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Abstract. We study the Assouad and lower dimensions of self-affine sponges; the higher
dimensional analogue of the planar self-affine carpets of Bedford and McMullen. Our techniques
involve the weak tangents of Mackay and Tyson as well as regularity properties of doubling measures
in the context studied by Bylund and Gudayol.

1. Introduction

The Assouad and lower dimensions are increasingly popular notions of dimen-
sion used to study the irregularity of fractal sets. In this paper we compute these
dimensions for a certain class of self-affine sets in Rd (d ∈ N), which we refer to as
self-affine sponges, following Kenyon and Peres [KP]. These are the natural higher
dimensional analogue of the planar self-affine carpets of Bedford [Be] and McMullen
[Mc], which have been extensively studied since their inception in the mid 1980s.
The Assouad dimension of the planar carpets was first computed by Mackay [M] and
the lower dimension was computed later by Fraser [Fr2]. Our work can be seen as a
natural extension of these papers to the higher dimensional case. We wish to point
out at this stage that this extension is not straightforward and we have to introduce
several new ideas in our proofs. The dimension formulae themselves are also not
immediate generalisations of the formulae in the planar case due to the fact that ‘di-
mension’ has to be maximised in each of the last (d− 1) coordinates independently.
This will become clear upon inspection and comparison of our results.

There are two main techniques we employ. The first is used to bound the Assouad
dimension from above and the lower dimension from below and is based on a useful
measure theoretic formulation of these two dimensions due to Konyagin and Vol’berg
[KV] and Bylund and Gudayol [BG]. This replaces the delicate covering arguments
used by Mackay and Fraser [M, Fr2] and seems to us more appropriate to handle
the higher dimensional case. For this part of the proof we will somewhat rely on
Olsen’s treatment of a natural family of measures supported on sponges [O1]. The
second technique is used to bound the lower dimension from above and the Assouad
dimension from below and is based on finding appropriate weak tangents to our sets.
This approach was pioneered by Mackay and Tyson [MT] and used by Mackay and
Fraser in the two dimensional case [M, Fr2].

The measure theoretic formulation of the Assouad and lower dimensions asks for
measures with certain scaling properties and leads to the natural question of when
there are ‘sharp’ measures, i.e., particular measures with the precise scaling property,
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rather than a collection of measures approximating the scaling property. We show
that such sharp measures do exist (and can be taken to be Bernoulli) if the very
strong separation condition of Olsen [O1] is satisfied. We also point out that there
are sponges in our class without this condition for which all Bernoulli measures fail
to be doubling, and hence cannot be sharp. This follows from [LWW], but we provide
a simple example for completeness.

Also in our Examples section (Section 4), we provide a smooth 1-parameter family
of self-affine carpets for which the Assouad and lower dimensions exhibit a new kind
of discontinuity and show that for sponges in our class either the Assouad, box,
Hausdorff and lower dimensions are all equal or all distinct, extending a dichotomy
of Mackay [M] to the higher dimensional setting.

1.1. Assouad dimension and lower dimension. Throughout this section
let F ⊆ Rd be a non-empty compact bounded set. The Assouad dimension of F is
defined by

dimA F = inf

{
s > 0: ∃ constants C, ρ > 0 such that, for all 0 < r < R 6 ρ,

we have sup
x∈F

Nr(B(x,R) ∩ F ) 6 C

(
R

r

)s}
where B(x,R) means open ball of radius R and centre x, Nr(E) is the smallest
number of open sets in Rd with diameter less than or equal to r required to cover a
bounded set E. We are also interested in the following measure theoretic formulation
of the Assouad dimension due to [LS, KV]:

dimA F = inf

{
s > 0: ∃ a Borel probability measure µ fully supported by F

and constants C, ρ > 0 such that, for all 0 < r < R 6 ρ,

we have sup
x∈F

µ(B(x,R))

µ(B(x, r))
6 C

(
R

r

)s}
.

Assouad dimension has a natural dual that we will call the lower dimension
dimL F , following Bylund and Gudayol [BG]. This notion was first introduced by
Larman [L], where it was refereed to as the minimal dimensional number. We will
have two definitions for the lower dimension, both duals of the respective definitions
for the Assouad dimension, which emphasises the link between the two dimensions.
First, the definition involving covers is

dimL F = sup

{
s > 0: ∃ constants C, ρ > 0 such that, for all 0 < r < R 6 ρ,

we have inf
x∈F

Nr(B(x,R) ∩ F ) > C

(
R

r

)s}
.

Bylund and Gudayol [BG] proved a result linking doubling measures and lower
dimension, similar to [LS, KV] (see below for definition of doubling measure):

dimL F = sup

{
s > 0: ∃ a doubling Borel probability measure µ fully supported on

F and constants C, ρ > 0 such that, for all 0 < r < R 6 ρ,

we have inf
x∈F

µ(B(x,R))

µ(B(x, r))
> C

(
R

r

)s}
.
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For a more in-depth discussion of the Assouad and lower dimension and for some
of their basic properties, we refer the reader to [R, Lu, Fr2]. Assouad and lower
dimension provide coarse and extremal information about the geometric structure
of a set. In particular, they identify the parts of the set which are ‘thickest’ and
‘thinnest’ respectively and unsurprisingly provide upper and lower bounds for other
commonly used notions of dimension, which describe more of an ‘average thickness’.
We will often refer to Hausdorff and upper and lower box dimensions, which we
denote by dimH, dimB and dimB respectively, and refer the reader to [F, Chapters
2–3] for their definitions and basic properties. In general, for a compact set F , we
have

dimL F 6 dimH F 6 dimBF 6 dimBF 6 dimA F,

where the first inequality is due to Larman [L, Theorem 5]. If the upper and lower
box dimensions coincide, we will denote the common value by dimB F and refer to
it as the box dimension. This will be the case for the self-affine sets considered
in this paper. Of course, the measure theoretic formulations of the Assouad and
lower dimensions do not guarantee the existence of ‘sharp’ measures, i.e., measures
satisfying the required scaling property with s actually equal to dimA F or dimL F .
We are interested in the general question of which sets carry sharp measures and what
form they take. This question was mentioned explicitly in the context of self-affine
sets in [Fr2, Question 4.4]. We provide a partial solution to this question here.

Note that any measures µ used in the measure theoretic definition of Assouad
dimension above must be doubling. Recall that a measure is doubling if there exists
a constant C > 0 such that for all x in the support of µ and all r > 0 we have

µ(B(x, 2r))

µ(B(x, r))
6 C.

It is well-known that if a measure is doubling, then for any c > 1, there exists a
constant C ′ > 0 such that for all x in the support of µ and all r > 0 we have

µ(B(x, cr))

µ(B(x, r))
6 C ′.

1.2. Self-affine sponges. Self-affine carpets have been investigated in depth
over the last 30 years, partially because they provide good examples of self-affine
sets that can be visualised easily and studied explicitly. Roughly speaking, a carpet
refers to a self-affine set in the plane which is the attractor of an iterated function
system consisting of affine maps corresponding to diagonal matrices (or at least ma-
trices which map the coordinate axes onto themselves). There exist several classes of
self-affine carpets of which the Bedford–McMullen class are the oldest and simplest.
Specific attention has been paid to dimension theoretic properties and we now have
formulae for the Hausdorff, box, packing, Assouad and lower dimensions in certain
instances, see [B, Be, FW, GL, Mc, Fr1, Fr2, M]. Kenyon and Peres [KP] first stud-
ied the higher dimensional analogue of the planar Bedford–McMullen carpets, which
they called sponges, and calculated the Hausdorff and box dimensions. Olsen [O1]
considered the same model and studied the multifractal structure of the correspond-
ing Bernoulli measures. In general, much less is known in the higher dimensional
setting of sponges.

We follow the notation set up by Olsen [O1]. The Bedford–McMullen sponges
are defined as follows. Let d ∈ N and, for all l = 1, . . . , d, choose nl ∈ N such that
1 < n1 < n2 < · · · < nd. Note that the construction is still valid if some of the
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inequalities between the nl are actually equalities, but surprisingly this causes some
problems in our proofs, see Section 4.3. Let Il = {0, . . . , nl − 1} and I =

∏d
l=1 Il and

consider a fixed digit set D ⊆ I with at least two elements. For i = (i1, . . . , id) ∈ D
we define the affine contraction Si : [0, 1]

d → [0, 1]d by

Si (x1, . . . , xd) =

(
x1 + i1
n1

, . . . ,
xd + id
nd

)
.

Using a theorem of Hutchinson [H], there exists a unique non-empty compact set
K ⊆ [0, 1]d satisfying

K =
⋃
i∈D

Si(K).

called the attractor of the iterated function system (IFS) {Si}i∈D. The set K is the
self-affine sponge and our main object of study. It is worth noting that if all our nl
are equal then our set is self-similar satisfying the open set condition and the Assouad
dimension equals the similarity dimension, see for example [O2], and if d = 2 then we
are in the self-affine carpet setting of Bedford–McMullen. We will assume without
loss of generality that K does not lie in a hyperplane. If this was the case, we could
restrict our attention to the minimal lower hyperplane containing K and consider it
as a self-affine sponge in this space.

We will often model our sponge K via the symbolic space DN, which consists
of all infinite words over D and is equipped with the product topology generated by
the cylinders corresponding to finite words over D. We define a continuous (but not
necessarily injective) map τ : DN → [0, 1]d by

{τ(ω)} =
⋂
n∈N

Sω|n([0, 1]
d)

where ω = (i1, i2, . . .), ω|n = (i1, . . . , in) ∈ Dn and ij = (ij,1, . . . , ij,d) for any j ∈ N,
and Sω|n = S(i1,...,in) = Si1 ◦ · · · ◦ Sin .

This allows us to switch between symbolic notation and geometric notation since

τ(DN) = K.

Pre-fractals of an attractor F (for a given IFS) are sets that are defined by the
application of all possible combinations of functions in our IFS to an initial set a
certain number of times (this number will determine the level of the pre-fractal).
As the level tends to infinity, the pre-fractals will converge to our attractor in the
Hausdorff metric, regardless of our initial set; for more details see [F, page 126]. For
us, the nth pre-fractal in the construction of K is⋃

(i1,...,in)∈Dn

S(i1,...,in)([0, 1]
d),

which is a collection of |D|n hypercuboids, and these help to visualise the set K itself.
A commonly considered and important class of Borel measures supported on

fractal attractors are Bernoulli measures. Associate a probability vector {pi}i∈D with
D and let µ̃ =

∏
N

(∑
i∈D piδi

)
be the natural Borel product probability measure on

DN, where δi is the Dirac measure on D concentrated at i. Finally, the measure

µ(A) = µ̃ ◦ τ−1(A)
for a Borel set A ⊆ K, is our Bernoulli measure supported on K. We will be
interested in one particular Bernoulli measure, which we now describe. For any
l = 1, 2, . . . , d we define πl : D →

∏l
k=1 Ik to be the projection onto the first l
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coordinates, i.e., πl(i1, . . . , id) = (i1, . . . , il) and let Dl = πl(D) and N = #{π1D}.
Finally, for l = 1, . . . , d− 1 and (i1, . . . , il) ∈ Dl let

N(i1, . . . , il) = #{il+1 ∈ Il+1 : (i1, . . . , il, il+1) ∈ Dl+1}

be the number of possible ways to choose the next digit of (i1, . . . , il). In particu-
lar, N(i1, . . . , il) is an integer between 1 and nl+1, inclusive. The special Bernoulli
measure we will use in this paper is that associated with the probabilities

pi = p(i1,...,id) =
1

N
(∏d

l=2N(i1, . . . , il−1)
) .

One can check from the definitions that
∑

i∈D pi = 1. We will refer to this measure as
the ‘coordinate uniform measure’, since its key feature is that it is defined inductively
on the coordinates to be as uniform as possible. We emphasise that this is not the
uniform measure given by pi = 1/|D|.

Figure 1. The first and second level in the construction of a particular self-affine sponge in R3

where n1 = 2, n2 = 3, n3 = 4 and D = {(0, 0, 0), (0, 1, 1), (0, 2, 3), (1, 1, 2)}.

Figure 2. An example of the coordinate uniform measure on the first level of a Bedford–
McMullen carpet where n1 = 3, n2 = 4 and D = {(0, 3), (1, 1), (1, 2), (2, 0)}.

2. Results

We are now ready to state our main results, the first of which gives a simple
and explicit formula for the Assouad and lower dimensions of a Bedford–McMullen
sponge.
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Theorem 2.1. The Assouad dimension of K is

dimAK =
logN

log n1

+
d∑
l=2

log max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl

and the lower dimension of K is

dimLK =
logN

log n1

+
d∑
l=2

log min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl
.

When d = 2 we obtain the same formulae as Mackay and Fraser [M, Fr2] but
there is an interesting difference between the carpet and the sponge. In Mackay’s
formula he considers one specific i ∈ D which maximises the formula whereas for
the sponge we consider multiple, potentially different i ∈ D, which can be thought
of as each maximising the dimension in one coordinate. When first considering this
question it is not obvious whether the Assouad dimension is obtained for one i ∈ D
(i.e., the maximum would be outside the sum) or for multiple i ∈ D (maximum inside
the sum). We find the second case to be true. This difference will be important in
the proofs, notably the lower bound for Assouad dimension and the upper bound
for lower dimension have additional complications since they will have to take into
account all the different i ∈ D used in the formulae.

Checking the subsequent proofs, one sees that the upper bound for Assouad
dimension and lower bound for lower dimension remain valid when one allows 1 <
n1 6 n2 6 · · · 6 nd with some of the inequalities replaced by equalities. However,
the arguments giving the lower bound for Assouad dimension and upper bound for
lower dimension fail. We will give an example in Section 4.3 demonstrating that in
fact our formulae do not generally remain valid if the nl are not strictly increasing.
This is perhaps surprising since the formulae for the Hausdorff and box dimensions
are not sensitive to such a perturbation, see [O1, Corollary 4.1.2] and note that Olsen
does not assume that the nl are strictly increasing.

We now turn to the question of the existence of sharp measures supported by
K. For this we need Olsen’s very strong separation condition (VSSC), see [O1, 4.,
condition (II)].

Definition 2.2. (VSSC) A sponge K (associated to D) satisfies the very strong
separation condition (VSSC) if the following holds. If l = 1, . . . , d and (i1, . . . , id),
(j1, . . . , jd) ∈ D satisfy i1 = j1, . . . , il−1 = jl−1 and il 6= jl, then |il − jl| > 1.

The VSSC permits the following partial answer to [Fr2, Question 4.4].

Theorem 2.3. Let K be a Bedford–McMullen sponge satisfying the VSSC and
let µ be the coordinate uniform measure. Then there exist constants C0, C1 > 0 such
that for all 0 < r < R 6 1 and all x ∈ K, we have

C0

(
R

r

)dimLK

6
µ (B(x,R))

µ (B(x, r))
6 C1

(
R

r

)dimAK

.

In particular, µ is a sharp measure for the Assouad dimension and lower dimension
simultaneously.

The general question of whether there exist sharp measures for self-affine sponges
and carpets without assuming the VSSC remains open and of interest to us. In
Section 4.2 we point out that Bernoulli measures cannot generally be used to solve
this problem: specifically, there are self-affine carpets for which all Bernoulli measures
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fail to be doubling. This was first proved by Li, Wei and Wen [LWW]. There the
authors perform a detailed analysis of the precise conditions under which a Bedford–
McMullen carpet carries a doubling self-affine measure, but they do not consider the
existence of ‘sharp measures’ in the context of Assouad dimension. The existence
of carpets which carry no doubling Bernoulli measures is perhaps surprising in light
of the fact that self-similar sets satisfying the open set condition always carry a
doubling Bernoulli measure which is simultaneously sharp for both lower and Assouad
dimension (in fact it is Ahlfors regular). More precisely, for a self-similar set defined
via mappings with similarity ratios {ci}i∈J satisfying the open set condition and
having Hausdorff dimension s, the Bernoulli measure corresponding to the probability
vector {csi}i∈J satisfies

C0

(
R

r

)s
6

µ(B(x,R))

µ(B(x, r))
6 C1

(
R

r

)s
for some uniform constants C0, C1 > 0 for all x in the self-similar set and all 0 < r <
R 6 1. For more information on self-similar sets, see [H, F].

3. Proofs

In this section we prove our main results, Theorems 2.1 and 2.3. Section 3.1 will
introduce some important notation and concepts which will be used throughout the
subsequent sections including approximate cubes. Theorem 2.1 will then be proved
via four bounds given in Sections 3.2 through 3.5 and Theorem 2.3 will be proved in
Section 3.6.

3.1. Important notation. The symbolic-to-geometric projection map τ in-
duces the coordinate functions τl which are just taken to be the lth coordinate of τ .
For the application of these, note that the Si, and therefore τ , act independently on
each coordinate.

We also let σ : DN → DN be the shift map σ(i1, i2, . . .) = (i2, i3, . . .), which will
be used to ‘zoom in’ on certain interesting parts of our sponge.

Approximate cubes are well-known tools used in the study of self-affine sponges
and will be used extensively throughout our proofs. For all r ∈ (0, 1] we choose the
unique integers k1(r), . . . , kd(r), greater than or equal to 0, satisfying

1

n
kl(r)+1
l

< r 6
1

n
kl(r)
l

for l = 1, . . . , d. In particular,
− log r

log nl
− 1 < kl(r) 6

− log r

log nl
.

Then the approximate cube Q(ω, r) of (approximate) side length r determined by
ω = (i1, i2, . . .) = ((i1,1, . . . , i1,d), (i2,1, . . . , i2,d), . . .) ∈ DN is defined by

Q(ω, r) = {ω′ = (j1, j2, . . .) ∈ DN : ∀ l = 1, . . . , d and ∀ t = 1, . . . , kl(r)

we have jt,l = it,l}.
Here our approximate cube is defined symbolically, which we find simplifies the proofs.
The geometric analogue is τ (Q(ω, r)), which is contained in

d∏
l=1

[
i1,l
nl

+ · · ·+
ikl(r),l

n
kl(r)
l

,
i1,l
nl

+ · · ·+
ikl(r),l

n
kl(r)
l

+
1

n
kl(r)
l

]
;
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a hypercuboid in Rd aligned with the coordinate axes and of side lengths n−kl(r)l ,
which are all comparable to r since r 6 n

−kl(r)
l < nlr. This is why we call Q(ω, r) an

approximate cube of side length r.
Finally, we will need to consider tangents to our sponge K and these are defined

using the Hausdorff metric dH on the space of non-empty compact subsets of Rd,
which is defined by

dH(A,B) = inf
{
ε > 0: A ⊆ [B]ε and B ⊆ [A]ε

}
where [A]ε is the closed ε-neighbourhood of a set A.

3.2. Upper bound for Assouad dimension. For the upper bound we will
use the measure theoretic definition of Assouad dimension. Let µ be the coordinate
uniform measure and {pi}i∈D be the associated probabilities. Olsen [O1, Section 3.1]
associated conditional probabilities defined by

p(il|i1, . . . , il−1) =



∑
j=(j1,...,jd)∈D

j1=i1,...,jl−1=il−1,jl=il

pj

∑
j=(j1,...,jd)∈D

j1=i1,...,jl−1=il−1

pj
if (i1, . . . , il) ∈ Dl,

0 if (i1, . . . , il) 6∈ Dl,

and it follows immediately from the definitions that p(il|i1, . . . , il−1) = 1/N(i1, . . . ,
il−1) for l = 2, . . . , d and p(i1|∅) = 1/N whenever (i1, . . . , il) ∈ D. Roughly speaking,
p(il|i1, . . . , il−1) is the probability of choosing il as the next digit of (i1, . . . , il−1).

We recall that in the measure theoretic definition of Assouad dimension, our
condition is dependent on the measure of balls which we would like to replace with
approximate cubes. We will now prove that our approximate cubes can be used to
find a suitable upper bound for the Assouad dimension. In Section 3.6 we will show
that balls and approximate cubes are equivalent in our definition given the VSSC and
in Section 4.2 we provide an example where the two have distinct properties. The
following proposition is inspired by [BG, Proposition 4] and the measure theoretic
definition of Assouad dimension.

Proposition 3.1. Suppose there exists a Borel probability measure ν on DN

and constants C > 0 and s > 0 such that for any 0 < r < R 6 1 and ω ∈ DN we
have

ν (Q(ω,R))

ν (Q(ω, r))
6 C

(
R

r

)s
.

Then dimAK 6 s.

Proof. Given 0 < r < R 6 1, choose an approximate cube Q(ω,R), and con-
sider the approximate cubes of side length r which are subsets of Q(ω,R). Let Nr,ω

be the number of such approximate cubes (ones with side length r) and choose a
representative set of centres {ωi}i=1,...,Nr,ω

, one for each of the smaller approximate
cubes.

For all i = 1, . . . , Nr,ω, since Q(ωi, R) = Q(ω,R), we have by our scaling assump-
tion that

ν (Q(ω,R)) = ν (Q(ωi, R)) 6 C

(
R

r

)s
ν (Q(ωi, r)) .
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We also have

ν (Q(ω,R)) > 1
2

Nr,ω∑
i=1

ν (Q(ωi, r)) > 1
2
Nr,ω min

i=1,...,Nr,ω

ν (Q(ωi, r)) .

The ‘1/2’ in the above expression accounts for the fact that two approximate
cubes may share a boundary, but in practise the boundaries carry zero measure so it
is actually surplus to requirements. Therefore we obtain

Nr,ω 6 2C

(
R

r

)s
by picking i in the first part to be the same as the one used for the minimum in
the second part. We remember that in our first definition of Assouad dimension we
were led to consider Nr(B(x,R)), which was the smallest number of balls needed
to cover a larger ball whereas here we have Nr,ω, which is the number of geometric
approximate cubes contained in a larger geometric approximate cube. Thankfully
these two quantities give us an equivalent definition for the Assouad dimension since
any ball of radius R centered in K is contained in at most 3d geometric approximate
cubes of side length R and similarly any geometric approximate cube of side length
r can be covered by at most 2n1 × · · · × nd open sets of diameter r. This yields

sup
x∈K

Nr(B(x,R) ∩K) 6 2n1 × · · · × nd 3dC
(
R

r

)s
which in turn gives dimA F 6 s, as required. �

We now wish to estimate the measure of approximate cubes, which is fortunately
quite straightforward. It follows from the definitions (and was observed by Olsen
[O1, (6.2)]) that

(3.1) µ̃(Q(ω, r)) =
d∏
l=1

kl(r)−1∏
j=0

pl(σ
jω)

where pl(ω) = p(i1,l|i1,1, . . . , i1,l−1). We can use this to obtain our upper bound.
Proof. By (3.1), we have

µ̃(Q(ω,R))

µ̃(Q(ω, r))
=

∏d
l=1

∏kl(R)−1
j=0 pl(σ

jω)∏d
l=1

∏kl(r)−1
j=0 pl(σjω)

=
d∏
l=1

kl(r)−1∏
j=kl(R)

1

pl(σjω)

6

k1(r)−1∏
j=k1(R)

N

 d∏
l=2

kl(r)−1∏
j=kl(R)

max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)


= Nk1(r)−k1(R)

(
d∏
l=2

max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)
kl(r)−kl(R)

)

6 N logR/ logn1−log r/ logn1+1

(
d∏
l=2

max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)
logR/ lognl−log r/ lognl+1

)

6 N log(R/r)/ logn1n1

(
d∏
l=2

max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)
log(R/r)/ lognl nl

)
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= n1 × · · · × nd
(
R

r

) logN

log n1


d∏
l=2

(
R

r

) log max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl



6 ndd

(
R

r

) logN

log n1

+
d∑
l=2

log max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl
.

This estimate combined with Proposition 3.1 gives us the desired upper bound. �

3.3. Lower bound for Assouad dimension. For the lower bound we will
use ‘weak tangents’, a technique due to Mackay and Tyson [MT, Proposition 6.1.5].
The version we state and use here is a minor modification due to Fraser [Fr2, Propo-
sition 7.7]. This technique allows us to create simple tangent sets with the desired
Assouad dimension and the following proposition gives us our lower bound.

Proposition 3.2. (Very weak tangents) Let X ⊂ Rd be compact and let F be
a compact subset of X, Let (Tk) be a sequence of bi-Lipschitz maps defined on Rd

with Lipschitz constants ak, bk > 1 such that

ak|x− y| 6 |Tk(x)− Tk(y)| 6 bk|x− y| (x, y ∈ Rd)

and
sup
k
bk/ak = C0 <∞

and suppose that Tk(F ) ∩X → F̂ in the Hausdorff metric. Then the set F̂ is called
a very weak tangent to F and, moreover, dimA F > dimA F̂ .

To simplify notation, we choose i(l) = (i(l)1, . . . , i(l)d) ∈ D for l = 2, . . . d to be
an element of D which attains the maximum value for N(i1, . . . , il−1), i.e.

N (i(l)1, . . . , i(l)l−1) = max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1).

There might be several possibilities for each i(l), but thankfully it does not matter
which one we pick.

We will show that the set

K̂ = π1K ×
d∏
l=2

Kl

is a subset of some very weak tangent to K, where Kl is the Cantor set (or unit
interval or single point) obtained by the IFS{

Sl,1(x) =
x+ jl,1
nl

, . . . , Sl,N(i1,...,il−1)(x) =
x+ jl,N(i1,...,il−1)

nl

}
acting on [0, 1] such that jl,k is the lth element of some jk ∈ D where for all k =
1, . . . , N(i1, . . . , il−1), the first l − 1 coordinates of jk coincide with the first l − 1
coordinates of i(l). This IFS occurs naturally from the functions in the original IFS
used to define our sponge: we simply take the lth component of the original function
Sjk for each k = 1, . . . , N(i1, . . . , il−1). The set π1K is the geometric projection of
the sponge on to the first coordinate, or one can think of it as the Cantor set (or unit
interval or single point) defined like our sponges but working in [0, 1] with defining
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set π1D. In a slight abuse of notation, throughout the paper we use π1 to denote
projection onto the first coordinate in both the symbolic spaceD and geometric space
Rd.

For l = 2, . . . , d and m ∈ N, we let Km
l be the mth pre-fractal of Kl where our

initial set is [0, 1]. In particular, the set Km
l is a union of N(i1, . . . , il−1)

m intervals
of length n−ml .

Given a geometric approximate cube τ(Q) = τ(Q(ω, r)), we define a bi-Lipschitz
map TQ : τ(Q)→ [0, 1]d (or TQ : Rd → Rd) by

TQ(x) =


n
k1(r)
1

(
x1 −

(
i1,1
n1

+ . . .+
ik1(r),1

n
k1(r)
1

))
...

n
kd(r)
d

(
xd −

(
i1,d
nd

+ . . .+
ikd(r),d

n
kd(r)

d

))
 .

Thus TQ translates τ(Q) such that the point closest to the origin from the hyper-
cuboid containing τ(Q) becomes the origin and then scales it up by a factor of nkl(r)l

in each coordinate l. Thus these maps take the natural hypercuboid containing τ(Q)
precisely to the unit cube [0, 1]d. We define TQl to be the lth component of TQ, which is
possible since TQ acts independently on each coordinate. These maps clearly satisfy
the conditions imposed by Proposition 3.2, i.e., they are restrictions of bi-Lipschitz
maps on Rd with constants bQ = supl=1,...,d n

kl(r)
l and aQ = inf l=1,...,d n

kl(r)
l satisfying

bQ
aQ
6 sup

l=1,...,d

rnl
r
6 nd <∞

for any Q. This follows from the definition of kl(r).
We define, for small R, ω(R) = (i1, i2, . . .) ∈ DN where it = (it,1, . . . , it,d) = i(l)

for t = kl(R) + 1, . . . , kl−1(R) for all l = 2, . . . , d. So ω(R) has the form

ω(R) =

i1, . . . , i(d), . . . , i(d)︸ ︷︷ ︸
kd−1(R)−kd(R) times

, i(d− 1), . . . , i(d− 1)︸ ︷︷ ︸
kd−2(R)−kd−1(R) times

, . . . , i(2), . . . , i(2)︸ ︷︷ ︸
k1(R)−k2(R) times

, . . .

 .

Note that this step relies on nl−1 < nl for each l = 2, . . . , d, since otherwise kl−1(R) =
kl(R). The idea of defining ω(R) like this, where one follows one word for a long time
and then changes to another, is somewhat inspired by the approach of Fraser–Miao–
Troscheit in the random setting [FMT, Section 6.3.3].

Lemma 3.3. For R ∈ (0, 1] small enough and Q = Q(ω(R), R), we have

TQ(τ(Q)) ⊆ π1K ×
d∏
l=2

K
kl−1(R)−kl(R)
l .

Proof. We have

Q (ω (R) , R) = {ω′ = (j1, j2, . . .) ∈ DN : ∀ l = 1, . . . , d and ∀ t = 1, . . . , kl(R)

we have jt,l = it,l}
⊆ {j = (j1, j2, . . . ) ∈ (π1D)N : ∀ t = 1, . . . , k1(R) we have jt = it,1}
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×
d∏
l=2

{j = (j1, j2, . . . ) ∈ INl : ∀ t = 1, . . . , kl(R) we have jt = it,l and

∀ t = kl(R) + 1, . . . , kl−1(R) we have (i(l)1, . . . , i(l)l−1, jt) ∈ Dl}.

Observe that for each l = 1, . . . , d,

TQl ◦ τl = τl ◦ σkl(R)

on Q, i.e., TQl acts symbolically by applying the left shift kl(R) times. This yields

TQ(τ(Q)) ⊆ TQ1 τ1
{
j = (j1, j2, . . . ) ∈ (π1D)N : ∀ t = 1, . . . , k1(R) we have jt = it,1

}
×

d∏
l=2

TQl τl{j = (j1, j2, . . . ) ∈ INl : ∀ t = 1, . . . , kl(R) we have jt = it,l

and ∀ t = kl(R) + 1, . . . , kl−1(R) we have (i(l)1, . . . , i(l)l−1, jt) ∈ Dl}
= τ1

{
j = (j1, j2, . . . ) ∈ (π1D)N

}
×

d∏
l=2

τl {j = (j1, j2, . . . ) ∈ INl : ∀ t = 1, . . . , kl−1(R)− kl(R)

we have (i(l)1, . . . , i(l)l−1, jt) ∈ Dl}

= π1K ×
d∏
l=2

K
kl−1(R)−kl(R)
l

as required. �

The product set in Lemma 3.3 will act as an intermediary between TQ(τ(Q(ω(R),
R))) and K̂, in proving that TQ(τ(Q(ω(R), R))) → K̂ in the Hausdorff metric as
R→ 0. For this next step we need to think of the geometry of the sets involved.

The product set
d∏
l=2

K
kl−1(R)−kl(R)
l

has a natural decomposition into (d− 1)-dimensional closed hypercuboids which are
the products of basic intervals in the pre-fractal construction of each Kkl−1(R)−kl(R)

l .
In particular, the product decomposes as the union of

M =
d∏
l=2

N(i1, . . . il−1)
kl−1(R)−kl(R)

(d − 1)-dimensional closed hypercuboids with side lengths nkl−1(R)−kl(R)
l for l =

2, . . . , d. We note that this decomposition may not be a strict partition, but the
interiors of the (d − 1)-dimensional hypercuboids are pairwise disjoint. Let this de-
composition be labeled as {Hi}Mi=1 and observe that

π1K ×
d∏
l=2

K
kl−1(R)−kl(R)
l = π1K ×

M⋃
i=1

Hi =
M⋃
i=1

π1K ×Hi
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Observe that by Lemma 3.3 we crucially have

TQ(τ(Q)) =
M⋃
i=1

π1K × (Hi ∩ TQ(τ(Q)))

with each intersection Hi ∩ TQ(τ(Q)) non-empty and, similarly, by the definition of
K̂

K̂ =
M⋃
i=1

π1K × (Hi ∩ K̂)

with each intersection Hi ∩ K̂ non-empty. Therefore, writing diam(Hi) for the diam-
eter of Hi, we have

dH

(
K̂, TQ(τ(Q(ω(R), R)))

)
6 max

i=1,...,M
dH

(
π1K × (Hi ∩ K̂), π1K × (Hi ∩ TQ(τ(Q)))

)
= max

i=1,...,M
dH

(
Hi ∩ K̂, Hi ∩ TQ(τ(Q))

)
6 max

i=1,...,M
diam(Hi)

6
√
d max
l=2,...,d

n
−(kl−1(R)−kl(R))
l → 0

as R → 0, since kl−1(R) − kl(R) → ∞. This again relies on the nl being strictly
increasing. Consider the sequence of maps TQ for a sequence of approximate squares
Q = Q(ω(R), R) with R tending to zero. Observe that we cannot quite conclude
that K̂ is a very weak tangent to K because

TQ(K) ∩ [0, 1]d ⊇ TQ(τ(Q(ω(R), R))) → K̂

and, strictly speaking, the containment may be strict. This can happen if parts of
neighbouring approximate cubes intersect with the natural hypercuboid containing
τ(Q(ω(R), R)). However, by a simple compactness and monotonicity argument this
is not a problem. The sequence TQ(K) ∩ [0, 1]d is a sequence of non-empty compact
subsets of [0, 1]d and, since the space of non-empty compact subsets of [0, 1]d is itself
a compact metric space when equipped with the Hausdorff metric, we may extract
a subsequence which converges to a non-empty compact set E ⊆ [0, 1]d which is, by
definition, a very weak tangent to K. The containment outlined above implies that
K̂ ⊆ E by the following elementary lemma, the proof of which we leave to the reader.

Lemma 3.4. Let Ek, Fk ⊆ [0, 1]d be sequences of non-empty compact sets which
converge in the Hausdorff metric to compact sets E and F respectively. If Fk ⊆ Ek
for all k, then F ⊆ E.

We are now ready to prove the lower bound for Assouad dimension.

Proof. Standard results on the box dimensions of product sets [F, Chapter 7]
and of self-similar sets [F, Chapter 9] imply that

dimB K̂ = dimB π1K +
d∑
l=2

dimBKl

=
logN

log n1

+
d∑
l=2

log max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl
.
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Therefore using Proposition 3.2 and monotonicity of Assouad dimension we obtain

dimAK > dimAE > dimA K̂ > dimB K̂

=
logN

log n1

+
d∑
l=2

log max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl

giving us our required lower bound. �

3.4. Lower bound for lower dimension. For the lower bound we closely
follow the method used for the upper bound of the Assouad dimension, although
there are some notable differences in this case. We start by stating and proving a
proposition similar to Proposition 3.1, which is again inspired by [BG].

Proposition 3.5. Suppose there exists a Borel probability measure ν on DN

and constants C > 0 and s > 0 such that for any 0 < r < R 6 1 and ω ∈ DN we
have

ν (Q(ω,R))

ν (Q(ω, r))
> C

(
R

r

)s
.

Then dimLK > s.

Proof. Given 0 < r < R 6 1, we choose an approximate cube Q(ω,R) and
as before we consider the approximate cubes of side length r which are subsets of
Q(ω,R). Let Nr,ω be the number of such approximate cubes (ones with side length
r) and choose a representative set of centres {ωi}i=1,...,Nr,ω

, one for each of the smaller
approximate cubes. For all i = 1, . . . , Nr,ω our scaling assumption yields

ν (Q(ω,R)) = ν (Q(ωi, R)) > C

(
R

r

)s
ν (Q(ωi, r)) .

We also have

ν (Q(ω,R)) 6
Nr,ω∑
i=1

ν (Q(ωi, r)) 6 Nr,ω max
i=1,...,Nr,ω

ν (Q(ωi, r)) .

Therefore we obtain

Nr,ω > C

(
R

r

)s
by picking i in the first part to be the same as the one used for the maximum in the
second part. We have shown that every geometric approximate cube of side length R
must contain at least C(R/r)s geometric approximate cubes of side length r. Since
the intersection of K with any ball B(x,R) centred in K contains an approximate
cube of side length R/(nd

√
d), it must contain at least

C

(
R/(nd

√
d)

r

)s

approximate cubes of side length r for any r < R/(nd
√
d). Any open set of diameter

r can intersect no more than 2d of these approximate cubes of side length r and so

Nr(B(x,R) ∩K) >
1

2d
C

(
R/(nd

√
d)

r

)s

=
1

2d nsd d
s/2

C

(
R

r

)s
.
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To be precise, we should also deal with scales r where R/(nd
√
d) 6 r < R, but this

range is trivial since

Nr(B(x,R) ∩K) > 1 >
1

nsd d
s/2

(
R

r

)s
and so dimLK > s, as required. �

Now we can complete the proof of the lower bound by estimating the measure of
approximate cubes as we did when finding the upper bound for Assouad dimension,
again letting µ be the coordinate uniform measure.

Proof. Using the formula for the measure of an approximate cube (3.1) we have

µ̃(Q(ω,R))

µ̃(Q(ω, r))
=

∏d
l=1

∏kl(R)−1
j=0 pl(σ

jω)∏d
l=1

∏kl(r)−1
j=0 pl(σjω)

=
d∏
l=1

kl(r)−1∏
j=kl(R)

1

pl(σjω)

>

k1(r)−1∏
j=k1(R)

N

 d∏
l=2

kl(r)−1∏
j=kl(R)

min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)


= Nk1(r)−k1(R)

(
d∏
l=2

min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)
kl(r)−kl(R)

)

> N logR/ logn1−log r/ logn1−1

(
d∏
l=2

min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)
logR/ lognl−log r/ lognl−1

)

> N log(R/r)/ logn1n−11

(
d∏
l=2

min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)
log(R/r)/ lognl n−1l

)

= (n1 × · · · × nd)−1
(
R

r

) logN

log n1


d∏
l=2

(
R

r

) log min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl



> n−dd

(
R

r

) logN

log n1

+
d∑
l=2

log min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl
.

This estimate combined with Proposition 3.5 gives us the required lower bound. �

3.5. Upper bound for lower dimension. The upper bound for lower di-
mension is similar to the lower bound for Assouad dimension given in Section 3.3.
However, there is a complication due to the fact that the monotonicity argument
given at the end of the proof does not apply. This is for two reasons: the lower
dimension is not monotone, and the inclusion between the ‘good’ product set K̂ and
the genuine very weak tangent E goes the wrong way for estimating dimension.

We begin by building a very weak tangent to K, just as we did in Section 3.3.
Choose i(l) = (i(l)1, . . . , i(l)d) ∈ D for l = 2, . . . , d to be an element of D which gives
us the minimum value for N(i1, . . . , il−1) and once again if there are multiple choices
for such minimising elements, then choose one arbitrarily. Let K̂ be defined as the
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following product of sets:

K̂ = π1K ×
d∏
l=2

Kl

where Kl is the Cantor set (or unit interval or single point) obtained by the IFS{
Sl,1(x) =

x+ jl,1
nl

, . . . , Sl,N(i1,...,il−1)(x) =
x+ jl,N(i1,...,il−1)

nl

}
acting on [0, 1] such that jl,k is the lth element of some jk ∈ D where for all k =
1, . . . , N(i1, . . . , il−1), the first l − 1 coordinates of jk coincide with the first l − 1

coordinates of i(l). For the moment we assume that K̂ ∩ (0, 1)d 6= ∅.
It can be shown using the same argument as in Section 3.3 that K has a very

weak tangent E which contains K̂ as a subset. Closer inspection of the proof in
Section 3.3 reveals that points in E which are not in K̂ must lie on the boundary of
the unit cube. We record this important fact for later. Again, it follows from standard
results on the box dimensions of product sets [F, Chapter 7] and of self-similar sets
[F, Chapter 9] that

dimB K̂ = dimB π1K +
d∑
l=2

dimBKl =
logN

log n1

+
d∑
l=2

log min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl
.

Unfortunately, it is easy to construct examples of sets F with very weak tangents
F̂ which satisfy dimL F > dimL F̂ ; the opposite of what we want. The reason for
this is that sets with isolated points have lower dimension zero and it is possible for
a very weak tangent to a set to have isolated points even if the original set did not.
However, it turns out that (with mild additional assumptions) dimL F 6 dimBF̂ ,
which is sufficient in our setting.

Proposition 3.6. Let F ⊆ [0, 1]d be compact and suppose that F̂ is a very weak
tangent to F in the sense of Proposition 3.2 (with X = [0, 1]d). If F̂ ∩ (0, 1)d 6= ∅,
then dimL F 6 dimBF̂ .

Proof. Let α < dimL F be arbitrary. Let ŷ ∈ F̂ ∩ (0, 1)d and fix a constant t > 0

such that B(ŷ, 2t) ⊆ (0, 1)d. Let r > 0 be small and let {Ui}i be an r-cover of F̂
by open balls. Let k be sufficiently large to guarantee that dH(F̂ , Tk(F ) ∩ [0, 1]d) <
min{r, t}. It follows that there exists y ∈ Tk(F ) ∩ [0, 1]d such that B(y, t) ⊆ (0, 1)d

and also that, writing U ′i for the open ball centered at the same point as Ui but with
twice the radius, {U ′i}i is a 2r-cover of Tk(F )∩ [0, 1]d. The bi-Lipschitz condition on
Tk implies that

B(T−1k (y), b−1k t) ∩ F ⊆ T−1k (B(y, t)) ∩ F ⊆ T−1k ([0, 1]d) ∩ F = T−1k (Tk(F ) ∩ [0, 1]d)

and that {T−1k (U ′i)}i is a 2a−1k r-cover of every set in the above chain, in particular
B(T−1k (y), b−1k t) ∩ F . Therefore by the definition of lower dimension the number of
sets in the original cover cannot be fewer than

C

(
b−1k t

2a−1k r

)α
> C (2C0)

−αtα r−α

where C is a constant depending only on α coming straight from the definition of
lower dimension. This demonstrates that dimBF̂ > α, which proves the result since
α < dimL F was arbitrary. �
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Finally, we have to deal with the fact that K̂ is a subset of a very weak tangent
E and so the dimension estimate goes the wrong way. This is easily handled by the
following simple lemma.

Lemma 3.7. Suppose F̂ is a very weak tangent to a non-empty compact set
F ⊆ [0, 1]d in the sense of Proposition 3.2 (with X = [0, 1]d). Let X ′ ⊆ [0, 1]d be
a closed hypercube which is the image of [0, 1]d under a similarity S and such that
X ′ ∩ F̂ 6= ∅. Then S−1(X ′ ∩ F̂ ) is also a very weak tangent to F .

Proof. This follows immediately from the definition using the sequence of maps
S ◦ Tk, where Tk is the sequence of bi-Lipschitz maps used in demonstrating that F̂
is a very weak tangent. �

We can now complete the proof. Let X ′ ⊆ (0, 1)d be a closed hypercube which is
the image of [0, 1]d under a similarity S and such that dimBS

−1(X ′ ∩E) = dimB K̂

and S−1(X ′ ∩ E) ∩ (0, 1)d 6= ∅. We can do this since E ∩ (0, 1)d = K̂ ∩ (0, 1)d 6= ∅.
Then it follows from Lemma 3.7 that S−1(X ′ ∩ E) is a very weak tangent to K and
then Proposition 3.6 yields

dimLK 6 dimBS
−1(X ′ ∩ E) = dimB K̂ =

logN

log n1

+
d∑
l=2

log min
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

log nl

as required.
It only remains to deal with the case where K̂∩(0, 1)d = ∅. This can be dealt with

via a simple approximation argument and we just sketch the ideas, leaving the details
to the interested reader. Consider the iterated sets Dk for large k ∈ N and associate
the natural k-fold iteration of the original IFS, which has the same attractor, K.
Given any ε > 0, one may choose k sufficiently large such that there exists a choice
of i(l)′ = (i(l)′1, . . . , i(l)

′
d) ∈ Dk for l = 2, . . . , d such that the tangent constructed by

the method outlined above will have box dimension no more than ε larger than the
target upper bound and also intersects the interior of the unit hypercube. One then
follows the above proof and then lets ε tend to zero. Note that the ability to do this
is reliant on our assumption that K does not lie in a hyperplane, but we recall that
this assumption was made without loss of generality.

One possible way of choosing the i(l)′ would be to first choose i(l) ∈ D as before,
i.e., to yield a very weak tangent with optimal dimension, L, (but which may lie on
the boundary of the unit hypercube) and also choose j ∈ Dd which corresponds to
a hypercuboid which does not touch the boundary of the unit cube (such a point
j ∈ Dd must exist or else K lies in a hyperplane). Then choose i(l)′ = ji(l)k−d for
large k > d. A short and pleasant calculation yields that, for example,

N(i(l)′1, . . . , i(l)
′
l−1) 6 N(i(l)1, . . . , i(l)l−1)

k−dndl

where we abuse notation slightly by also using N for the analogous function for the
iterated IFS. These choices of i(l)′ clearly yield a very weak tangent which does not
lie on the boundary of [0, 1]d and one may bound its box dimension by

logNk

log nk1
+

d∑
l=2

logN(i(l)′1, . . . , i(l)
′
l−1)

log nkl

6
logN

log n1

+
d∑
l=2

(
(k − d) logN(i(l)1, . . . , i(l)l−1)

k log nl
+
d

k

)
6 L+

d(d− 1)

k
6 L+ ε
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provided k > d(d− 1)/ε.

3.6. Sharpness of the coordinate uniform measure. This proof follows
easily from [O1, Proposition 6.2.1], stated below in our notation.

Proposition 3.8. (Olsen) Let ω ∈ DN and k ∈ N.
1. If the VSSC is satisfied, then B

(
τ(ω), 2−1n−k1

)
∩K ⊆ τ

(
Q
(
ω, n−k1

))
.

2. τ
(
Q
(
ω, 1/nk1

))
⊆ B

(
τ(ω), (n1 + · · ·+ nd)n

−k
1

)
.

Throughout this section we assume the VSSC is satisfied which, among other
things, implies that τ is injective and that µ(τ(Q(ω, r))) = µ̃(Q(ω, r)). In Sections 3.2
and 3.4 we have already proved that µ is ‘sharp’ for approximate squares in that for
all ω ∈ DN and 0 < r < R 6 1 we have

n−dd

(
R

r

)dimLK

6
µ(τ(Q(ω,R)))

µ(τ(Q(ω, r)))
6 ndd

(
R

r

)dimAK

.

Fix x ∈ K and let ω ∈ DN be such that τ(ω) = x. Also fix 0 < r < R 6 2−1n−11 and
let

R′ = inf
k∈N

{
2−1n−k1 : 2−1n−k1 > R

}
and

r′ = sup
k∈N

{
(n1 + · · ·+ nd)n

−k
1 : (n1 + · · ·+ nd)n

−k
1 6 r

}
and observe that R 6 R′ < n1R and n−11 r < r′ 6 r. The reason for these definitions
is that we may apply Olsen’s proposition to the scales r′ and R′. In particular we
have

µ(B(x,R))

µ(B(x, r))
6
µ(B(x,R′))

µ(B(x, r′))
6

µ(τ(Q(ω, 2R′)))

µ (τ (Q (ω, r′/(n1 + · · ·+ nd))))

6 ndd

(
2(n1 + · · ·+ nd)R

′

r′

)dimAK

6 ndd (2(n1 + · · ·+ nd)n
2
1)

dimAK

(
R

r

)dimAK

which is sufficient, setting C1 = ndd (2(n1 + · · · + nd)n
2
1)

dimAK . The lower scaling
estimate concerning lower dimension is proved similarly and omitted.

4. Further discussion and examples

In this section we will provide examples to illustrate several interesting aspects
of the dimension theory of sponges and we will discuss our results along the way. We
will finish with some open questions.

4.1. Worked example. Here we consider a basic example of a Bedford–
McMullen sponge K where d = 3 as this is easier to visualise. Let n1 = 2, n2 = 3,
n3 = 4 and consider the sponge K generated by

D = {(0, 0, 0), (0, 0, 3), (0, 1, 2), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0),
(1, 2, 2), (1, 2, 3)}.

For this sponge we have N = 2,
maxN(i1) = 3

maxN(i1, i2) = 3

minN(i1) = 2

minN(i1, i2) = 1.



Assouad type dimensions for self-affine sponges 167

So, by Theorem 2.1,

dimAK =
log 2

log 2
+

log 3

log 3
+

log 3

log 4
= 2 +

log 3

log 4
≈ 2.792

and
dimLK =

log 2

log 2
+

log 2

log 3
+

log 1

log 4
= 1 +

log 2

log 3
≈ 1.631.

We can also use the formulae for the box and Hausdorff dimensions (discussed in
Section 4.4), proved by Kenyon and Peres [KP], to get

dimBK =
log 2

log 2
+

log (5/2)

log 3
+

log (10/5)

log 4
= 1 +

log (5/2)

log 3
+

log 2

log 4
≈ 2.3340

and

dimHK = log2[(2
log 3/ log 4 + 1)log 2/ log 3 + (2× 3log 3/ log 4 + 1)log 2/ log 3] ≈ 2.296.

We will compare these formulae in Section 4.4, for now we simply remark that
dimLK < dimHK < dimBK < dimAK holds for this example.

The coordinate uniform measure for this example is given by weights:

p(0,0,0) =
1

2× 2× 2
=

1

8

p(0,0,3) =
1

2× 2× 2
=

1

8

p(0,1,2) =
1

2× 2× 1
=

1

4

p(1,0,2) =
1

2× 3× 1
=

1

6

p(1,1,0) =
1

2× 3× 3
=

1

18

p(1,1,1) =
1

2× 3× 3
=

1

18

p(1,1,2) =
1

2× 3× 3
=

1

18

p(1,2,0) =
1

2× 3× 3
=

1

18

p(1,2,2) =
1

2× 3× 3
=

1

18

p(1,2,3) =
1

2× 3× 3
=

1

18
,

and the i(l) used in the proof of the lower bound for the Assouad dimension can be,
for example,

i(2) = (1, 1, 1)

i(3) = (1, 2, 2).

Therefore K̂ = [0, 1]× [0, 1]×K3 where K3 is the Cantor set defined by the IFS{
S3,1(x) =

x

4
, S3,2(x) =

x+ 2

4
, S3,3(x) =

x+ 3

4

}
.

We recall that K̂ is not necessarily a very weak tangent to K but is a subset of a
very weak tangent, see the discussion towards the end of Section 3.3. One can find
similar examples for the lower dimension, but we leave this to the reader.

4.2. A self-affine carpet with no doubling Bernoulli measures. In this
section we provide a simple, self-contained example of a self-affine carpet which does
not carry a doubling Bernoulli measure. Such examples were given previously by Li,
Wei and Wen [LWW], but we include an example here for completeness.

Let d = 2, n1 = 2, n2 = 4 and

D = {(0, 1), (1, 1), (1, 3)}.
For a given probability vector {p(0,1), p(1,1), p(1,3)}, let µ be the associated Bernoulli
measure supported on K and µ̃ the Bernoulli measure on DN. Observe that each
of the three probabilities must be strictly positive in order to fulfill the requirement
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that the support of µ is K. We claim that there is no choice of probabilities for which
µ is doubling.

Figure 3. A self-affine carpet with no doubling Bernoulli measures.

Fix a strictly positive probability vector. Observe that it is sufficient to find a
sequence of triples (ω, ω′, R) ∈ DN×DN×(0, 1] such that τ(Q(ω,R)) and τ(Q(ω′, R))
do not coincide, but are ‘neighbours’ in in that the natural hypercuboids containing
them intersect along an edge, and such that

µ̃(Q(ω,R))

µ̃(Q(ω′, R))

does not remain bounded away from zero and infinity. To see why this is sufficient
observe that for such a triple it is possible to place a point x ∈ τ(Q(ω,R)) such that
B(x,R/5) ∩ K ⊆ τ(Q(ω,R)) (and with B(x,R/5) lying inside the interior of the
natural hypercuboid containing τ(Q(ω,R)) so that this is the only contribution to
its measure) and B(x, 9R) ⊇ τ(Q(ω,R)) ∪ τ(Q(ω′, R)) and similarly with the roles
of ω and ω′ changed.

For large k ∈ N, let R = 4−k and observe that k1(R) = 2k and k2(R) = k. First
consider

ω =

(0, 1), . . . , (0, 1)︸ ︷︷ ︸
k times

, (0, 1), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
k−1 times

, . . .


and

ω′ =

(0, 1), . . . , (0, 1)︸ ︷︷ ︸
k times

, (1, 1), (0, 1), . . . , (0, 1)︸ ︷︷ ︸
k−1 times

, . . .

 .

It is easy to see that the right hand edge of τ(Q(ω,R)) and the left hand edge of
τ(Q(ω′, R)) are in common. Moreover, using (3.1) we see that

µ̃(Q(ω,R))

µ̃(Q(ω′, R))
=
pk+1
(0,1)(p(1,1) + p(1,3))

k−1

p2k−1(0,1) (p(1,1) + p(1,3))
=

(
p(1,1) + p(1,3)

p(0,1)

)k−2
.

For this expression to remain bounded away from zero and infinity for all k, we must
have p(0,1) = p(1,1) + p(1,3), which we will assume from now on. Now consider the
words
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ω =

(0, 1), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
2k−1 times

, . . .


and

ω′ =

(1, 1), (0, 1), . . . , (0, 1)︸ ︷︷ ︸
2k−1 times

, . . .

 .

Again, it is easy to see that the right hand edge of τ(Q(ω,R)) and the left hand edge
of τ(Q(ω′, R)) are in common. Moreover, using (3.1) we see that

µ̃(Q(ω,R))

µ̃(Q(ω′, R))
=
p(0,1)(p(1,1) + p(1,3))

2k−1
(

p(1,1)
p(1,1)+p(1,3)

)k−1
(p(1,1) + p(1,3))p

2k−1
(0,1)

(
p(1,1)

p(1,1)+p(1,3)

) =

(
p(1,1)

p(1,1) + p(1,3)

)k−2
.

However, for this expression to remain bounded away from zero and infinity for all
k, we must have p(1,1) = p(1,1)+p(1,3), which forces p(1,3) = 0 which is forbidden. This
completes the proof.

4.3. A self-affine sponge without strictly increasing (nl). Now we will
calculate the Assouad, lower, Hausdorff and box dimensions of a Bedford–McMullen
sponge in R3 where n2 = n3. We cannot use our formulae for such a set so we will
have to use different techniques to find the Assouad and lower dimensions.

Let n1 = 3 and n2 = n3 = 4 and consider the sponge K defined by

D = {(0, 0, 0), (0, 3, 0), (0, 3, 1), (0, 3, 2), (0, 3, 3), (2, 0, 0), (2, 3, 0), (2, 3, 1),
(2, 3, 2), (2, 3, 3)}.

For this example the sponge can be viewed as the product of the middle 3rd Cantor
set E (in the first coordinate) and a self-similar set F generated by 5 maps with
similarity ratio 1/4 (in second and third coordinates). The following figure can help
illustrate this.

Figure 4. A sponge for which our formulae do not hold.

Since we can write this set as a product of two self-similar sets the dimension
of the sponge is equal to the sum of the dimensions of the product sets [Fr2, Theo-
rem 2.1], i.e.,

dimAK = dimLK = dimHK = dimBK = dimBE + dimB F.
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So for this example the actual dimensions are

dimAK = dimLK =
log 2

log 3
+

log 5

log 4
≈ 1.792,

but using the formulae we obtain in this paper we would get a value of
log 2

log 3
+

log 2

log 4
+

log 4

log 4
≈ 2.131,

for the Assouad dimension and
log 2

log 3
+

log 2

log 4
+

log 1

log 4
≈ 1.131

for the lower dimension, which are incorrect. Interestingly, the dimension formulae
for Hausdorff and box dimension do remain valid even in the case when nl = nl+1 for
some l, see [O1, Corollary 4.1.2].

This example demonstrates a type of ‘discontinuity’ present for the Assouad
and lower dimensions, which is not present for the Hausdorff and box dimensions.
Since the parameter space is discrete for our class of self-affine sponges it is a little
misleading to talk about discontinuity, but we observe that a genuine discontinuity
in the same spirit is already apparent in the planar case. We will illustrate this by
example. Fix λ ∈ (0, 1/2] and consider the IFS acting on the square consisting of the
three maps

T1(x, y) = (x/2, λy), T2(x, y) = (x/2+1/2, λy), and T3(x, y) = (x/2+1/2, λy+1−λ).

For λ ∈ (0, 1/2), the attractor of this IFS is a self-affine carpet of the type considered
by Lalley and Gatzouras [GL] and for λ = 1/2 it is the self-similar Sierpiński triangle.
To emphasise the dependence on λ we denote the attractor by Fλ.

Figure 5. Plots of Fλ for λ equal to 1/4, 2/5 and 1/2 respectively.

Using previously known formulae for the box, Hausdorff, Assouad, and lower
dimensions, we obtain the following: for λ ∈ (0, 1/2) we have

dimL Fλ = 1, dimH Fλ =
log
(
1 + 2− log 2/ log λ

)
log 2

,

dimB Fλ = 1 +
log(3/2)

− log λ
, dimA Fλ = 1 +

log 2

− log λ

using results from [GL] and [M, Fr2]; and for λ = 1/2 we have

dimA Fλ = dimL Fλ = dimH Fλ = dimB Fλ =
log 3

log 2
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using the self-similarity of F1/2. One then observes that the function λ 7→ dimFλ is
continuous for the box and Hausdorff dimensions but discontinuous at λ = 1/2 for
Assouad and lower dimensions. As far as we know this type of discontinuity has not
been observed before, although the dimension formulae used above were previously
known.

Figure 6. A plot of dimL Fλ, dimH Fλ, dimB Fλ and dimA Fλ for λ ∈ (0, 1/2].

4.4. Extension of Mackay’s dichotomy for dimension. Mackay [M] ob-
served a pleasant dichotomy for the dimensions of the planar self-affine carpets. In
particular, he noted that either the Assouad, box and Hausdorff dimensions are all
equal or all distinct. This dichotomy was extended to include the lower dimension
by Fraser [Fr2]. In this section we show that this dichotomy extends to sponges.

We say a sponge has uniform fibres if for all l = 1, . . . , d− 1 we have

N(i1, . . . , il) = N(j1, . . . , jl)

for all (i1, . . . , il), (j1, . . . , jl) ∈ Dl. It follows immediately from Theorem 2.1 that if
a sponge has uniform fibres, then the lower, Hausdorff, box and Assouad dimensions
are all equal. Kenyon and Peres [KP, Proposition 1.3 (ii)] showed that the box and
Hausdorff dimensions coincide if and only if the sponge has uniform fibres. This
means that to prove the extension of Mackay’s dichotomy, we must only show that
if the fibres are not uniform, then the box and Assouad dimensions are distinct and
the lower and Hausdorff dimensions are distinct.

Kenyon’s and Peres’ [KP] formula for the box dimension of a sponge is

dimBK =
logN

log n1

+
d∑
l=2

1

log nl
log

(
|Dl|
|Dl−1|

)
.

Since, for any l = 2, . . . , d, we have

|Dl| =
∑

(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1)

we observe that
|Dl|
|Dl−1|

6 max
(i1,...,il−1)∈Dl−1

N(i1, . . . , il−1).
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Comparing the formulae for the box dimension and the Assouad dimension we see
that for the two to be equal we must have equality above for all l = 2, . . . , d, which
can only happen in the uniform fibres case.

The Hausdorff-lower dimension case is slightly more involved, simply due to the
more complicated formula for Hausdorff dimension which we take from [KP]. This
is defined inductively as follows. For all (i1, . . . , id) ∈ D, let Zd(i1, . . . , id) = 1. For
(i1, . . . , il−1) ∈ Dl−1, assuming we have defined Zl(i1, . . . , il) for all (i1, . . . , il) ∈ Dl

and setting nd+1 = nd, we let

Zl−1(i1, . . . , il−1) =
∑

il : (i1,...,il)∈Dl

Zl(i1, . . . , il)
lognl/ lognl+1

Finally

dimHK =
logZ0

log n1

.

In order to compare the Hausdorff dimension and the lower dimension, we de-
fine analogous quantities Z ′l(i1, . . . , il) inductively by first setting Z ′d(i1, . . . , id) = 1
and then, for (i1, . . . , il−1) ∈ Dl−1, assuming we have defined Z ′l(j1, . . . , jl) for all
(j1, . . . , jl) ∈ Dl, by letting

Z ′l−1(i1, . . . , il−1) = N(i1, . . . , il−1) min
(j1,...,jl)∈Dl

Z ′l(j1, . . . , jl)
lognl/ lognl+1 .

It is easily checked that for all l = 1, . . . , d and (i1, . . . , il) ∈ Dl one has Zl(i1, . . . , il) >
Z ′l(i1, . . . , il) and, moreover, that

dimLK =
logZ ′0
log n1

.

Now suppose K does not have uniform fibres. Then there exists a uniquely defined
t ∈ {1, . . . , d − 1} such that N(i1, . . . , it) is not constant in (i1, . . . , it) ∈ Dt but
N(i1, . . . , il) is constant in (i1, . . . , il) ∈ Dl for all l > t with l < d. It follows from
the above definitions that

Zl(i1, . . . , il) = Z ′l(i1, . . . , il)

and is constant in (i1, . . . , il) ∈ Dl provided l > t. We also have

Zt(i1, . . . , it) = Z ′t(i1, . . . , it)

but this is not constant in (i1, . . . , it) ∈ Dt. This guarantees that

Zt−1(i1, . . . , it−1) > Z ′t−1(i1, . . . , it−1)

for some (i1, . . . , it−1) ∈ Dt−1. Since the Zl(i1, . . . , il) are strictly increasing as func-
tions of the corresponding Zl+1(i1, . . . , il+1), this guarantees that Z0 > Z ′0 and there-
fore that the Hausdorff and lower dimensions are distinct.

4.5. Open questions. To conclude we will recapitulate some of the open
questions that we find particularly interesting. Theorem 2.3 demonstrates that there
are sharp measures supported on sponges in the VSSC case. Finding sharp measures
in the general case is a more complicated problem because the simple class of Bernoulli
measures is of no use, see Section 4.2 and [LWW].

Question 4.1. Can one always find sharp measures for sponges (or carpets),
even when the VSSC is not satisfied?
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It is also curious at first sight that our formulae for the Assouad and lower
dimensions are only valid when the nl are strictly increasing, but that the formulae
for box and Hausdorff dimensions do remain valid in this case. The non-strictly
increasing case has potential for further investigation.

Question 4.2. What are the Assouad and lower dimensions of a sponge when
nl = nl+1 for some l?

It is also very natural to consider more general self-affine sets. We see no sig-
nificant roadblock in extending our arguments to the natural higher dimensional
analogue of Lalley–Gatzouras carpets, assuming the appropriate version of strictly
increasing nl. The extension of the Barański class could be rather more difficult and
we believe there will be several different cases to consider. Also the carpets of Feng–
Wang and Fraser would be interesting to study but as discussed in [Fr2] we need to
develop new tools which do not rely on approximate squares or cubes in this setting.
Indeed, the Assouad and lower dimensions are not known for these carpets even in
the planar case. We also point out that the box and Hausdorff dimensions are not
known in the higher dimensional setting beyond the sponge case considered in this
paper and in [KP, O1], so there is plenty to think about here.

Question 4.3. What are the dimensions of the natural higher dimensional ana-
logues of the more general carpets considered by Lalley–Gatzouras [GL], Barański
[B], Feng–Wang [FW] and Fraser [Fr1]?
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