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Abstract. We prove the well-posedness of a Riemann–Hilbert problem on d-regular quasidisks,

with boundary data in a class of Besov spaces.

1. Introduction

Given a domain in the plane and a function defined on its boundary, a special
case of the Riemann–Hilbert problem sometimes called the “jump problem” is to find
holomorphic functions in the inside and the outside the domain whose difference of
the boundary values is equal to that given function, on the boundary of the domain.
To show the well-posedness of this problem amounts to proving the existence, the
uniqueness and the continuous dependence on the data of the solution. As is well-
known, a quasidisk Ω is the image of the unit disk under a planar quasiconformal
mapping. The boundary of Ω , i.e. a quasicircle, is in general quite a rough fractal
set which may not be rectifiable. This issue causes problems in dealing with bound-
ary value problems in potential theory when the boundary data needs to belong
to a suitable space defined on the rough boundary. For the case of the so called
Weil–Petersson-class (or WP-class) quasicircles, Radnell, Schippers and Staubach
demonstrated in [6] that the aforementioned quasicircles are rectifiable and that the
corresponding quasidisk is a chord-arc domain. This enabled us to use Semmes’ con-
struction of the solution to the Riemann boundary value problem in [7], to show
the well-posedness of the Riemann boundary value problem on WP-class quasicircles
with initial data in a certain conformally invariant Besov space.

In this paper we establish the well-posedness of the aforementioned boundary
value problem on what we call d-quasidisks, with boundary data in an appropriate
class of Besov spaces. These are quasidisks which have the property that their bound-
aries are d-sets in the sense of Jonsson and Wallin [3, 4, 11]. The notion of Besov
spaces, or the traces of Sobolev spaces, is well-defined on these sets. Although the
Cauchy integral doesn’t make sense directly on these sets, using Cauchy–Pompeiu’s
formula one can still get a solution to the boundary value problem with desired
properties.

Notational convention. In this paper we shall denote all generic constants by
C, even if the values of C might change from line to line.
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2. The analysis of the Riemann boundary value problem

2.1. Sobolev and Besov spaces on d-quasidisks. In what follows, we will
use the following conventions for notation of domains. Let Γ be a quasicircle in
C. We will always assume ∞ /∈ Γ; we denote the bounded component of C\Γ by
Ω+ and the unbounded component by Ω−. In order to solve Riemann’s boundary
value problem, we need some machinery from geometric measure theory and theory
of function spaces on rough domains which we shall briefly review below.

Let Ω be an open connected domain in the plane. For 1 < p < ∞, one denotes
by W 1,p(Ω) the Sobolev space of complex valued functions in Lp(Ω) with

(2.1) ‖h‖W 1,p(Ω) := {‖h‖pLp(Ω) + ‖h′‖pLp(Ω) + ‖h
′
‖pLp(Ω)}

1

p <∞,

where the derivations are in the sense of distributions. In case Ω is a domain that
contains ∞, then we say h ∈ W 1,p(Ω) if h|Ω\{∞} ∈ W 1,p(Ω \ {∞}), according to

the above definition. One can also define the homogeneous Sobolev space Ẇ 1,p(Ω)
consisting of functions h for which

(2.2) ‖h‖Ẇ 1,p(Ω) := {‖h′‖pLp(Ω) + ‖h
′
‖pLp(Ω)}

1

p <∞.

Theorem 2.1. Let Ω+ be a quasidisk and Ω− be its complement containing ∞.

Then the following statements hold:

(1) If h is a complex harmonic function in Ω+ and h ∈ Ẇ 1,p(Ω+) for 2 ≤ p <∞,

then h ∈ W 1,p(Ω+).

(2) If h is a complex harmonic function in Ω−, h(∞) = 0 and h ∈ Ẇ 1,p(Ω−) for

2 < p <∞, then h ∈ W 1,p(Ω−).

Proof. Since Ω± are simply connected, any complex harmonic function can be
written as a sum of a holomorphic and an anti-holomorphic function. Therefore it is
enough to prove the claim for holomorphic functions.

It is well-known, using a combination of the results in [8] and [9], that for any
finitely connected Hölder domain Ω with finite area and any z0 in Ω, one has the
analytic Poincaré inequality

(2.3) ‖F − F (z0)‖Lp(Ω) ≤ Cz0‖F
′‖Lp(Ω),

for 2 ≤ p < ∞ and for any F holomorphic in Ω. Since Ω+ and Ω− ∩ B(0, R) (for R
fixed but sufficiently large) are both finite-area, finitely connected Hölder domains
(these are in fact both John domains, which are known to be Hölder domains),
estimate (2.3) is valid for both of these domains.

To prove (1), it is enough to show that h ∈ Lp(Ω+). Choose a point z0 ∈ Ω+.
The Poincaré inequality above yields that for 2 ≤ p < ∞ and h holomorphic in Ω+

and belonging to Ẇ 1,p(Ω+) one has

‖h‖Lp(Ω+) ≤ C‖h− h(z0)‖Lp(Ω+) + C|Ω|
1

p |h(z0)|

≤ C(|h(z0)|+ ‖h′‖Lp(Ω+)) <∞
(2.4)

where |Ω+| denotes the area of Ω+.
To prove (2) we observe that the holomorphicity of h and its vanishing at ∞

imply that h(z) = ψ(z)
z

where ψ is holomorphic and bounded on the set |z| > R,
where R is such that Ω+ ⊂ B(0, R). Therefore, for p > 2, Poincaré’s inequality for
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Ω− ∩ B(0, R) yields that

‖h‖Lp(Ω−) ≤ ‖h‖Lp(Ω−∩B(0,R)) + ‖h‖Lp(C\B(0,R))

≤ C‖h− h(z0)‖Lp(Ω−∩B(0,R)) + C|Ω− ∩B(0, R)|
1

p |h(z0)|

+ C

¨

|z|>R

|z|−p dA(z))

≤ C(|h(z0)|+ ‖h′‖Lp(Ω−∩B(0,R)) + 1),

(2.5)

for h holomorphic in Ω− and any z0 ∈ Ω− ∩B(0, R). This completes the proof of the
theorem. �

Corollary 2.2. If u ∈ Ẇ 1,p(Ω−) is complex harmonic and p ∈ (2,∞), then

u ∈ W 1,p(Ω−) iff u(∞) = 0.

Proof. If u(∞) = 0 then the result follows directly from part (2) of Theorem 2.1.
On the other hand, if u(∞) 6= 0 then there exist r and ε both greater than zero
such that |u(z)| > ε for |z| > r. This would prevent u from being in Lp((Ω−) and
therefore also from belonging to W 1,p(Ω−). �

In order to tackle the problem of boundary values on quasidisks which are not
rectifiable, we need to restrict the class of quasidisks to those that are also so called
d-sets.

Definition 2.3. Let Γ be a Borel set in R
2 and 0 < d ≤ 2. We say that Γ is a

d-regular set (or a d-set for short) if it is bounded and if there is a constant CΓ such
that

(2.6)
1

CΓ
rd ≤ H

d(B(x, r) ∩ Γ) ≤ CΓr
d

for all x ∈ Γ, 0 < r ≤ 1, where H
d denotes the d-dimensional Hausdorff measure.

The 1-regular sets are usually referred to as Ahlfors-regular sets. From this, it
also follows that the Hausdorff dimension dH of an d-regular set is equal to d. For
general quasicircles one has the following basic result due to Gehring and Väisälä [1].

Theorem 2.4. If Ω is a quasidisk in R
2 then ∂Ω has Hausdorff dimension d for

some 1 ≤ d < 2.

The following definition pinpoints the class of quasidisks that are considered in
this paper.

Definition 2.5. We call a quasidisk Ω a d-quasidisk if its boundary ∂Ω is a
d-regular set.

It follows from Theorem 2.4 that for a d-quasidisk one has that d ∈ [1, 2). This
fact will be important for the existence of traces and extensions as we shall see below.

Below we will review some basic facts concerning Besov spaces on d-regular sets.

Definition 2.6. Let Γ ⊂ R
2 be an d-regular set, 0 < d ≤ 2, 1 < p < ∞, and

s ∈ (0, 1). The Besov space Bs
p,p(Γ) consists of all u ∈ Lp(Γ) for which

¨

|x−y|<1

|u(x)− u(y)|p

|x− y|d+ps
dH d(x) dH d(y) <∞.
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The norm of this Besov space is defined by
(2.7)

‖u‖Bs
p,p(Γ) =

{
ˆ

Γ

|u(x)|p dH d(x) +

¨

|x−y|<1

|u(x)− u(y)|p

|x− y|d+ps
dH d(x) dH d(y)

}1/p

.

In the study of the boundary value problems on quasicircles with initial data
in Besov spaces which will be discussed in the next section, one encounters the so
called (ε, δ)-domains which were introduced by Jones [2]. We will not need the exact
definition of (ε, δ)-domains as they are somewhat technical, see [2]. But as was shown
by Jones in [2], quasidisks and their complements are examples of (ε, δ)-domains in
R

2. Jonsson [3, 4], and Jonsson and Wallin [5] showed that if Ω is an (ε, δ) domain
in R

2, whose boundary ∂Ω is an d-regular set, then the elements of W 1,p(Ω) have a
well-defined trace or restriction to ∂Ω. Furthermore, they showed various trace and
extension properties for Sobolev and Besov space functions on (ε, δ)-domains whose
boundary is a d-set. Here we only need the following special case of the results in
[11], originally proven for (ε, δ)-domains with d-regular boundary.

Theorem 2.7. Let Γ be the common boundary of a d-quasidisk Ω+ and its

complement Ω−. Then any function f ∈ B
1− 2−d

p
p,p (Γ) can be extended to a function

F ∈ W 1,p(C) in such a way that the limit

(2.8) F̃ (z) := lim
r→0

1

πr2

¨

B(z,r)

F (ζ) dA(ζ)

exists and F̃ (z) = f(z) for almost every z ∈ Γ. Furthermore, F |Ω± ∈ W 1,p(Ω±) and

if Ω±(z, r) := Ω± ∩ B(z, r) and

(2.9) F±(z) := lim
r→0

1

|Ω±(z, r)|

¨

Ω±(z,r)

F (ζ) dA(ζ)

are the boundary values of the restrictions of F to Ω±, then F±(z) = F̃ (z) = f(z)
(once again for almost all z ∈ Γ). Moreover, ‖F |Ω±‖W 1,p(Ω±) ≤ C‖f‖

B
1−

2−d
p

p,p (Γ)
.

Thus the limit defining the boundary trace does not depend whether the ap-
proaching region is Ω+ or its complement Ω−.

2.2. Well-posedness of the jump problem on d-quasidisks. In this sub-
section, we show that the jump problem is solvable on d-quasidisks with boundary

values in B
1− 2−d

p
p,p (Γ), with p > 2, where d is the regularity of the quasidisk. The

solution is unique and depends continuously on the boundary data. The boundary of
a d-quasidisk is in general not rectifiable, so Cauchy integrals will not make sense on
general d-quasicircles. The wellposedness of the Riemann boundary value problem
on rectifiable 1-quasidisks has been carried out in [6].

Thus we need to find a suitable substitute for the Cauchy integral. Given a

d-quasidisk Ω+ bounded by a quasicircle Γ and a function f ∈ B
1− 2−d

p
p,p (Γ) with an

extension F in W 1,p(C) (which exists by Theorem 2.7), using Cauchy–Pompeiu’s
formula one defines the Cauchy operator J(Γ) by

(2.10) J(Γ)f(z) := F (z)χΩ+(z) +
1

π

¨

Ω+

∂F (ζ)

ζ − z
dA(ζ), z ∈ C \ Γ,

where χΩ+ denotes the characteristic function of the closure of Ω+. We will see
that this definition is independent of the choice of the extension F , by the estimate
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(2.12) below, and the proof of the uniqueness part of Theorem 2.8. We will also need
estimates for a certain integral operator that appears frequently in function theory.
Given a domain Ω in the plane, this operator is defined by

(2.11) TΩϕ(z) =

¨

Ω

ϕ(ζ)

ζ − z
dA(ζ).

The fact of particular interest to us in this context is that for a pair of complementary
domains Ω+ and Ω−, in the plane, one has for 1 < p <∞ that

(2.12) ‖TΩ+ϕ‖Ẇ 1,p(Ω±) ≤ C‖ϕ‖Lp(Ω+).

This is a direct consequence of the facts that ∂(TΩ+ϕ)(z) = P.V.
˜

Ω+

ϕ(ζ)
(ζ−z)2

dA(ζ),

which is the Beurling transform of ϕχΩ+ , and ∂(TΩ+ϕ)(z) = −πϕ(z)χΩ+(z). Both
derivatives here are in the sense of distributions. Now since the Beurling transform

Bϕ(z) := P.V.
˜

C

ϕ(ζ)
(ζ−z)2

dA(ζ) is a Calderón–Zygmund singular integral operator,

it is well-known that B is bounded on Lp(C) for 1 < p < ∞. The estimate (2.12)
follows easily from these facts and the definition of the norm in (2.2).

Now we have all the ingredients to state and solve the following Riemann bound-

ary value problem:

Theorem 2.8. Let Ω+ be a d−quasidisk as above and let f ∈ B
1− 2−d

p
p,p (Γ), with

p > 2. Let Ω− denote the complement of the closure of Ω+ in the Riemann sphere.

Then there exist functions u± ∈ Ẇ 1,p(Ω±) with boundary values equal to f± on

Ω±, such that f+(w) − f−(w) = f(w) for almost all w ∈ Γ. Moreover the solutions

u± depend continuously on f . Finally, given two different solutions u± and v± of

f ∈ B
1− 2−d

p
p,p (Γ), the difference u+ − v+ = u− − v− is a constant.

Proof. The proof will be divided in the following four steps:

1. Existence of the solution. We use Theorem 2.7 to extend f to a function in
W 1,p(C) and then using (2.10), we claim that the solution to the boundary value
problem is given by

u± = (J(Γ)f)|Ω±.

Let us first show that J(Γ)f(z) is holomorphic in Ω+ and Ω−. To see this, we observe
that

˜

Ω+ |∂F (ζ)| dA(ζ) < ∞, which follows from the fact that for 1 < p < ∞ and
1
p
+ 1

p′
= 1

¨

Ω+

|∂F (ζ)| dA(ζ) ≤ |Ω+|
1

p′

(

¨

Ω+

|∂F (ζ)|p dA(ζ)
)

1

p

≤ C‖F‖W 1,p(C) ≤ C‖f‖
B

1−
2−d
p

p,p (Γ)
<∞,

(2.13)

where the last step is a consequence of Theorem 2.7. Therefore, on Ω+, ∂J(Γ)f(z) =

∂F −∂F = 0, and on Ω−, J(Γ)f(z) = 1
π

˜

Ω+

∂F (ζ)
ζ−z

dA(ζ) which is obviously holomor-

phic on Ω−\{∞}. From the expression (2.10) we also see that J(Γ)f → 0 as z → ∞,
so in fact J(Γ)f is holomorphic in a neighbourhood of ∞.

2. Continuous dependence on the initial datum. Estimates (2.12) for Ω± and
Theorem 2.7 yield

‖u+‖Ẇ 1,p(Ω+) = ‖(J(Γ)f)|Ω+‖Ẇ 1,p(Ω+) ≤ ‖F‖Ẇ 1,p(Ω+) + C‖∂F‖Lp(Ω+)

≤ C‖F‖Ẇ 1,p(Ω+) ≤ C‖f‖
B

1−
2−d
p

p,p (Γ)
,

(2.14)
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‖u−‖Ẇ 1,p(Ω−) = ‖(J(Γ)f)|Ω−‖Ẇ 1,p(Ω−) ≤ C‖∂F‖Lp(Ω+)

≤ C‖F‖Ẇ 1,p(Ω+) ≤ C‖f‖
B

1−
2−d
p

p,p (Γ)
.(2.15)

The estimates (2.14) and (2.15) show the continuous dependence of the solutions
on the initial data f . Moreover by considering u+(z) − u−(∞) instead of u+ and
u−(z)− u−(∞) instead of u− and using Corollary 2.2, we can realize u± as elements
in W 1,p(Ω±), with p > 2.

3. Proof of the jump relation. Since by construction, the function F in the
definition of J(Γ)f in formula (2.10) has the property that ∂F ∈ Lp(C), then the
assumption that p > 2 and a theorem due to Vekua [10, Theorem 1.19, p. 38], yield

that the function
˜

Ω+

∂F (ζ)
ζ−z

dA(ζ) is continuous. Now regarding u± as a function in

W 1,p(Ω±), and using Theorem 2.7 and the notations in the statement of Theorem 2.8,
it is readily seen that the boundary value f+(w) of u+ is given by f+(w) = f(w) +
1
π

˜

Ω+

∂F (ζ)
ζ−w

dA(ζ), with w ∈ Γ. The same reasoning also yields that the boundary

value f−(w) of u− is given by f−(w) =
1
π

˜

Ω+

∂F (ζ)
ζ−w

dA(ζ), w ∈ Γ. Therefore, using the

continuity result of Vekua mentioned above, one obtains the jump relation f+(w)−
f−(w) = f(w) for w ∈ Γ.

4. Uniqueness of the solution. Once again, regarding u± and v± as elements in
W 1,p(Ω±), we observe that the difference between the two jump decompositions with
the same initial data is a function φ(z) which is holomorphic in C \Γ. Moreover, φ’s

restrictions to Ω± belong to Ẇ 1,p(Ω±), and the boundary values given by Theorem 2.7
are related by φ+(z) = φ−(z). Moreover, according to Theorem 2.7 there exists a
function ψ ∈ W 1,p(C) which coincides with φ(z) in Ω− and ψ’s limiting average
according to (2.8) coincides with φ± (defined using (2.9)) almost everywhere on
Γ. The difference φ(z) − ψ(z) := λ(z) vanishes in Ω−, and its restriction to Ω+

belongs to the space W 1,p(Ω+) and λ+(w) = 0 for w ∈ Γ. Therefore, the proof of
Theorem 3 in [11] yields that λ|Ω+ is the limit in W 1,p(Ω+) of a sequence of functions
λn ∈ C∞

0 (Ω+). Let us extend each function λn to the entire plane by setting it equal
to zero outside Ω+. Then the limit (in W 1,p(C)) of the resulting sequence of extended
functions coincides with λ. Therefore λ ∈ W 1,p(C) and so φ = ψ+λ ∈ W 1,p(C), and
∂φ ∈ Lp(C) and vanishes outside Γ. Now since the 2-dimensional Lebesgue measure
of Γ is zero, we have that ∂φ = 0 in the sense of distributions. Using Weyl’s lemma,
i.e. that holomorphic distributions are holomorphic functions, one deduces that φ is
a holomorphic function in C. Since φ is the difference of two functions which are
holomorphic at ∞, so is φ. Thus φ is constant. �

Remark 2.9. In fact J(Γ)h is the unique solution which goes to zero at ∞.

Remark 2.10. At present the validity of Theorem 2.8 for p = 2 is not known to
us. There are of course two obstructions for this in the proof given in this paper, as
is seen in the statement of Corollary 2.2 and in applying Vekua’s theorem regarding

continuity of the function
˜

Ω+

∂F (ζ)
ζ−z

dA(ζ).
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