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Abstract. In this paper, we introduce the F (p, s)-Teichmüller space and investigate its

Schwarzian derivative model and pre-logarithmic derivative model. In particular, we prove that

the pre-logarithmic derivative model is a disconnected subset of Besov type space F (p, s) and the

Bers projection is holomorphic.

1. Introduction

Let ∆ = {z : |z| < 1} be the unit disk in the complex plane C, ∆∗ = C\∆ be
the outside of the unit disk and S1 = {z ∈ C : |z| = 1} be the unit circle. Let α > 0,
the Bloch-type space Bα consists of all holomorphic functions f on ∆ such that

‖f‖B = sup
z∈∆

(1− |z|2)α|f ′(z)| < ∞,

and the subspace Bα
0 consists of all functions f ∈ Bα such that

lim
|z|→1

(1− |z|2)α|f ′(z)| = 0.

We denote by BMO(S1) the space of all integrable functions on S1 such that

(1) ‖u‖BMO = sup
I

1

|I|

ˆ

I

|u− uI | dθ < ∞,

where I is any arc on S1, |I| denotes the Lebesgue measure of I, and

(2) uI =
1

|I|

ˆ

I

u dθ

is the average of u over I. A holomorphic function f on ∆ belongs to BMOA(∆) if
and only if it is a Poisson integral of some function which belongs to BMO(S1).

For any a ∈ ∆, set ϕa(z) = z−a
1−az

, z ∈ ∆. For p > 1, q > −2 and s ≥ 0, the
space F (p, q, s) consists of all holomorphic functions f on the unit disk ∆ with the
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following finite norm

‖f‖pFp,q,s
= sup

a∈∆

¨

∆

|f ′(z)|p(1− |z|2)q(1− |ϕa(z)|
2)s dx dy < ∞,(3)

and F0(p, q, s) consists of all functions f ∈ F (p, q, s) with

lim
|a|→1

¨

∆

|f ′(z)|p(1− |z|2)q(1− |ϕa(z)|
2)s dx dy = 0.(4)

The space F (p, q, s) was introduced by Zhao [23]. It is well known that F (p, q, s) is
trivial if q + s ≤ −1. For p ≥ 1, F (p, q, s) is a Banach space contained in the Bloch-
type space Bα and F0(p, q, s) ⊂ Bα

0 with α = q+2
p

. It is also known that F (2, 0, 1) is

the BMOA space (see [8]) and F (2, 0, s) is the Qs space (see [19, 20]). In this paper,
we shall mainly concentrate on the Besov type space F (p, s) = F (p, p − 2, s) and
F0(p, s) = F0(p, p− 2, s).

Let Ω = ∆ or Ω = ∆∗. Given an arc I of the unit circle S1, the Carleson box is
defined by

SΩ(I) =

{
{z ∈ ∆: 1− |I| ≤ |z| < 1, z/|z| ∈ I}, Ω = ∆,

{z ∈ ∆∗ : 1 ≤ |z| < 1 + |I|, z/|z| ∈ I}, Ω = ∆∗.

Let s > 0. A positive measure λ on Ω is called an s-Carleson measure if

‖λ‖C,s = sup
I⊂S1

λ(SΩ(I))

|I|s
< ∞,

and a compact s-Carleson measure if

lim
|I|→0

λ(SΩ(I))

|I|s
= 0.

We denote by CMs(Ω) the set of all s-Carleson measures on Ω and CMs,0(Ω) the
set of all compact s-Carleson measures on Ω. 1-Carleson measure is the classical
Carleson measure. By [19], we know that a positive measure λ on ∆ is an s-Carleson
measure if and only if

sup
a∈∆

¨

∆

(
1− |a|2

| 1− az |2

)s

dλ(z) < ∞,(5)

and is a compact s-Carleson measure if and only if

lim
|a|→1

¨

∆

(
1− |a|2

| 1− az |2

)s

dλ(z) = 0.(6)

Let f be a quasiconformal mapping of the complex plane C onto itself. Then
f is a homeomorphism with locally integral distributional derivatives, and satisfies
the Beltrami equation fz = µfz with ‖µ‖∞ = supz∈C |µ(z)| < 1. Here we use the
notations

fz =
1

2

(
∂

∂x
+ i

∂

∂y

)
f, fz =

1

2

(
∂

∂x
− i

∂

∂y

)
f.

This function µ is called the complex dilatation of f . The measurable Riemann
mapping theorem (see [1]) says that for each measurable function µ on the complex
plane C with ‖µ‖∞ < 1, there is a quasiconformal mapping f on C with complex
dilatation µ and f is unique up to a Möbius transformation of C onto itself.

A homeomorphism h is said to be quasisymmetric if there is some M(h) >
0 such that |h(I∗)| ≤ M(h)|h(I)| for any interval I ⊂ S1 with |I| ≤ π, where
I∗ is the interval with the same center as I but with double length. Denote by
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QS(S1) the group of quasisymmetric homeomorphisms of the unit circle S1. It is
well known that a sense preserving self-homeomorphism h is quasisymmetric if and
only if it can be extended to a quasiconformal self-homeomorphism of the unit disk
∆ (see [3]). Douady and Earle [7] also gave a quasiconformal extension of h to the
unit disk which is conformally invariant. Let Möb(S1) be the group of all Möbius
transformations of ∆ onto itself. The universal Teichmüller space is the right coset
space T = QS(S1)/Möb(S1).

Let M(∆∗) denote the unit ball of the Banach space L∞(∆∗) of all bounded mea-
surable functions on ∆∗. For any µ ∈ M(∆∗), there exists a unique quasiconformal
mapping fµ of C whose complex dilatation is equal to µ in ∆∗ and is zero in ∆. We
normalize fµ by

fµ(0) = f ′
µ(0)− 1 = f ′′

µ(0) = 0.

We say that two Beltrami coefficients µ1 and µ2 in M(∆∗) are Teichmüller equivalent,
which is denoted by µ1 ∼ µ2, if fµ1

(∆) = fµ2
(∆). The universal Teichmüller space T

can be described as T = M(∆∗)/ ∼. We denote by [µ] the equivalent class containing
µ ∈ M(∆∗).

Let SQ be the class of all univalent analytic functions f in the unit disk ∆ with the
normalized condition f(0) = f ′(0)− 1 = 0 that can be extended to a quasiconformal
mapping in the whole plane. Set T (1) = {log f ′ : f belongs to SQ}. It is known that
T (1) is an alternative model called pre-logarithmic derivative model of the universal
Teichmüller space. T (1) is a disconnected subset of the Bloch space B1. Furthermore,
Tb = {log f ′ ∈ T (1) : f(∆) is bounded} and Tθ = {log f ′ ∈ T (1) : f(eiθ) = ∞},
θ ∈ [0, 2π), are the connected components of T (1) (see [24]).

A quasisymmetric homeomorphism h is called strongly quasisymmetric homeo-
morphism if for each ε > 0, there is a constant δ > 0 such that |E| ≤ δ|I| implies
that |h(E)| ≤ ε|h(I)|, where I ⊂ S1 is an interval and E ⊂ I is a measurable subset.
In other words, h is absolutely continuous and log h′ ∈ BMO(S1). It is equivalent
to say that there exists a quasiconformal extension of h to ∆ such that its complex
dilatation µ(z) satisfies

|µ(z)|2

1− |z|2
dx dy ∈ CM1(∆)

(see [2]). The Teichmüller space called BMO-Teichmüller space with respect to
the strongly quasisymmetric homeomorphisms has been much studied in recently
years (see [6], [16]). In particular, Astala and Zinsmeister [2] proved that the pre-
logarithmic derivative model BMOA ∩ T (1) of the BMO-Teichmüller space is dis-
connected open subset of BMOA.

Recently, Wulan and Ye [18] introduced the QK-Teichmüller space and showed
that its pre-logarithmic derivative model is also disconnected subset of the QK space.

We denote by N(p, s) the space of all holomorphic functions f on ∆ with the
following finite norm

(7) ‖f‖pNp,s
= sup

a∈∆

¨

∆

|f(z)|p(1− |z|2)s+2p−2 (1− |a|2)s

|1− az|2s
dx dy.

We say an analytic function f belongs to N0(p, s) if f ∈ N(p, s) and

(8) lim
|a|→1

¨

∆

|f(z)|p(1− |z|2)s+2p−2 (1− |a|2)s

|1− az|2s
dx dy = 0.
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Zorboska [25] obtained a characterization of the relationship between the pre-
logarithmic derivative log f ′ in space F (p, s) and the Schwarzian derivative Sf in
space N(p, s).

Theorem A. [25] Let f be conformal on ∆, 0 ≤ s < ∞ and 1 ≤ p < ∞. Then

log f ′ ∈ F (p, s) if and only if Sf ∈ N(p, s), while log f ′ ∈ F0(p, s) if and only if

Sf ∈ N0(p, s).

It should be pointed out that the F (2, 1) case was proved by Astala and Zins-
meister in [2] and the F (2, s) case was proved by Pau and Peláez in [13].

In this paper, we introduce the F (p, s)-Teichmüller space and investigate its
Schwarzian derivative model and pre-logarithmic derivative model. In what follows,
we always assume that p ≥ 2 and s > 0. Denote by Mp,s(Ω) the Banach space of
all essentially bounded measurable functions µ each of which induces an s-Carleson

measure λµ(z) :=
|µ(z)|p

|1−|z|2|2−s dx dy ∈ CMs(Ω). The norm of µ ∈ Mp,s(Ω) is defined as

(9) ‖ µ ‖s=‖ µ ‖∞ +‖λµ‖
1/p
C,s,

where ‖λµ‖C,s is the s-Carleson norm of λµ on Ω. Mp,s,0(Ω) is the subspace of
Mp,s(Ω) which consists of all elements µ such that λµ(z) ∈ CMs,0(Ω). Set M1

p,s(Ω) =

Mp,s(Ω) ∩ M(Ω) and M1
p,s,0(Ω) = Mp,s,0(Ω) ∩ M(Ω), where M(Ω) denotes the unit

ball of the Banach space L∞(Ω) of all bounded measurable functions on Ω. We
define the F (p, s)-Teichmüller space TF (p,s) as TF (p,s) = M1

p,s(∆
∗)/ ∼ and the F0(p, s)-

Teichmüller space TF0(p,s) as TF0(p,s) = M1
p,s,0(∆

∗)/ ∼.
It is noted that F (2, 1)-Teichmüller space is the BMO-Teichmüller space and

the limit case F (2, 0)-Teichmüller space is the Weil–Petersson Teichmüller space (see
[5]) which has been much investigated in recently years and has wide applications
to various areas such as mathematical physics, differential equation and computer
vision. The limit case F (p, 0)-Teichmüller space is the p-integrable Teichmüller space
(see [9, 17, 21]).

The pre-logarithmic derivative model T̃F (p,s) of F (p, s)-Teichmüller space is the
set of functions log f ′, where f is conformal on ∆ and admits a quasiconformal
extension to the whole plane C such that its complex dilatation µ satisfies

(10)
| µ(z) |p

(| z |2 −1)2−s
dx dy ∈ CMs(∆

∗).

In this paper, we shall prove

Theorem 1.1. Let p ≥ 2 and 0 < s < 2. T̃F (p,s) is a disconnected subset

of the space F (p, s). Furthermore, T̃b = {log f ′ ∈ T̃F (p,s) : f(∆) is bounded } and

T̃θ = {log f ′ ∈ T̃F (p,s) : f(e
iθ) = ∞}, θ ∈ [0, 2π), are the connected components of

T̃F (p,s).

Let B∞(∆) denote the Banach space of all holomorphic functions on ∆ with
norm

‖ϕ‖B∞
= sup

z∈∆
|ϕ(z)|(1− |z|2)2 < ∞.

The Schwarzian derivative Sf of a conformal mapping f on ∆ is defined as

Sf =

(
f ′′

f ′

)′

−
1

2

(
f ′′

f ′

)2

.
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The Bers projection Φ: M(∆∗) → B∞(∆) is defined by µ 7→ Sfµ. The holomorphy
of the Bers projection is important in the theory of Teichmüller space. It is known
that Φ: M(∆∗) → B∞(∆) is holomorphic and descends down to a mapping B : T →
B∞(∆) known as the Bers embedding. Via the Bers embedding, T carries a natural
complex Banach manifold structure so that B is a holomorphic split submersion. For
the Bers projection Φ on M1

p,s(∆
∗), we also obtain the following result.

Theorem 1.2. Let p ≥ 2 and 0 < s < 2. The Bers projection Φ: M1
p,s(∆

∗) →
N(p, s) is holomorphic.

Fix z0 ∈ ∆∗. For µ ∈ M1
p,s(∆

∗), let gz0µ (abbreviated to be gµ) be the quasi-
conformal mapping on the complex plane C whose complex dilatation equals to µ
in ∆∗ and zero in ∆, normalized by gµ(0) = g′µ(0) − 1 = 0, gµ(z0) = ∞. Consider

the pre-Bers projection mapping Lz0 on M1
p,s(∆

∗) by setting Lz0(µ) = log g′µ. Then⋃
z0∈∆∗ Lz0(M

1
p,s(∆

∗)) = T̃F (p,s) ∩ F (p, s)0, where F (p, s)0 consists of all functions
ϕ ∈ F (p, s) with ϕ(0) = 0.

Theorem 1.3. Let p ≥ 2 and 0 < s < 2. For z0 ∈ ∆∗, the pre-Bers projection

mapping Lz0 : M
1
p,s(∆

∗) → F (p, s)0 is holomorphic.

Let f be a conformal mapping on ∆. The Grunsky kernel function is defined as

(11) U(f, ζ, z) =
f ′(ζ)f ′(z)

(f(ζ)− f(z))2
−

1

(ζ − z)2
, (ζ, z) ∈ ∆×∆.

Let h be a quasisymmetric homeomorphism on the unit circle S1. Then a kernel
function induced by h is defined as

(12) φh(ζ, z) =
1

2πi

ˆ

S1

h(w)

(1− ζw)2(1− zh(w))
dw, (ζ, z) ∈ ∆×∆.

These two kernel functions induce two functions,

(13) U(f, z) =

(
1

π

¨

∆

|U(f, ζ, z)|2 dξ dη

)1

2

, z ∈ ∆

and

(14) φh(z) =

(
1

π

¨

∆

|φh(ζ, z)|
2 dξ dη

) 1

2

, z ∈ ∆.

The functions U(f, z) and φh(z) are important in Teichmüller theory (see [10], [15],
[16]). They were used to characterize when a quasisymmetric homeomorphism is
symmetric in [10] or belongs to the Weil–Petersson class in [15]. They were also used
to study the BMO-Teichmüller theory in [16].

For any quasisymmetric homeomorphism h, there exists a unique pair of confor-
mal mappings f ∈ SQ on ∆ and g on ∆∗, such that f(0) = f ′(0)− 1 = 0, g(∞) = ∞
and h = f−1 ◦ g on S1. We call this a normalized decomposition of h. Conversely,
for each f ∈ SQ, there exists a quasisymmetric homeomorphism h with normalized
decomposition h = f−1 ◦ g on S1 (see [11]). We have the following result.

Theorem 1.4. Let p ≥ 2, 0 < s < 2 and h be a sense-preserving quasisymmetric

homeomorphism with normalized decomposition h = f−1 ◦ g. Then the following

statements are equivalent:

(1) log f ′ ∈ F0(p, s);
(2) |Sf(z)|

p(1− |z|2)2p+s−2 dx dy ∈ CMs,0(∆);
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(3) f can be extended to a quasiconformal mapping to the whole plane such that

its complex dilatation µ satisfies
|µ(z)|p

(|z|2−1)2−s dx dy ∈ CMs,0(∆
∗);

(4) |U(f, z)|p(1− |z|2)p+s−2 dx dy ∈ CMs,0(∆);
(5) |φh(z)|

2(1− |z|2)p+s−2 dx dy ∈ CMs,0(∆).

In what follows, C(·) will denote constant that depends only on the elements put
in the bracket.

2. Bers projection and pre-Bers projection

In order to prove Theorem 1.2 and Theorem 1.3, we need some lemmas as follows.

Lemma 2.1. [22] Suppose that k > −1, r, t > 0, and r+t−k > 2. If t < k+2 < r,
then there exists a universal constant C > 0 such that for all z, ζ ∈ ∆,

¨

∆

(1− | w |2)k

| 1− wz |r| 1− wζ |t
du dv ≤ C

(1− | z |2)2+k−r

| 1− ζz |t
,

where w = u+ iv.

Lemma 2.1. Let α > 0, β > 0 and s < 1 + α/2. For a positive measure λ on

∆, set

λ̃(z) =

¨

∆

(1− |z|2)α(1− |w|2)β

|1− zw|α+β+2
λ(w) du dv.

If λ ∈ CMs(∆), then λ̃ ∈ CMs(∆) and there exists a constant C ′ > 0 such that

‖λ̃‖C,s ≤ C ′‖λ‖C,s,

while λ̃ ∈ CMs,0(∆) if λ ∈ CMs,0(∆).

Proof. Set k = α, r = α+β+2, t = 2s and note that s < 1+α/2, it follows from
Lemma 2.1 that there exists a universal constant C > 0 such that for any a, w ∈ ∆,

(15)

¨

∆

(1− |z|2)α

|1− zw|α+β+2|1− az|2s
dx dy ≤ C

(1− |w|2)−β

|1− aw|2s
.

By Lemma 4.1.1 in Xiao [19], there exist some constants C1 > 0 and C2 > 0 such
that

(16) C1‖λ‖C,s ≤ sup
a∈∆

¨

∆

λ(z)
(1− | a |2)s

| 1− az |2s
dx dy ≤ C2‖λ‖C,s.

Consequently, we conclude from (15) that
¨

∆

λ̃(z)
(1− | a |2)s

| 1− az |2s
dx dy

=

¨

∆

(¨

∆

(1− |z|2)α(1− |w|2)β

|1− zw|α+β+2
λ(w) du dv

)(1− | a |2)s

| 1− az |2s
dx dy

=

¨

∆

(1− | a |2)s

(1− |w|2)−β
λ(w) du dv

¨

∆

(1− |z|2)α

|1− zw|α+β+2|1− az|2s
dx dy

≤ C

¨

∆

λ(w)
(1− | a |2)s

| 1− aw |2s
du dv.

(17)
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If λ ∈ CMs(∆), then from (16) and (17), we deduce that λ̃ ∈ CMs(∆) and there is

a constant C ′ = CC2

C1
such that ‖λ̃‖C,s ≤ C ′‖λ‖C,s. If λ ∈ CMs,0(∆), then

(18) lim
|a|→1

¨

∆

λ(w)

(
1− |a|2

| 1− aw |2

)s

du dv = 0.

We deduce from (17) that

(19) lim
|a|→1

¨

∆

λ̃(z)

(
1− |a|2

| 1− az |2

)s

dx dy = 0.

Therefore λ̃ ∈ CMs,0(∆). �

Let f be a conformal mapping on ∆∗. For any z ∈ ∆∗, set

(20) βz(w) =
1 + wz

w + z
and γf(w) =

(|z|2 − 1)

w − f(z)
f ′(z).

Then βz is an automorphism of ∆∗ sending ∞ to z. We need a representation theorem
of the Schwarzian derivative, which is proved by Astala and Zinsmeister [2].

Lemma 2.3. [2] Let f be a conformal mapping on ∆∗ and admits a quasicon-

formal extension to the whole plane, then for any z ∈ ∆∗ and w = u+ iv,

(21) Sf(z) = −
3(|z|2 − 1)−2

2π

¨

∆

∂g(w) du dv,

where g = γf ◦ f ◦ βz.

We first show that the Bers projection is well defined.

Proposition 2.4. Let p ≥ 2 and 0 < s < 2. If µ ∈ M1
p,s(∆

∗), then Φ(µ) ∈
N(p, s).

Proof. Let µ ∈ M1
p,s(∆

∗) and fµ be the normalized quasiconformal mapping fµ

of C whose complex dilatation is µ in ∆∗ and is zero in ∆. Set f̂(ζ) = s ◦ fµ ◦ s(ζ),

where s(ζ) = 1/ζ . Then f̂ is a quasiconformal mapping of the whole plane C whose
complex dilatation µf̂(ζ) satisfies |µf̂(ζ)| = |µ(1

ζ
)| in ∆ and is zero in ∆∗. By a

change of variable, we conclude that

(22) λµ
f̂
=

|µf̂(ζ)|
p

(1− |ζ |2)2−s
dξ dη ∈ CMs(∆) and ‖λµ

f̂
‖C,s = ‖λµ‖C,s .

Let g = γf̂ ◦ f̂ ◦ βz, where γf̂ and βz are defined in (20). The area theorem of
univalent functions yields

(23)

¨

∆

Jg(ζ) dξ dη ≤ π,

where Jg is the Jacobian determinant of g. Noting that µg = µf̂◦βz
and ‖µg‖∞ =

||µ||∞, by (21), (23) and Hölder’s inequality, we get

|Sf̂(z)|
p(|z|2 − 1)2p =

(
3

2π

)p ∣∣∣∣
¨

∆

(µf̂◦βz
∂g)(ζ) dξ dη

∣∣∣∣
p

≤

(
3

2π

)p
π

(1− ‖µg‖2∞)
p
2

¨

∆

| µf̂◦βz
(ζ) |p dξ dη

= C1(||µ||∞)

¨

∆

|µf̂(w)|
p(|z|2 − 1)2

| w − z |4
du dv,

(24)
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where C1(||µ||∞) =
(
3
2

)p π1−p

(1−‖µ‖2
∞
)
p
2

.

Consequently, for b ∈ ∆∗, set a = 1/b ∈ ∆, by (22), (24) and Lemma 2.2, we
have

¨

∆∗

|Sf̂(z)|
p(|z|2 − 1)2p+s−2 (|b|

2 − 1)s

|1− bz|2s
dx dy

≤ C1(||µ||∞)

¨

∆

|µf̂(w)|
p(1− |a|2)s

(1− |w|2)2−s
du dv

¨

∆

(1− |w|2)2−s(1− |z|2)s

|1− wz|4|1− az|2s
dx dy

≤ C2(||µ||∞)

¨

∆

|µf̂(w)|
p

(1− |w|2)2−s

(1− |a|2)s

|1− aw|2s
du dv

≤ C3(||µ||∞)‖λµ
f̂
‖C,s = C3(||µ||∞)‖λµ‖C,s.

(25)

Noting that |Sf̂(ζ)| = |Sfµ(
1
ζ
)| 1

|ζ|4
, we get from (25) that

(26) ‖Sfµ‖
p
Np,s

= sup
a∈∆∗

¨

∆∗

|Sf̂(z)|
p(|z|2 − 1)2p+s−2 (|a|

2 − 1)s

|1− az|2s
dx dy < ∞.

Which implies that Φ(µ) = Sfµ ∈ N(p, s) if µ ∈ M1
p,s(∆

∗). The proof follows. �

Before proving Theorem 1.2, we first recall some basic facts about the infinite
dimensional holomorphy (see [11, p. 206], [12, p. 86–87]). Let E and F be two
complex Banach space and U be an open subset in E, a mapping f : U → F is
holomorphic if and only if it is continous (locally boundedness is also enough) and
the complex Gateaux derivative dx(λ) defined as

dx(λ) = lim
t→0

f(x+ tλ)− f(x)

t

exists for each (x, λ) ∈ U ×E.
Let F ∗ denote the dual space of F in the usual sense. For a subset A of F ∗, we

define A⊥ = {y ∈ F : y∗(y) = 0, y∗ ∈ A}. A subset A is called total if A⊥ = {0}.

Proposition 2.5. [11, 12] f : U → F is holomorphic if and only if it satisfies

one of the following conditions.

(i) The mapping f is local bounded and for every (x, λ) ∈ U × E, the mapping

t 7→ f(x + tλ) is holomorphic from an open neighborhood of zero in the

complex plane C to F .

(ii) The mapping f is continuous and there exists a total subset A of F ∗ such

that for every y∗ ∈ A, the function y∗(f) : U → C is holomorphic.

We are now in a position to prove Theorem 1.2. Our proof is based on the proof
of Theorem 3 in Cui [5].

Proof of Theorem 1.2.. We first show that mapping Φ: M1
p,s(∆

∗) → N(p, s) is

continuous. Let µ̂ ∈ M1
p,s(∆

∗), ν̂ ∈ M1
p,s(∆

∗). It is sufficient to show that there is a
constant C(‖µ̂‖∞, ‖ν̂‖∞) such that

(27) ‖Φ(µ̂)− Φ(ν̂)‖Np,s
≤ C(‖µ̂‖∞, ‖ν̂‖∞)‖µ̂− ν̂‖s.

Set f̂1 = fµ̂, f̂2 = fν̂ and fi(ζ) = s ◦ f̂i ◦ s(ζ), i = 1, 2, where s(ζ) = 1/ζ . Then
f1 is a quasiconformal mapping of C whose complex dilatation is equal to µ(ζ) =

µ̂(s(ζ)) s
′(ζ)
s′(ζ)

in ∆ and is zero in ∆∗, while f2 is a quasiconformal mapping of C whose

complex dilatation is equal to ν(ζ) = ν̂(s(ζ)) s
′(ζ)
s′(ζ)

in ∆ and is zero in ∆∗. Thus the
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correspondence between µ and µ̂ is one-to-one and ‖µ̂‖∞ = ‖µ‖∞, ‖ν̂‖∞ = ‖ν‖∞.
By a change of variable, we conclude that

(28) ‖λµ
f̂
‖C,s = ‖λµ‖C,s , ‖λν

f̂
‖C,s = ‖λν‖C,s

and

(29) ‖Φ(µ̂)−Φ(ν̂)‖pNp,s
= sup

b∈∆∗

¨

∆∗

|Sf1(z)−Sf2(z)|
p(|z|2−1)2p+s−2 (|b|

2 − 1)s

|1− bz|2s
dx dy.

Let gµ = γf1 ◦ f1 ◦ βz and gν = γf2 ◦ f2 ◦ βz. By Lemma 2.3, we have

(30) Sf1(z)− Sf2(z) = −
3(|z|2 − 1)−2

2π

¨

∆

∂(gµ − gν)(w) du dv.

Set µβz
(w) = µ(βz(w))

β′
z(w)

β′

z(w)
, νβz

(w) = ν(βz(w))
β′
z(w)

β′

z(w)
. Let H be the Beuring–Ahlfors

operator defined as

H(φ)(ζ) = −
1

π

¨

C

φ(z)

(ζ − z)2
dx dy,

the integral is understood in the sense of Cauchy principal value. The representation
theorem of quasiconformal mapping says that ∂gµ = µβz

(I +H∂gµ), ∂gν = νβz
(I +

H∂gν) (see [1, Chapter V]). Consequently, we conclude that

∂(gµ − gν) = µβz
(I +H∂gµ)− νβz

(I +H∂gν)

= µβz
− νβz

+ µβz
H∂gµ − µβz

H∂gν + µβz
H∂gν − νβz

H∂gν

= (µβz
− νβz

)(H∂gν + I) + µβz
H∂(gµ − gν).

Since ∂gν = I +H∂gν , we have

∂(gµ − gν) = (I − µβz
H)−1(µβz

− νβz
)(I +H∂gν) = (I − µβz

H)−1((µβz
− νβz

)∂gν).

Thus it follows from (30) that

Sf2(z)− Sf1(z) = −
3(|z|2 − 1)−2

2π

¨

∆

(I − µβz
H)−1((µβz

− νβz
)∂gν)(w) du dv.(31)

Since (I − µβz
H)−1 = I + µβz

H(I − µβz
H)−1, we have

Sf2(z)− Sf1(z)

= −
3(|z|2 − 1)−2

2π

¨

∆

(I − µβz
H)−1((µβz

− νβz
)∂gν)(ζ) dξ dη

= −
3(|z|2 − 1)−2

2π

¨

∆

((µβz
− νβz

)∂gν)(ζ) dξ dη

−
3(|z|2 − 1)−2

2π

¨

∆

µβz
H(I − µβz

H)−1((µβz
− νβz

)∂gν)(ζ) dξ dη

= L1 + L2,

(32)

where

L1 = −
3(|z|2 − 1)−2

2π

¨

∆

((µβz
− νβz

)∂gν)(ζ) dξ dη

and

L2 = −
3(|z|2 − 1)−2

2π

¨

∆

µβz
H(I − µβz

H)−1((µβz
− νβz

)∂gν)(ζ) dξ dη.
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By using the method similar to (24), we get

|L1|
p(|z|2 − 1)2p ≤ C(‖µ‖∞)

¨

∆

|µ(w)− ν(w)|p(|z|2 − 1)2

| w − z |4
du dv.(33)

Consequently, similar to (25), by Lemma 2.2 and a change of variable, we obtain

sup
b∈∆∗

¨

∆∗

|L1(z)|
p(|z|2 − 1)2p+s−2 (|b|

2 − 1)s

|1− bz|2s
dx dy

≤ C(‖µ‖∞) sup
a∈∆

¨

∆

|µ(w)− ν(w)|p

(1− |w|2)2−s

(1− |a|2)s

|1− aw|2s
du dv.

(34)

We now estimate L2. It is noted that when ‖µ‖∞ < 1, the operator I − µH is
invertible on L2(∆) and the norm of its inverse (I−µH)−1 is less than 1/(1−‖µ‖∞).
Thus we have

| L2|
2(|z|2 − 1)4 =

(
3

2π

)2 ∣∣∣∣
¨

∆

µβz
H(I − µβz

H)−1((µβz
− νβz

)∂gν)(ζ) dξ dη

∣∣∣∣
2

≤
9

4π2(1− ‖µ‖∞)2

¨

∆

|µβz
|2 dξ dη

¨

∆

|((µβz
− νβz

)∂gν)(ζ)|2 dξ dη

≤
9‖µ− ν‖2∞

4π(1− ‖µ‖∞)2(1− ‖ν‖2∞)

¨

∆

|µβz
|2 dξ dη

=
9‖µ− ν‖2∞

4π(1− ‖µ‖∞)2(1− ‖ν‖2∞)

¨

∆

|µ(ζ)|2(|z|2 − 1)2

|ζ − z|4
dξ dη.

(35)

Noting that p ≥ 2, by Hölder’s inequality, we get

|L2|
p ≤

(
9‖µ− ν‖2∞(|z|2 − 1)−2

4π(1− ‖µ‖∞)2(1− ‖ν‖2∞)

) p
2
¨

∆

|µ(ζ)|p

|ζ − z|4
dξ dη

(
¨

∆

1

|ζ − z|4
dξ dη

)p
2
−1

≤ C1(‖µ‖∞, ‖ν‖∞)‖µ− ν‖p∞

¨

∆

|µ(ζ)|p

|ζ − z|4(|z|2 − 1)2p−2
dξ dη,(36)

Similar to L1, we can deduce that

sup
b∈∆∗

¨

∆∗

|L2(z)|
p(|z|2 − 1)2p+s−2 (|b|

2 − 1)s

|1− bz|2s
dx dy(37)

≤ C2(‖µ‖∞, ‖ν‖∞)‖µ− ν‖p∞ sup
a∈∆

¨

∆

|µ(w)|p

(1− |w|2)2−s

(1− |a|2)s

|1− aw|2s
du dv.

Combining (28), (29), (32), (34) and (37), we deduce that (27) holds and thus the
mapping Φ: M1

p,s(∆
∗) → N(p, s) is continuous.

We now prove that the Bers projection Φ: M1
p,s(∆

∗) → N(p, s) is holomorphic.
For each z ∈ ∆, we define a continuous linear functional lz on the Banach space
N(p, s) by lz(ϕ) = ϕ(z) for ϕ ∈ N(p, s). Then the set A = {lz : z ∈ ∆} is a to-
tal subset of the dual space of N(p, s). Now for each z ∈ ∆, each pair (µ, ν) ∈
M1

p,s(∆
∗)×Mp,s(∆

∗) and small t in the complex plane, by the well known holomor-
phic dependence of quasiconformal mappings on parameters (see [11, Theorem 3.1 in
Chapter II], [1, Chapter V]), we conclude that lz(Φ(µ+ tν)) = Sfµ+tν

(z) is a holomor-
phic function of t. From Proposition 2.5, the Bers projection Φ: M1

p,s(∆
∗) → N(p, s)

is holomorphic. This completes the proof. �

Checking the proof of Theorem 1.2, we can show the following
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Theorem 2.6. Let p ≥ 2 and 0 < s < 2. The Bers projection Φ: M1
p,s,0(∆

∗) →
N0(p, s) is holomorphic.

We now prove Theorem 1.3.

Proof of Theorem 1.3. It follows from Theorem A and Proposition 2.4 that the
mapping Lz0 : M

1
p,s(∆

∗) → F (p, s)0 is well defined. We can prove Lz0 : M
1
p,s(∆

∗) →

F (p, s)0 is holomorphic by the same reasoning as the proof of the holomorphy of
Φ: M1

p,s(∆
∗) → N(p, s). Thus it is enough to show that Lz0 : M

1
p,s(∆

∗) → F (p, s)0

is continuous. For µ, ν ∈ M1
p,s(∆

∗), it follows from the proof of [11, Theorem 3.1 in
Chapter II] that

(38) sup
z∈∆

(1− |z|2)

∣∣∣∣
g′′µ
g′µ

−
g′′ν
g′ν

∣∣∣∣ ≤ C(‖µ‖∞)‖µ− ν‖∞.

By Theorem 1.2, we conclude that

(39) ‖Sgµ(z)− Sgν(z)‖Np,s
≤ C1(‖µ‖∞, ‖ν‖∞)‖µ− ν‖s.

It follows from Chapter 4 in [14] that there is a constant C2 > 0 which is independent
of µ and ν such that

¨

∆

∣∣∣∣
g′′µ
g′µ

−
g′′ν
g′ν

∣∣∣∣
p
(1− |z|2)p−2(1− |a|2)s

|1− az|2s
dx dy

≤ C2

∣∣∣∣
g′′µ
g′µ

(0)−
g′′ν
g′ν

(0)

∣∣∣∣
p

+C2

¨

∆

∣∣∣∣∣

(
g′′µ
g′µ

)′

−

(
g′′ν
g′ν

)′
∣∣∣∣∣

p
(1−|z|2)2p−2(1−|a|2)s

|1−az|2s
dx dy.

(40)

By the definition of the Schwarzian derivative, we get∣∣∣∣∣

(
g′′µ
g′µ

)′

−

(
g′′ν
g′ν

)′
∣∣∣∣∣

p

≤ 2p|Sgµ − Sgν |
p + 2p

∣∣∣∣∣

(
g′′µ
g′µ

)2

−

(
g′′ν
g′ν

)2
∣∣∣∣∣

p

= 2p|Sgµ − Sgν |
p + 2p

∣∣∣∣
g′′µ
g′µ

+
g′′ν
g′ν

∣∣∣∣
p ∣∣∣∣

g′′µ
g′µ

−
g′′ν
g′ν

∣∣∣∣
p

.

(41)

Taking z = 0 in (38), we get

(42)

∣∣∣∣
g′′µ
g′µ

(0)−
g′′ν
g′ν

(0)

∣∣∣∣
p

≤ Cp(‖µ‖∞)‖µ− ν‖p∞.

It follows from (38), (39) and (41) that
¨

∆

∣∣∣∣∣

(
g′′µ
g′µ

)′

−

(
g′′ν
g′ν

)′
∣∣∣∣∣

p
(1− |z|2)2p−2(1− |a|2)s

|1− az|2s
dx dy

≤ 2p
¨

∆

∣∣Sgµ − Sgν

∣∣p (1− |z|2)2p−2(1− |a|2)s

|1− az|2s
dx dy

+ 2p
¨

∆

∣∣∣∣
g′′µ
g′µ

+
g′′ν
g′ν

∣∣∣∣
p ∣∣∣∣

g′′µ
g′µ

−
g′′ν
g′ν

∣∣∣∣
p
(1− |z|2)2p−2(1− |a|2)s

|1− az|2s
dx dy

≤ 2pCp
1 (‖µ‖∞, ‖ν‖∞)‖µ− ν‖ps

+ 2p sup
z∈∆

(1− |z|2)p
∣∣∣∣
g′′µ
g′µ

−
g′′ν
g′ν

∣∣∣∣
p¨

∆

∣∣∣∣
g′′µ
g′µ

+
g′′ν
g′ν

∣∣∣∣
p
(1− |z|2)p−2(1− |a|2)s

|1− az|2s
dx dy

≤ 2pCp
1 (‖µ‖∞, ‖ν‖∞)‖µ− ν‖ps

+ 4pCp(‖µ‖∞)(‖ log g′µ‖F (p,p−2,s) + ‖ log g′ν‖F (p,p−2,s))
p‖µ− ν‖p∞.

(43)
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Combining (40), (42) and (43), we get

‖Lz0(µ)− Lz0(ν)‖F (p,p−2,s)

≤ C3

(
‖µ‖∞, ‖ν‖∞, ‖ log g′µ‖F (p,p−2,s), ‖ log g

′
ν‖F (p,p−2,s)

)
‖µ− ν‖s.

This completes the proof of Theorem 1.3. �

Similarly, we have the following

Theorem 2.7. Let p ≥ 2 and 0 < s < 2. For z0 ∈ ∆∗, the pre-Bers projection

mapping Lz0 : M
1
p,s,0(∆

∗) → F0(p, s)
0 is holomorphic.

3. Proofs of Theorem 1.1 and Theorem 1.4

In this section, we prove Theorem 1.1 and Theorem 1.4.

Proof of Theorem 1.1. Let log f ′ ∈ T̃F (p,s). Then f is a quasiconformal mapping

of the complex plane C whose complex dilatation µ satisfies λµ = |µ(z)|p

(|z|2−1)2−s dx dy ∈

CMs(∆
∗) and equals to zero in ∆. Let f t be the quasiconformal mapping in C with

f−1(∞) = (f t)−1(∞) and ∂f t = tµ∂f t. Consider the path t 7−→ log(f t)′, 0 ≤ t ≤ 1,
in the space F (p, s). Set g = f t and h = f s. By Theorem 1.3, we conclude that

‖ log g′ − log h′‖F (p,p−2,s) ≤ C
(
‖µ‖s, ‖ log g

′‖F (p,p−2,s), ‖ logh
′‖F (p,p−2,s)

)
|t− s|.

This implies that the path t 7−→ log(f t)′, 0 ≤ t ≤ 1, is continuous in the space

F (p, s). Consequently, each log f ′ ∈ T̃F (p,s) can be connected by a continuous path
to an element logϕ′ ∈ F (p, s), where ϕ is a Möbius transformation of C. If ϕ(∆) is
unbounded, then f(ζ) = ϕ(ζ) = ∞ for some ζ ∈ ∂∆. Otherwise ϕ(∆) is bounded, we
consider the path r 7−→ logϕ′

r, where ϕr = ϕ(rz), 0 ≤ r ≤ 1. It is easy to see that this
is a path which connects the point logϕ′ to the point 0 in F (p, s). It turns out that

T̃b = {log f ′ ∈ T̃F (p,s) : f(∆) bounded } and T̃θ = {log f ′ ∈ T̃F (p,s) : limz→eiθ f(z) =
∞}, 0 ≤ θ ≤ 2π, are connected. By [24], elements in different classes can not

be connected even in Bloch space. We conclude that T̃b and T̃θ are the connected

components of T̃F (p,s). �

Before proving Theorem 1.4, we need a lemma which was proved by Shen and
Wei in [16].

Lemma 3.1. Let h be a quasisymmetric homeomorphism on S1 with normalized

decomposition h = f−1 ◦ g and ν be the complex dilatation of a quasiconformal

extension of h−1 to ∆. Then

(44)
1

36
(1− |z|2)2|Sf (z)|

2 ≤ U2(f, z) ≤ φ2
h(z) ≤

1

π

¨

∆

|ν(w)|2

1− |ν(w)|2
1

|1− zw|4
du dv.

Proof of Theorem 1.4. It follows from Theorem A that (1) ⇐⇒ (2). From
Theorem 1.3, we conclude that (1) =⇒ (3). Lemma 3.1 gives (4) ⇐⇒ (5) and
(4) =⇒ (2). Thus it remains to show that (3) =⇒ (1) and (3) =⇒ (5).

We first prove that (3) =⇒ (5). Let h be a quasisymmetric homeomorphism on
the unit circle S1. Then there exists a unique pair of conformal mappings f ∈ SQ on
∆ and g on ∆∗, such that f(0) = f ′(0) − 1 = 0, g(∞) = ∞ and h = f−1 ◦ g on S1

(see [11, Lemma 1.1 in Chapter III]). Suppose f can be extended to a quasiconformal
mapping of the whole plane C, which is also denoted by f , such that its complex

dilatation µ satisfies |µ(z)|p

(|z|2−1)2−s dx dy ∈ CMs,0(∆
∗). It is noted that Ĥ = g−1 ◦ f is a

quasiconformal extension of h−1 to ∆∗ and has the same complex dilatation µ as f .
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Then H = j ◦ Ĥ ◦ j, where j(z) = 1/z, is a quasiconformal extension of h−1 to ∆
with complex dilatation ν(z) satisfying |ν(z)| = |µ(1/z)|. A computation shows that

|ν(z)|p

(1−|z|2)2−s dx dy ∈ CMs,0(∆). By Lemma 2.2 and Lemma 3.1, we conclude that (5)

holds.
We now show that (1) =⇒ (3). Suppose that (1) holds. Noting that F0(p, s) is a

subspace of the little Bloch space B1
0 , we have

lim
|z|→1

(1− |z|2)|f ′′(z)/f ′(z)| = 0.

Becker and Pommerenke (see [4]) constructed a quasiconformal extension of the con-
formal mapping f to the whole plane C by the following formula

f(z) = f(1/z) + f ′(1/z)(z − 1/z), z ∈ ∆∗.

By some computations we have

|µ(z)| = |1/z|2(1− |1/z|2)|f ′′(1/z)/f ′(1/z)|.

For z, b ∈ ∆∗, we set w = 1/z and b = 1/a. A change of variable gives
¨

∆∗

|µ(z)|p

(|z|2 − 1)2−s

(|b|2 − 1)s

|1− bz|2s
dx dy

≤

¨

∆

|f ′′(w)/f ′(w)|p(1− |w|2)p−2+s (1− |a|2)s

|1− aw|2s
du dv.

(45)

Noting that log f ′ ∈ F0(p, s) and |b| → 1 if and only if |a| → 1, we conclude that

|µ(z)|p

(|z|2 − 1)2−s
dx dy ∈ CMs,0(∆

∗).

The proof follows. �
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