follows readily from the first part of
Lemma 5.3. Now from Theorem 3.2, dividing both sides of (3.4) by T (r, f), we see
that for any positive integer q, any finite sequence of points {y1, y2, . . . , yq} in C and
any ε > 0,

q − 1 ≤ ÑW(r, f)

T (r, f)
+

q∑

n=1

ÑW(r, yn)

T (r, f)
+O

(
rσ−

1
2
+ε

T (r, f)

)
+O

(
ln r

T (r, f)

)

as r → ∞. Rearranging the terms, we then obtain
[
1− ÑW(r, f)

T (r, f)

]
+

q∑

n=1

[
1− ÑW(r, yn)

T (r, f)

]
≤ 2 +O

(
rσ−

1
2
+ε

T (r, f)

)
+O

(
ln r

T (r, f)

)

as r → ∞. Taking limit inferior on both sides as r → ∞ and noting that f is
transcendental, we have

ΘW(∞, f) +

q∑

n=1

ΘW(yn, f) ≤ 2.

The rest of the corollary follows since {y1, y2, . . . , yq} is an arbitrary sequence of
points in C. �

As a Wilson analogue of the Nevanlinna exceptional value, we make the following
definition.

Definition 5.5. Let f be a meromorphic function and a be an extended complex
number.

(i) We say that f has a Wilson a-sequence starting at x0 ∈ C if for every non-

negative integer p, f has an a-point of multiplicity mp > 0 at x
+(2p)
0 , where

• The sequence {mp}∞p=0 is monotonically increasing, i.e. 0 < m0 ≤ m1 ≤
m2 ≤ · · · ; and

• In case x−−
0 6= x0 (i.e. x0 /∈ [−1

4
, 0]), we also have either f(x−−

0 ) 6= a or
f(x−−

0 ) = a with multiplicity m−1 > m0.

This Wilson a-sequence is given by {x+(2p)
0 }∞p=0.

(ii) We say that a is a Wilson exceptional value of f if all but at most finitely
many a-points of f are in its Wilson a-sequences.
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We should note that the Wilson exceptional values of a function is a global
property of the function. Moreover, if f is a rational function, i.e. f has finitely
many poles, then ∞ is automatically a Wilson exceptional value of f .

Example 5.6. Here is an example that illustrates Definition 5.5. Let f be a
meromorphic function having poles at the points as shown in the following figure,
with multiplicities indicated in boxes. The dots indicate that the subsequent poles
have increasing multiplicities.

R

I

x0

1

x++
0

1

x
+(4)
0

2

x
+(6)
0

3

· · ·
· · ·

x11

x++
13

x
+(6)
1

4

. . .

. . .

x21

x++
25

x
+(4)
25

x
+(6)
22

. . .
. . .

From this figure, we see that f has Wilson pole sequences starting at the points

x0, x
+(6)
1 and x

+(6)
2 . (Note that x−−

0 = x0.) Since all but five poles of f are contained
in these Wilson pole sequences, it follows that ∞ is a Wilson exceptional value of f .

Remark 5.7. In fact, for any Wilson exceptional value a of a transcendental
meromorphic function f , we have ΘW(a, f) = 1. This is because each a-point x0 of
f in a Wilson a-sequence has the same multiplicity as that of the zero of DWf at
x+
0 , which means that each Wilson a-sequence of f gives no contribution to ñW(r, a).

Now f has only finitely many a-points outside its Wilson a-sequences, so ñW(r, a) is

bounded. Therefore ÑW(r, a) = O(ln r) = o(T (r, f)) as r → ∞, and so ΘW(a, f) = 1.

The following is the proof of Theorem 3.4.
Proof of Theorem 3.4. Let f be a meromorphic function and a1, a2, a3 ∈ Ĉ be

three distinct Wilson exceptional values of f . If f is rational, then we are done. If f
is transcendental, then

ΘW(a1, f) = ΘW(a2, f) = ΘW(a3, f) = 1

as in the above remark. This implies that

3∑

i=1

ΘW(ai, f) = 3 > 2,
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which contradicts the result of Corollary 3.3, so f ∈ kerDW. �

Theorem 3.4 readily implies the following corollary, which is a Wilson analogue
of Liouville’s theorem in classical complex function theory.

Corollary 5.8. Let f be a meromorphic function of finite order. If for every
a ∈ Ĉ outside a sufficiently large disk, the set

{x ∈ f−1({a}) : a-point multiplicity of f at x++ < a-point multiplicity of f at x}
is finite, then either f ∈ kerDW or f is rational.

We conclude this section by giving some examples.

Example 5.9. Here are examples on different values of ΘW(a, f).

(i) Let b ∈ C \ (iN0), and f : C → C be the infinite product

f(x) :=

∞∏

k=0

[
1− x

(b+ ki)2

]
=

[Γ(−ib)]2

Γ(−ib + i
√
x)Γ(−ib − i

√
x)

.

Since f has a simple zero at (b+ki)2 for every k ∈ N0, 0 is a Wilson exceptional
value of f , and so ΘW(0, f) = 1. Since f is entire, we also have ΘW(∞, f) = 1,
so the equality

∑
ΘW = 2 is attained. Note that by Gauss’ formula [3, §1.3]

we have

f(x) = 2F1

(
i
√
x,−i

√
x

−ib
; 1

)

if Ib > 0. Replacing i by any c ∈ C\{0}, we see that the function f : C → C

defined by

f(x) :=
∞∏

k=0

[
1− x

(b+ ck)2

]
=

[Γ( b
c
)]2

Γ( b
c
+ 1

c

√
x)Γ( b

c
− 1

c

√
x)

= 2F1

(
1
c

√
x,−1

c

√
x

b
c

; 1

)

satisfies that ΘW,2(∞, f) = ΘW,2(0, f) = 1. Here ΘW,c(a, f) is the analogous
quantity of f at a associated to the c-shift Wilson operator DW,c to be defined
in §7. In particular, this is true for the function f(x) = cos π

2

√
x, to which we

have substituted b = 1 and c = 2.
(ii) Consider the generating function ϕ(x; t) of Wilson polynomials Wn(x) ≡

Wn(x; a, b, c, d) [35] [22] given by

ϕ(x; t) := 2F1

(
a + i

√
x, b+ i

√
x

a+ b
; t

)
2F1

(
c− i

√
x, d− i

√
x

c+ d
; t

)

When a = c /∈ {1
2
− k : k ∈ N} and b = d = 1

2
, we can evaluate ϕ(x; t) at

t = −1 using Kummer’s formula [3, §2.3] to obtain

ϕ(x) = 2F1

(
a+ i

√
x, 1

2
+ i

√
x

a + 1
2

; −1

)
2F1

(
a− i

√
x, 1

2
− i

√
x

a + 1
2

; −1

)

=
Γ(a+ 1

2
)Γ(a+ 1

2
)Γ(1 + a

2
+ i

2

√
x)Γ(1 + a

2
− i

2

√
x)

Γ(1 + a+ i
√
x)Γ(1 + a− i

√
x)Γ(1

2
+ a

2
+ i

2

√
x)Γ(1

2
+ a

2
− i

2

√
x)

.

This function ϕ has double zeros at {−(a − 1 + 2k)2 : k ∈ N} and has no
other zeros or poles. We have ΘW,2i(0, ϕ) = ΘW,2i(∞, ϕ) = 1.

The next two examples make use of the infinite product construction as in the
first example.
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(iii) Let g : C → C be the infinite product

g(x) :=
∞∏

k=1

[
1− x

(2ki)2

]2 [
1− x

((2k − 1)i)2

]
.

Then we have n(r, 0) ∼ 3
2

√
r and ñW(r, 0) ∼ 1

2

√
r as r → ∞, so

ÑW(r, 0) ∼
√
r

as r → ∞. On the other hand, it is easy to see that for every θ ∈ (−π, π),

ln |g(reiθ)| = 3π

2

√
r cos

θ

2
as r → ∞, so by Lebesgue Dominated Convergence Theorem we have

T (r, g) = m(r, g) ∼ 1

2π

3π

2

√
r

ˆ π

−π

cos
θ

2
dθ = 3

√
r

as n → ∞. Therefore ΘW(0, g) = 2
3
.

More generally, given any rational number s ∈ [0, 1], there exist non-
negative integers p ≥ q such that s = 2q

p+q
. If we let g : C → C be the

infinite product

g(x) :=

∞∏

k=1

[
1− x

(2ki)2

]p [
1− x

((2k − 1)i)2

]q
,

then we have ΘW(0, g) = s.
(iv) Given any s ∈ [0, 1], there exists a sequence {ak}∞k=0 of integers such that

a0 = 0, ak+1 − ak ∈ {0, 1} for every k ∈ N0, and limk→∞
ak
k
= 1− s. If we let

h : C → C be the infinite product

h(x) :=
∞∏

k=1

[
1− x

((k + ak)i)2

]
,

then by a similar argument we obtain ΘW(0, h) = s.

5.5. Unicity theorem. As in the classical Nevanlinna theory, Theorem 3.2
also gives us a Wilson analogue to Nevanlinna’s five-value theorem. To state this
theorem we first need to define what it means by two functions “sharing” a value in
the Wilson sense.

Definition 5.10. Let f and g be meromorphic functions of finite order such that
f, g /∈ kerDW and let a ∈ Ĉ. We say that f and g share the value a in the Wilson

sense if, as r → ∞,
ñW(r, f, a)− ñW(r, g, a) = O(1),

or equivalently,

ÑW(r, f, a)− ÑW(r, g, a) = O(ln r).

Theorem 5.11. (Nevanlinna’s five-value theorem for the Wilson operator) Let
f and g be meromorphic functions of finite order such that f, g /∈ kerDW. If f and g
share five distinct values a1, a2, a3, a4, a5 ∈ Ĉ in the Wilson sense, then either f ≡ g
or f and g are both rational.

Proof. The proof is similar to the classical one in Hayman [17]. From the as-
sumption, we have

Nj(r) := ÑW(r, f, aj) = ÑW(r, g, aj) +O(ln r)
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as r → ∞ for each j = 1, 2, 3, 4, 5. If one of f and g is rational, then so is the other
because ΘW(aj , f) = ΘW(aj, g) for j = 1, 2, 3, 4, 5. If f and g are both transcendental,
then by Theorem 3.2, no matter ∞ is one of the aj ’s or not, we have for every ε > 0,

3T (r, f) ≤
5∑

j=1

ÑW (r, f, aj) +O(rσf− 1
2
+ε) +O(ln r)

3T (r, g) ≤
5∑

j=1

ÑW (r, g, aj) +O(rσg− 1
2
+ε) +O(ln r)

as r → ∞. As a result, there exists a sequence of positive real numbers {rn}∞n=1

strictly increasing to infinity such that

(3 + o(1))T (rn, f) ≤
5∑

j=1

Nj(rn) and (3 + o(1))T (rn, g) ≤
5∑

j=1

Nj(rn)

as n → ∞. Now if we suppose on the contrary that f 6≡ g, then we obtain

T

(
rn,

1

f − g

)
= T (rn, f−g)+O(1) ≤ T (rn, f)+T (rn, g)+O(1) ≤

(
2

3
+ o(1)

) 5∑

j=1

Nj(rn)

as n → ∞. On the other hand, we also have

5∑

j=1

Nj(rn) ≤ ÑW

(
rn,

1

f − g

)
≤ T

(
rn,

1

f − g

)
+O(1)

as n → ∞. These inequalities imply that

5∑

j=1

Nj(rn) = O(1)

as n → ∞, which is impossible since f and g are transcendental and f, g /∈ kerDW.
�

6. Applications in Wilson difference equations

and Wilson interpolation equations

In addition to the Wilson analogue of Nevanlinna’s Second Fundamental Theo-
rem and defect relations, we can also derive from the lemma on logarithmic Wilson
difference some useful results about Wilson difference equations and Wilson interpo-
lation equations. An (ordinary) Wilson difference equation is an equation involving
an unknown complex function and its Wilson differences, i.e. an equation of the form

F (x, y,DWy,D2
Wy,D3

Wy, . . .) = 0.

An (ordinary) Wilson interpolation equation is, on the other hand, an equation
involving an unknown complex function and its Wilson shifts, i.e. an equation of the
form

F (x, y(x), y(x+), y(x−), y(x++), y(x−−), . . .) = 0.

6.1. Wilson–Sturm–Liouville operator. It is well-known [22] that the Wil-
son polynomial y(z) = Wn(z

2; a, b, c, d) of degree n (in the variable z2) satisfies the
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second order difference equation

n(n + a+ b+ c+ d− 1)y(z) =
(a− iz)(b − iz)(c− iz)(d − iz)

(2iz)(2iz − 1)
[y(z + i)− y(z)]

− (a+ iz)(b + iz)(c + iz)(d + iz)

(2iz)(2iz + 1)
[y(z)− y(z − i)],

which can be written into the form

DW

(
µ

(
x; a +

1

2
, b+

1

2
, c+

1

2
, d+

1

2

)
DWWn

)
(x)

+ n(n + a+ b+ c+ d− 1)µ(x; a, b, c, d)Wn(x) = 0,

(6.1)

where

µ(x; a, b, c, d) :=
Γ(a− iz) · · ·Γ(d− iz)Γ(a + iz) · · ·Γ(d+ iz)

Γ(2iz)Γ(−2iz)

is a weight function for the orthogonality of Wilson polynomials Wn(x) = Wn(z
2),

provided that the sum of any two (not necessarily distinct) elements in {a, b, c, d} is
not a non-positive integer [34]. In fact, Wilson polynomials Wn are at the highest
level in the Askey scheme of hypergeometric orthogonal polynomials [22], and many
hypergeometric orthogonal polynomials which occur in physics can be obtained from
Wn by taking limits of the parameters a, b, c, d.

Wilson polynomials themselves also occur naturally in physics. In investigating
the Lorentz transformation properties of the parity operator P, Bender, Meisinger
and Wang arrived at an equation [5, (24)], which can be shown to reduce to a (second-
order) Wilson difference equation

DW,1

(
µ1

(
x; a+

1

2
, b+

1

2
, c+

1

2
, d+

1

2

)
DW,1g

)
(x) + (1−l21)µ1(x; a, b, c, d)g(x)

= 0,

(6.2)

where a, b, c, d are complex constants (in fact a = 1
2
, b ∈ R and c = d), DW,1 is the

1-shift Wilson operator to be defined in §7, and

µ1(x; a, b, c, d) :=
Γ(a− z) · · ·Γ(d− z)Γ(a + z) · · ·Γ(d+ z)

Γ(2z)Γ(−2z)

is also a weight function for the orthogonality of Wilson polynomials, provided that
the sum of any two (not necessarily distinct) elements in {a, b, c, d} is not a non-
positive integer [34]. This Wilson difference equation (6.2) has eigenvalues l1(n) =
2n+ 1, where n ∈ N0, and the corresponding eigensolutions are g0(x) = 1 and

gn(x) =

(
x− 1

4

)
(n + 1)!

(2n)!
Wn−1

(
−x;

1

2
,
1

2
,
3

2
,
3

2

)
, for n ∈ N.

The operator

LW :=
1

µ(x; a, b, c, d)
DWµ

(
x; a+

1

2
, b+

1

2
, c+

1

2
, d+

1

2

)
DW

is a Wilson analogue of the Sturm–Liouville operator. Using this notation, (6.1)
becomes

LWWn = −n(n + a + b+ c + d− 1)Wn,

so Wn is an eigenfunction of LW corresponding to the eigenvalue λn = −n(n + a +
b+ c+ d− 1).
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To investigate Wilson difference equations of the form LWy = φy, we first obtain
the following using the lemma on logarithmic Wilson difference.

Lemma 6.1. If f 6≡ 0 is a meromorphic function of finite order σ, then for every
ε > 0,

m

(
r,
LWf

f

)
= O(rmax{0,σ− 1

2
}+ε)

as r → ∞.

Proof. If f 6≡ 0 is a meromorphic function, then we have

m

(
r,
LWf

f

)
≤ m

(
r,
DWµ(x; a+ 1

2
, b+ 1

2
, c+ 1

2
, d+ 1

2
)DWf

µ(x; a + 1
2
, b+ 1

2
, c+ 1

2
, d+ 1

2
)DWf

)

+m

(
r,
DWf

f

)
+m

(
r,
µ(x; a+ 1

2
, b+ 1

2
, c+ 1

2
, d+ 1

2
)

µ(x; a, b, c, d)

)
.

(6.3)

Now for any fixed φ ∈ (−π, π) and any α, β ∈ C, we have

Γ(ρeiφ + α)

Γ(ρeiφ + β)
= (ρeiφ)α−β

[
1 +

(α− β)(α− β − 1)

2ρeiφ
+O

(
1

ρ2

)]

as ρ → ∞ [33], so given any a ∈ C and any fixed θ ∈ (−π, π), by taking α = a + 1
2
,

β = a and φ = θ+π
2
, θ−π

2
, we have

ln+

∣∣∣∣∣
Γ(a+ 1

2
+ i

√
rei

θ
2 )Γ(a+ 1

2
− i

√
rei

θ
2 )

Γ(a+ i
√
rei

θ
2 )Γ(a− i

√
rei

θ
2 )

∣∣∣∣∣

= ln+

∣∣∣∣∣r
1
4

(
1 +

a− 1
4

2i
√
rei

θ
2

+O

(
1

r

))
r

1
4

(
1− a− 1

4

2i
√
rei

θ
2

+O

(
1

r

))∣∣∣∣∣

= ln+

∣∣∣∣
√
r

(
1 +O

(
1

r

))∣∣∣∣ ∼
1

2
ln r

as r → ∞. Lebesgue dominated convergence theorem then gives

lim
r→∞

1

2π

ˆ π

−π

1

ln r
ln+

∣∣∣∣∣
Γ(a+ 1

2
+ i

√
rei

θ
2 )Γ(a+ 1

2
− i

√
rei

θ
2 )

Γ(a+ i
√
rei

θ
2 )Γ(a− i

√
rei

θ
2 )

∣∣∣∣∣ dθ =
1

2

for any a ∈ C. This implies that m
(
|x| = r,

Γ(a+ 1
2
+iz)Γ(a+ 1

2
−iz)

Γ(a+iz)Γ(a−iz)

)
∼ 1

2
ln r, and replac-

ing a by b, c, d successively, we obtain

m

(
r,
µ(x; a+ 1

2
, b+ 1

2
, c+ 1

2
, d+ 1

2
)

µ(x; a, b, c, d)

)
∼ 2 ln r

as r → ∞. On the other hand, since f is of finite order σ(f) = σ, the order of
µ(x; a+ 1

2
, b+ 1

2
, c+ 1

2
, d+ 1

2
)DWf is at most

σ

(
µ

(
x; a+

1

2
, b+

1

2
, c+

1

2
, d+

1

2

)
DWf

)

≤ max

{
σ

(
µ

(
x; a+

1

2
, b+

1

2
, c+

1

2
, d+

1

2

))
, σ(DWf)

}

≤ max

{
1

2
, σ(f)

}
.
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Thus applying Theorem 4.1 to (6.3), we have for every ε > 0,

m

(
r,
LWf

f

)
≤ O(rσ(µ(x;a+

1
2
,b+ 1

2
,c+ 1

2
,d+ 1

2
)DWf)− 1

2
+ε) +O(rσ(f)−

1
2
+ε) + 2 ln r

≤ O(rmax{ 1
2
,σ}− 1

2
+ε) +O(rσ−

1
2
+ε) + 2 ln r = O(rmax{0,σ− 1

2
}+ε)

as r → ∞. �

From the above lemma, we deduce the following theorem about meromorphic
solutions to equations of the form LW(y) = φy.

Theorem 6.2. Let φ be an entire function of order σφ > 0. Then any non-trivial
meromorphic solution f to the equation LW(y) = φy must have order σ ≥ σφ +

1
2
.

Proof. Suppose that f is a meromorphic solution to the equation LW(y) = φy
having order σ < σφ + 1

2
. Then we take ε := σφ − max{0, σ − 1

2
} > 0. Since φ is

entire, we have

T (r, φ) = m(r, φ) = m

(
r,
LWf

f

)
= O(rmax{0,σ− 1

2
}+ ε

2 ) = O(rσφ− ε
2 )

as r → ∞, which is a contradiction. �

6.2. Wilson analogue of Clunie’s lemma. We can derive from Theorem 4.1 a
Wilson analogue of Clunie’s Lemma, which is a result about some non-linear Wilson
difference equations. Before stating the result we need a definition.

Definition 6.3. Let f be a complex function. A Wilson difference polynomial

in f is a finite sum of finite products of the form

P (f) =
∑

j

Pj

∏

l

(Dl
Wf)dl,j ,

where dl,j are non-negative integers and the coefficients Pj are polynomials in one
variable. The degree of P over f is the non-negative integer

degf P := max
j

∑

l

dl,j.

Theorem 6.4. (Clunie’s Lemma for the Wilson operator) Let n be a positive
integer and f 6≡ 0 be a meromorphic solution of finite order σ of the Wilson difference
equation

ynP (y) = Q(y),(6.4)

where P (y) and Q(y) are Wilson difference polynomials in y and degf Q ≤ n. Then
for every ε > 0, we have

m(r, P ) = O(rσ−
1
2
+ε) +O(ln r)(6.5)

as r → ∞.

The proof of Theorem 6.4 is a standard application of Theorem 4.1, and is there-
fore omitted. We note that the analogues of Clunie’s lemma for the usual difference
operator ∆ and the Askey–Wilson divided-difference operator Dq are given in [14],
[27] and [11] respectively.

6.3. Wilson interpolation equations. Next we look at the growth of mero-
morphic solutions to some Wilson interpolation equations, which can be deduced
using Theorem 4.1.
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Theorem 6.5. Let n be a positive integer, A0, A1, . . . , An be entire functions
with orders σ0, σ1, . . . , σn respectively, such that σl > maxk∈{0,1,...,n}\{l} σk for some l ∈
{0, 1, . . . , n}, and f be a non-trivial meromorphic solution to the Wilson interpolation
equation

An(x)y(x
+(n)) + An−1(x)y(x

+(n−1)) + · · ·+ A1(x)y(x
+) + A0(x)y(x) = 0.(6.6)

Then f has order σ ≥ σl +
1
2
.

Proof. We suppose the contrary that f is a non-trivial meromorphic solution to
(6.6) having order σ < σl +

1
2
. Now f 6≡ 0, so we may substitute f into (6.6) and

divide both sides by f(x+(l)) to get

An(x)
f(x+(n))

f(x+(l))
+ · · ·+ Al(x) + · · ·+ A1(x)

f(x+)

f(x+(l))
+ A0(x)

f(x)

f(x+(l))
= 0.(6.7)

Since σl > maxk∈{0,1,...,n}\{l} σk, we may take maxk∈{0,1,...,n}\{l} σk < s < σl and take
ε > 0 such that we simultaneously have

σ + 2ε < σl +
1

2
and s+ 2ε < σl.

Then T (r, f) = O(rσ+
ε
2 ) as r → ∞. Thus by choosing α = 1− ε in (4.8) and (4.10),

it is easy to see that for each k ∈ {0, 1, . . . , n} \ {l}, we have

m

(
r,
f(x+(k))

f(x+(l))

)
= O(rσ−

1
2
+ε)

as r → ∞. Applying this to (6.7), we obtain

m(r, Al) ≤
∑

k∈{0,1,...,n}\{l}

[
m

(
r,
f(x+(k))

f(x+(l))

)
+m(r, Ak)

]
+ lnn

= O(rσ−
1
2
+ε) + o(rs+ε) = o(rσl−ε)

as r → ∞, which is an obvious contradiction. �

It is clear that the signs of the shifts are not important, and Theorem 6.5 still
holds even if we include terms of the form A−l(x)y(x

−(l)) in (6.6). To illustrate that
the equality in σ ≥ σl+

1
2

can actually be achieved, we consider the following example
taken from Ruijsenaars’ work in [32].

Example 6.6. In this example, we consider the Wilson interpolation equation

y(x+) = 2 cosh(π
√
x)y(x−).(6.8)

According to Ruijsenaars’ article [32], a solution to the difference equation

y

(
z +

ia

2

)
= 2 cosh

πz

b
y

(
z − ia

2

)
,(6.9)

where a, b > 0, is given by the hyperbolic gamma function

Ghyp(a, b; z) := ei
´∞
0 ( sin 2tz

2 sinh at sinh bt
− z

abt)
dt
t

for every z ∈ C satisfying |I2z| < a + b, which can be extended to a meromorphic
function on the whole complex plane. Noting that the solution set of the difference
equation (6.9) forms a vector space, and that

Ghyp(a, b;−z) =
1

Ghyp(a, b; z)
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for every z ∈ C, we can observe that a meromorphic solution to the Wilson interpo-
lation equation (6.8) is given by

f(x) =
Ghyp(1, 1;

√
x) +Ghyp(1, 1;−

√
x)

2
= cos

[
ˆ ∞

0

(
sin 2t

√
x

2 sinh2 t
−

√
x

t

)
dt

t

]
.

Now since Ghyp(1, 1; x) is of order 2, we see that the order of this solution f is at
most 1. f has poles at −k2 of order k for each k ∈ N. On the other hand, it is
obvious that the entire function 2 cosh(π

√
x) has order 1

2
. Therefore f must be of

order exactly 1, and the equality in the conclusion of Theorem 6.5 is achieved.

In addition to Theorem 6.4 and Theorem 6.5, more results about Wilson differ-
ence equations and Wilson interpolation equations will be established after we give
a pointwise estimate of the logarithmic Wilson difference in the next section.

7. Pointwise estimate of the logarithmic Wilson difference

The lemma on logarithmic Wilson difference we have obtained in §4 is about
the proximity function m

(
r, DWf

f

)
, which is a measure on the overall growth of the

logarithmic Wilson difference DWf

f
. In this section, we will look at the pointwise

growth of DWf

f
, which will play a very crucial role in Wilson difference equations.

7.1. The pointwise estimate. Our pointwise estimate of the growth of DWf

f

depends on the following deep and important result by Cartan, which can be found
in his paper [6] published in 1928.

Lemma 7.1. (Cartan’s Lemma) Given any p complex numbers x1, x2, . . . , xp

and any real number B > 0, there exist finitely many closed disks D1, D2, . . . , Dq in
the complex plane, with radii r1, r2, . . . , rq respectively, such that

(i) r1 + r2 + · · ·+ rq = 2B, and
(ii) for every complex number x outside all of the disks Dj, there exists a permu-

tation of the p given points, say x̂1, x̂2, . . . , x̂p (which may depend on x), that
satisfies

|x− x̂λ| > B
λ

p
, for λ = 1, 2, . . . , p.

In what follows, we will denote by

n(r) := n(r, f) + n

(
r,

1

f

)

the unintegrated counting function for both zeros and poles of f . Our main result in
this section starts from the following lemma.

Lemma 7.2. Let f 6≡ 0 be a meromorphic function. Then for every γ > 1, there
exist a subset E ⊂ (1,∞) of finite logarithmic measure and a constant Aγ depending
only on γ, such that for every complex number x with modulus r /∈ E ∪ [0, 1], we
have

∣∣∣∣ln
∣∣∣∣
f(x+)

f(x)

∣∣∣∣
∣∣∣∣ ≤ Aγ

{
T (γr, f)√

r
+

n(γr)√
r

lnγ r ln+[n(γr)]

}
.(7.1)

In particular, if f has finite order σ, then for every ε > 0, there exists a subset
E ⊂ (1,∞) of finite logarithmic measure such that for every complex number x with
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modulus r /∈ E ∪ [0, 1], we have

e−r
σ−1

2+ε ≤
∣∣∣∣
f(x+)

f(x)

∣∣∣∣ ≤ er
σ−1

2+ε

.

Proof. For every complex number x, we write |x| = r and let R be a positive

number such that R > 1
4

and r < (
√
R− 1

2
)2. Then we use the Poisson–Jensen formula

as in §4 to obtain (4.4). Next we let α > 1 be arbitrary and let R = (
√
αr+ 1

2
)2. For

sufficiently large r, namely for r > 1
4(α−√

α)2
, we have

√
αr <

√
αr+ 1

2
<

√
α2r. Thus

applying Lemma 4.2 and (4.9) to (4.4), we have
∣∣∣∣ln
∣∣∣∣
f(x+)

f(x)

∣∣∣∣
∣∣∣∣

≤ 2(
√
αr + 1

2
)2(2

√
r + 1

2
)

[(
√
αr+ 1

2
)2−r][(

√
αr+ 1

2
)2−(

√
r+ 1

2
)2]

[
T

((√
αr +

1

2

)2

, f

)
+ ln+ 1

|f(0)|

]

+
2
√
r + 1

2

(
√
αr + 1

2
)2 − (

√
r + 1

2
)2

n

((√
αr +

1

2

)2
)
+

(√
r +

1

4

) ∑

|cλ|<α2r

1

|z2 − cλ|

≤ α2(4
√
r + 1)

(α− 1)[(α− 1)r −√
r − 1

4
]

[
T (α2r, f) + ln+ 1

|f(0)|

]

+
2
√
r + 1

2

(α− 1)r −√
r − 1

4

n(α2r) +

(√
r +

1

4

) ∑

|cλ|<α2r

1

|x− cλ|
,

(7.2)

where the sequence {cλ}λ is the union of the four sequences {aν}ν , {bµ}µ, {a−ν }ν and
{b−µ }µ, and is ordered by increasing modulus.

Next, we rename the arbitrary number α2 > 1 by the arbitrary number β > 1,
and estimate the series on the right-hand side of (7.2) as in [13, (7.6)–(7.9)]. We only
need to consider those complex numbers x with modulus r > 1, so we let

βp ≤ r ≤ βp+1,(7.3)

where p is a positive integer sufficiently large so that

n(βp+2) ≥ e
1

β−1 .(7.4)

Then applying Lemma 7.1 to the points c1, c2, . . . , cn(βp+2) with B = βp

lnβ(βp)
, we deduce

that there exist finitely many closed disks D1, D2, . . . , Dq with sum of radii 2B, such
that for every x outside all of these disks, there is a permutation of the points, say
d1, d2, . . . , dn(βp+2), that satisfies the inequality

|x− dλ| > λ
B

n(βp+2)
= λ

βp

n(βp+2) lnβ(βp)
(7.5)

for every λ = 1, 2, . . . , n(βp+2). (7.3), (7.4) and (7.5) imply that for every x with
modulus βp ≤ r ≤ βp+1 and is located outside all of the disks Dj , we have

∑

|cλ|<βr

1

|x− cλ|
≤

n(βp+2)∑

λ=1

1

|x− dλ|
<

n(βp+2) lnβ(βp)

βp

n(βp+2)∑

λ=1

1

λ

≤ βr−1n(βp+2) lnβ r{1 + ln+[n(βp+2)]}
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≤ βr−1n(β2r) lnβ r{1 + ln+[n(β2r)]} ≤ β2n(β
2r)

r
lnβ r ln+[n(β2r)].

Therefore for every such x, we have
∣∣∣∣ln
∣∣∣∣
f(x+)

f(x)

∣∣∣∣
∣∣∣∣ ≤

β(4
√
r + 1)

(
√
β − 1)[(

√
β − 1)r −√

r − 1
4
]

[
T (βr, f) + ln+ 1

|f(0)|

]

+
2
√
r + 1

2

(
√
β − 1)r −√

r − 1
4

n(βr) +

(√
r +

1

4

)
β2n(β

2r)

r
lnβ r ln+[n(β2r)]

≤ Aβ

{
T (βr, f)√

r
+

n(β2r)√
r

lnβ r ln+[n(β2r)]

}
,

where the constant Aβ depends on β only. Since the functions T (r, f) and ln r are
increasing, we can actually write

∣∣∣∣ln
∣∣∣∣
f(x+)

f(x)

∣∣∣∣
∣∣∣∣ ≤ Aβ

{
T (β2r, f)√

r
+

n(β2r)√
r

lnβ2

r ln+[n(β2r)]

}

= Aγ

{
T (γr, f)√

r
+

n(γr)√
r

lnγ r ln+[n(γr)]

}

by renaming β2 > 1 as γ > 1, where Aγ is a constant depending on γ only.
It now remains to show that the exceptional set E ⊂ (1,∞) is of finite logarithmic

measure. For every positive integer p sufficiently large so that (7.4) holds, say p ≥
p0 ≥ 1, the sum of the diameters of the exceptional disks is 2 · 2B = 4βp

lnβ(βp)
. Now we

can write the exceptional set as

E =
∞⋃

p=p0

Ep,

where Ep is the intersection of the closed interval [βp, βp+1] and the finite union of
all the annuli generated by revolving the disks Dj about the origin. Since Ep has

Lebesgue measure at most 4βp

lnβ(βp)
, it follows that

ˆ

E

dr

r
=

∞∑

p=p0

ˆ

Ep

dr

r
≤

∞∑

p=p0

ˆ

[

βp,βp+ 4βp

lnβ (βp)

]

dr

r

=
∞∑

p=p0

{
ln

[
βp +

4βp

lnβ(βp)

]
− ln(βp)

}
≤

∞∑

p=p0

4

lnβ(βp)
< ∞,

and so E has finite logarithmic measure.
Finally, we suppose in particular that f has finite order σ. (7.1) implies that for

every γ > 1 and ε > 0, there exists an exceptional set E of finite logarithmic measure
such that ∣∣∣∣ln

∣∣∣∣
f(x+)

f(x)

∣∣∣∣
∣∣∣∣ = O

(
T (γr, f)√

r
+

n(γr)√
r

lnγ r ln+[n(γr)]

)

= O(rσ−
1
2
+ ε

2 + (γr)σ−
1
2 lnγ r ln+(γr)σ) = O(rσ−

1
2
+ ε

2 )

as r → ∞ outside E, where the second equality follows from the fact that the
exponents of convergence of zeros and poles of f are lower than or equal to σ. This
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gives
∣∣∣ln
∣∣∣f(x

+)
f(x)

∣∣∣
∣∣∣ ≤ rσ−

1
2
+ε for every x with modulus r /∈ E ∪ [0, 1], and so we have

e−r
σ− 1

2+ε ≤
∣∣∣∣
f(x+)

f(x)

∣∣∣∣ ≤ er
σ− 1

2+ε

for every x with modulus r /∈ E ∪ [0, 1]. �

An exceptional set of radii r of finite logarithmic measure can sometimes be of
infinite Lebesgue measure, but it becomes sparser and sparser as r → ∞.

In the above lemma, we generated an annular exceptional set by revolving the
exceptional disks Dj about the origin. In fact, the exceptional set can also be gener-
ated in a radial manner. This gives us the following lemma, in which the exceptional
set has zero Lebesgue measure instead of finite logarithmic measure.

Lemma 7.3. Let f 6≡ 0 be a meromorphic function. Then for every γ > 1, there
exists a constant Bγ depending only on γ, such that for almost every θ ∈ [−π, π), we
have ∣∣∣∣ln

∣∣∣∣
f((reiθ)+)

f(reiθ)

∣∣∣∣
∣∣∣∣ ≤ Bγ

{
T (γr, f)√

r
+

n(γr)√
r

lnγ r ln+[n(γr)]

}

for every sufficiently large r. In particular, if f has finite order σ, then for every
ε > 0 and almost every θ ∈ [−π, π), we have

e−rσ−1
2+ε ≤

∣∣∣∣
f((reiθ)+)

f(reiθ)

∣∣∣∣ ≤ er
σ−1

2+ε

for every sufficiently large r.

Let us put Lemma 7.2 into a more useful form.

Theorem 7.4. (Pointwise estimate of the logarithmic Wilson difference, radial
version) Let f 6≡ 0 be a meromorphic function. Then for every γ > 1, there exist a
subset E1 ⊂ (1,∞) of finite logarithmic measure and a constant Aγ depending only
on γ, such that for every complex number x with modulus r /∈ E1 ∪ [0, 1], we have

∣∣∣∣
(DWf)(x)

f(x)

∣∣∣∣ ≤ 2e
Aγ

{

T (γr,f)√
r

+
n(γr)√

r
lnγ r ln+[n(γr)]

}

.(7.6)

In particular, if f is of finite order σ, then for every positive integer k and every
ε > 0, there exists a subset E ⊂ (1,∞) of finite logarithmic measure such that for
every complex number x with modulus r /∈ E ∪ [0, 1], we have

∣∣∣∣
(Dk

Wf)(x)

f(x)

∣∣∣∣ ≤ ekr
σ−1

2+ε

.

Proof. Lemma 7.2 implies that (7.6) holds for every x with modulus r outside
the union of two exceptional sets of finite logarithmic measure, which is still of finite
logarithmic measure. If f is of finite order σ. Then (7.6) implies that for every ε > 0,

∣∣∣∣
(DWf)(x)

f(x)

∣∣∣∣ ≤
er

σ−1
2+ ε

2

√
r

≤ er
σ− 1

2+ε

,(7.7)

which holds for every x with modulus r outside an exceptional set of finite logarithmic
measure. Since Lemma 5.2 implies that Dl

Wf has order at most σ for every positive
integer l, applying (7.7) k times, we have

∣∣∣∣
(Dk

Wf)(x)

f(x)

∣∣∣∣ ≤ ekr
σ−1

2+ε
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for every x with modulus r outside the union of k exceptional sets of finite logarithmic
measure, which is still of finite logarithmic measure. �

Similarly, Lemma 7.3 gives the following theorem.

Theorem 7.5. (Pointwise estimate of the logarithmic Wilson difference, angular
version) Let f 6≡ 0 be a meromorphic function. Then for every γ > 1, there exists a
constant Bγ depending only on γ, such that for almost every θ ∈ [−π, π), we have

∣∣∣∣
(DWf)(reiθ)

f(reiθ)

∣∣∣∣ ≤ 2e
Bγ

{

T (γr,f)√
r

+
n(γr)√

r
lnγ r ln+[n(γr)]

}

for every sufficiently large r. In particular, if f is of finite order σ, then for every
positive integer k, every ε > 0 and almost every θ ∈ [−π, π), we have

∣∣∣∣
(Dk

Wf)(reiθ)

f(reiθ)

∣∣∣∣ ≤ ekr
σ−1

2+ε

for every sufficiently large r.

7.2. Applications of the pointwise estimate in Wilson difference equa-

tions and Wilson interpolation equations. The pointwise estimate of the loga-
rithmic Wilson difference plays a crucial role in Wilson difference equations. A typical
application as in [10] yields the following result about the growth of meromorphic
solutions to a linear Wilson difference equation with polynomial coefficients.

Theorem 7.6. Let n be a positive integer, p0, p1, . . . , pn be polynomials such
that deg p0 > deg pk for each k ∈ {1, 2, . . . , n}, and f be a non-trivial meromorphic
solution to the Wilson difference equation

pnDn
Wy + pn−1Dn−1

W y + · · ·+ p1DWy + p0y = 0.(7.8)

Then f has order σ ≥ 1
2
.

Proof. We suppose the contrary that f is a non-trivial meromorphic solution to
(7.8) having order σ < 1

2
. Now p0f 6≡ 0, so we may substitute f into (7.8) and divide

both sides by p0f to get

pn
p0

Dn
Wf

f
+

pn−1

p0

Dn−1
W f

f
+ · · ·+ p1

p0

DWf

f
= −1.(7.9)

Now for each k ∈ {1, 2, . . . , n}, writing |x| = r, we have
∣∣∣∣
pk(x)

p0(x)

∣∣∣∣ = o(1)

as r → ∞, and we have ∣∣∣∣
(Dk

Wf)(x)

f(x)

∣∣∣∣ = O(1)

as r → ∞ outside an exceptional set Ek ⊂ (1,∞) of finite logarithmic measure,
by applying Theorem 7.4 to f . Therefore the value taken by the left-hand side of
(7.9) tends to zero as j → ∞ on every strictly increasing sequence {rj}∞j=1 outside
the exceptional set E =

⋃n

k=1Ek ⊂ (1,∞) of finite logarithmic measure, which is a
contradiction. �

Here is a result about the growth of meromorphic solutions to some Wilson
interpolation equations with polynomial coefficients, which can be deduced directly
using Lemma 7.2.
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Theorem 7.7. Let n be a positive integer, p0, p1, . . . , pn be polynomials such that
for some l ∈ {0, 1, . . . , n} we have deg pl > deg pk for every k ∈ {0, 1, . . . , n} \ {l},
and f be a non-trivial meromorphic solution to the Wilson interpolation equation

pn(x)y(x
+(n)) + pn−1(x)y(x

+(n−1)) + · · ·+ p1(x)y(x
+) + p0(x)y(x) = 0.(7.10)

Then f has order σ ≥ 1
2
.

Proof. We suppose on the contrary that f is a non-trivial meromorphic solution
to (7.10) having order σ < 1

2
. Now we have pl 6≡ 0 and f 6≡ 0, so we may substitute

f into (7.10) and divide both sides by pl(x)f(x
+(l)) to get

pn(x)

pl(x)

f(x+(n))

f(x+(l))
+ · · ·+ pl(x)

pl(x)
+ · · ·+ p1(x)

pl(x)

f(x+)

f(x+(l))
+

p0(x)

pl(x)

f(x)

f(x+(l))
= 0.(7.11)

Since σ < 1
2
, we take ε > 0 such that ε < 1

2
− σ. If we write |x| = r, then Lemma 7.2

implies that for each k ∈ {0, 1, . . . , n} \ {l}, we have
∣∣∣∣
f(x+(k))

f(x+(l))

∣∣∣∣ ≤ er
σ− 1

2+ε

= O(1)

as r → ∞ outside an exceptional set Ek ⊂ (1,∞) of finite logarithmic measure.
Applying this to (7.11), we have

1 =

∣∣∣∣
pl(x)

pl(x)

∣∣∣∣ ≤
∑

k∈{0,1,...,n}\{l}

∣∣∣∣
pk(x)

pl(x)

∣∣∣∣
∣∣∣∣
f(x+(k))

f(x+(l))

∣∣∣∣ ≤ O(1)
∑

k∈{0,1,...,n}\{l}

∣∣∣∣
pk(x)

pl(x)

∣∣∣∣

as r → ∞ outside the exceptional set E =
⋃n

k=1Ek ⊂ (1,∞) of finite logarithmic
measure, which is a contradiction to the assumption that deg pl > deg pk for every
k ∈ {0, 1, . . . , n} \ {l}. �

8. Discussion

The Wilson operator DW introduced in the previous sections acts on f(x) by
shifting the square roots of the complex variable x by i

2
. As a final remark, we note

that this operator can actually be generalized to take other non-zero square-root
shifts.

Definition 8.1. Given each c ∈ C \ {0}, we let
√· be a branch of the complex

square-root with the line joining c and 0 as the branch cut. Then for each x ∈ C we
denote

x+ :=
(√

x+
c

2

)2
and x− :=

(√
x− c

2

)2
,

and define the c-shift Wilson operator DW,c by

(DW,cf)(x) :=
f(x+)− f(x−)

x+ − x− =
f((

√
x+ c

2
)2)− f((

√
x− c

2
)2)

2c
√
x

.

All the results for DW ≡ DW,i in this paper still hold for DW,c.
It is known that the Askey–Wilson operator Dq is defined for every q ∈ D(0; 1) \

{0}, and reduces to the ordinary differential operator d
dx

as q → 1 from the interior
of D(0; 1). In fact, the c-shift Wilson operator DW,c behaves in a similar way. It can
be easily shown that DW,c reduces to the usual differential operator as c → 0.

Proposition 8.2. Let x ∈ C and f be a function holomorphic at x. Then

lim
c→0

(DW,cf)(x) = f ′(x).
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In this paper, we have developed a full-fledged Nevanlinna’s value distribution
theory of the Wilson divided-difference operator for finite order meromorphic func-
tions. Key concepts and results including a lemma on logarithmic Wilson difference
have been established for meromorphic functions of finite order. The finite-order
restriction is generally the best possible. We have established a second fundamental
theorem with respect to the Wilson operator, from which a new difference type little
Picard theorem for meromorphic functions of finite order is derived. The Wilson-
type Nevanlinna defect relations that follow from the analogous classical Nevanlinna
formalism require a different way of counting zeros, poles and their multiplicities of
meromorphic functions, which is natural with respect to the Wilson operator. This
new way of counting is the key to the new Wilson Nevanlinna theory. Halburd and
Korhonen [15] were the first to observe new counting functions for the usual differ-
ence operator. The Nevanlinna theories for the Askey–Wilson operator [11] as well as
the Wilson operator established in this paper indicate that there are corresponding
versions of residue calculus for these divided-difference operators, which may provide
natural ways to better understand the corresponding special functions. These issues,
as well as other function theoretic and interpolation-related investigations, will be
discussed in subsequent papers.
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